首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This study examined hydrological characteristics of low-grade weirs, an alternative controlled drainage strategy in surface drainage ditches. Chemographs of vegetated and clear scraped (control) replicates of weir vs. non-weir treatments were compared to determine differences in time to peak (Tp) and time to base (Tb). Drainage ditches Tp and Tb were affected by both vegetation and weir presence. The order of treatment efficiency for Tp was observed to be: non-vegetated non-weir < vegetated non-weir < non-vegetated weir < vegetated weir. Furthermore, Tb for each ditch was the reverse relationship from Tp where vegetated weir > non-vegetated weir > vegetated non-weir > non-vegetated non-weir. Low-grade weirs increase chemical retention time (vegetated and clear scraped), the average time a molecule of contaminant remains in the system. Future research in water quality improvement and weir management will yield useful information for non-point source pollutant reduction.  相似文献   

3.
Hydraulics of microtube emitters: a dimensional analysis approach   总被引:1,自引:1,他引:0  
Dimensional analysis is a simple, clear and intuitive method for determining the functional dependence of physical quantities that are of importance to a certain process. Buckingham’s pi theorem is used to derive a dimensionally homogeneous equation for predicting the discharge of the microtube as a function of gravitational acceleration (g), microtube diameter (D), operating pressure head (H) and microtube length (L). Experimental investigations were conducted at College of Agricultural Engineering and Technology, Junagadh, to determine (a) the variation in Q with L, D and H and (b) the coefficients (K, y and z) of the developed model. The L and D of microtube were varied from 5 to 250 cm and 1.2 to 2 mm. The operating pressure was varied from 0 to 1.5 m. The L, H and D combinations selected in the study suit most of the manufacturer’s recommendations for microtube drip irrigation systems. The discharge of microtube decreased with increase in microtube length for particular microtube diameter and operating pressure. The discharge increased with increase in the microtube diameter for a particular operating pressure and microtube length. The values of K, y and z are 4.476, 1 and 0.5, respectively. Goodness of fit and efficiency coefficient reduced with increase in the microtube diameter. The dimensionally homogeneous equation (Eq. 25) developed for all flow regimes can predict discharge with good accuracy for less than 2-mm microtube diameter. The microtube diameter was found to be 1.2 mm based on the dominance of viscous forces over inertial forces.  相似文献   

4.
Overland water and salt flows in a set of rice paddies   总被引:1,自引:0,他引:1  
Cultivation of paddy rice in semiarid areas of the world faces problems related to water scarcity. This paper aims at characterizing water use in a set of paddies located in the central Ebro basin of Spain using experimentation and computer simulation. A commercial field with six interconnected paddies, with a total area of 5.31 ha, was instrumented to measure discharge and water quality at the inflow and at the runoff outlet. The soil was classified as a Typic Calcixerept, and was characterized by a mild salinity (2.5 dS m−1) and an infiltration rate of 5.8 mm day−1. The evolution of flow depth at all paddies was recorded. Data from the 2002 rice-growing season was elaborated using a mass balance approach to estimate the infiltration rate and the evolution of discharge between paddies. Seasonal crop evapotranspiration, estimated with the surface renewal method, was 731 mm (5.1 mm day−1), very similar to that of other summer cereals grown in the area, like corn. The irrigation input was 1874 mm, deep percolation was 830 mm and surface runoff was 372 mm. Irrigation efficiency was estimated as 41%. The quality of surface runoff water was slightly degraded due to evapoconcentration and to the contact with the soil. During the period 2001–2003, the electrical conductivity of surface runoff water was 54% higher than that of irrigation water. However, the runoff water was suitable for irrigation. A mechanistic mass balance model of inter-paddy water flow permitted to conclude that improvements in irrigation efficiency cannot be easily obtained in the experimental conditions. Since deep percolation losses more than double surface runoff losses, a reduction in irrigation discharge would not have much room for efficiency improvement. Simulations also showed that rice irrigation performance was not negatively affected by the fluctuating inflow hydrograph. These hydrographs are typical of turnouts located at the tail end of tertiary irrigation ditches. In fact, these are the sites where rice has been historically cultivated in the study area, since local soils are often saline-sodic and can only grow paddy rice taking advantage of the low salinity of the irrigation water. The low infiltration rate characteristic of these saline-sodic soils (an experimental value of 3.2 mm day−1 was obtained) combined with a reduced irrigation discharge resulted in a simulated irrigation efficiency of 60%. Paddy rice irrigation efficiency can attain reasonable values in the local saline-sodic soils, where the infiltration rate is clearly smaller than the average daily rice evapotranspiration.  相似文献   

5.
The low efficiency water control provided by sluice gates and weirs used in the flooded rice tillage system in Rio Grande do Sul, Brazil, have caused significant water losses. Such devices are utilized to control the water flow from the main to the secondary channels. The water flow through the gates is highly influenced by the water depth fluctuation in the main channel. The purpose of this work was to construct and evaluate a flow regulator to reduce flow variations in the secondary channels, resulting from water level fluctuation in the main channels. The prototype operates with a float that prevents the water head variation over the water passage orifices. The regulator flow control was compared to the sluice gate flow control. Both structures were installed at a lateral inlet, and the depth of water in the main channel ranged from 70 to 90 cm. The flows from the regulator and sluice gate were measured with “H” flumes. To relate the flow provided by the regulator to the water head over the water passage orifices, the regulator was submitted to six different water heads, ranging from 5 to 30 cm. The comparison between the structures showed that both presented variation in the controlled flow. However, the flow control provided by the automatic flow regulator was more effective than that provided by the sluice gate. The controlled flow variation was 5.5% for the automatic flow regulator, and 23.7% for the sluice gate. Regulator flow analysis for the different water heads showed that it can operate with flows ranging from 24 to 49 L s−1. Comparing the sluice gate to the automatic flow regulator, the latter is a more efficient flow control device, reducing the waste of water.  相似文献   

6.
Side orifices are widely used in irrigation and environmental engineering to spill or divert water from a channel. Flow characteristic of sharp-crested rectangular orifices under free flow condition in open channels is studied in the present paper. Existing discharge equations are checked for their accuracy using the data collected in the present study and available data in the literature and a new discharge equation has been proposed. The coefficient of discharge mainly depends on the approach flow Froude number and ratio of the size of orifice and bed width of the channel. Relationships for the coefficient of discharge, treating the orifice as large and small were developed. The computed discharges using these relationships were within ±5% of the observed ones. Measurement of three-dimensional velocities and visualisation of streamlines in a horizontal plane at the centerline of the orifice indicates that for the flow of low Froude number, almost all the streamlines divert towards the orifice. However, in the case of high Froude number flows, only those streamlines which are close to the side orifice are diverted towards the orifice. The opposite side of the boundary has significant effect on the diverted discharge of low Froude number compared to the flow of high Froude number. Circular orifice has been found to be more efficient compared to the rectangular orifice of the same opening area.  相似文献   

7.
Emitter discharge of subsurface drip irrigation (SDI) decreases as a result of the overpressure in the soil water at the discharge orifice. In this paper, the variation in dripper discharge in SDI laterals is studied. First, the emitter coefficient of flow variation CV q was measured in laboratory experiments with drippers of 2 and 4 L/h that were laid both on the soil and beneath it. Additionally, the soil pressure coefficient of variation CV hs was measured in buried emitters. Then, the irrigation uniformity was simulated in SDI and surface irrigation laterals under the same operating conditions and uniform soils; sandy and loamy. CV q was similar for the compensating models of both the surface and subsurface emitters. However, CV q decreased for the 2-L/h non-compensating model in the loamy soil. This shows a possible self-regulation of non-compensating emitter discharge in SDI, due to the interaction between effects of emitter discharge and soil pressure. This resulted in the irrigation uniformity of SDI non-compensating emitters to be greater than surface drip irrigation. The uniformity with pressure-compensating emitters would be similar in both cases, provided the overpressures in SDI are less than or equal to the compensation range lower limit.  相似文献   

8.
A mathematical model which describes water flow under subsurface drip lines taking into account root water uptake, evaporation of soil water from the soil surface and hysteresis in the soil water characteristic curve θ(H) is presented. The model performance in simulating soil water dynamics was evaluated by comparing the predicted soil water content values with both those of Hydrus 2D model and those of an analytical solution for a buried single strip source. Soil water distribution patterns for three soils (loamy sand, silt, silty clay loam) and two discharge rates (2 and 4 l m−1 h−1) at four different times are presented. The numerical results showed that the soil wetting pattern mainly depends on soil hydraulic properties; that at a time equal to irrigation duration decreasing the discharge rate of the line sources but maintaining the applied irrigation depth, the vertical and horizontal components of the wetting front were increased; that at a time equal to the total simulation time the discharge rate has no effect on the actual transpiration and actual soil evaporation and a small effect on deep percolation. Also the numerical results showed that when the soil evaporation is neglected the soil water is more easily taken up by the plant roots.  相似文献   

9.
Water temperature and system pressure effect on drip lateral properties   总被引:2,自引:1,他引:1  
A study was conducted at the department of Agricultural Structure and Irrigation, Harran University, Sanliurfa, Turkey, to determine the effect of increased irrigation water temperature at various irrigation system pressures on emitter flow rate, lateral elongation, and Standard Flow Rate Index for six different brands of drip laterals. Test materials consisted of seven pressure and seven non-pressure compensating irrigation laterals from different manufacturers. Tests results showed that (a) tensile resistance stress tests indicated that 25% elongation levels were reached at about 40 kg of load. On average, pressure compensating laterals reached 25% elongation at 38 kg, while non-pressure compensating laterals reached 25% elongation at 32-kg load. There was no clear indication of the tested brands’ lateral wall thickness on the measurement, (b) pressure-regulated drip emitters had no or limited flow rate change due to increased irrigation water temperature, whereas non-pressure compensating emitters had significantly (P < 0.05) increased flow rates, and (c) finally, increased irrigation water temperature resulted in decreased flow rate variations that had a positive effect on standard deviation. Standard uniformity values improved with decreased flow rate variations in drip emitter flow rates.  相似文献   

10.
Vine water use was measured in a Vitis vinifera cv. Riesling vineyard located in New York. Vines were fully irrigated and were trained via vertical shoot positioning giving a narrow curtain intercepting about 30% of the incident light during the sunlight hours. Vine water use was estimated on six vines by sap flow gauges directly calibrated with whole canopy transpiration measurements. The regression analysis between estimates of transpiration showed that there were large differences between vines in the calibration values obtained. Sap flow monitoring started late in June, about 2 weeks after bloom, when the canopy already filled the trellis system, and continued until October. Results showed that vine water use during most of the summer days was between 1.0 and 2.0 mm day−1, with peak values around 2.5 mm. The basal (e.g. vine transpiration/reference evapotranspiration) crop coefficient (K cb) varied somewhat between days, but it was quite stable during the whole season. Averaged over the entire experimental period, the K cb was 0.49. Some of the day-to-day variation in the K cb was negatively related with daily average air vapour pressure deficit. This suggests that reference evapotranspiration models on grass may not be fully accurate for vines under these experimental conditions.  相似文献   

11.
基于VOF的量水槽流场数值模拟   总被引:7,自引:1,他引:6  
利用Fluent软件,采用VOF方法与标准k-ε紊流模型相耦合,对U型渠道平底抛物线形无喉段量水槽的流场进行三维数值模拟。通过建立不同渠槽模型,分析不同流量工况下沿程水面线及速度场分布,将数值模拟结果与实测结果、公式计算结果进行对比,结果表明,模拟值与实测值、公式计算值吻合较好。并应用该数值模拟方法对量水槽的流量公式进行了检验,为提高其测流精度提供一定的参考依据,为该量水槽结构设计与优化提供了新的思路。  相似文献   

12.
A study was conducted to evaluate the reliability of flow measurements with portable cut-throat flumes and broad-crested weirs during 1988–89 at the field hydraulic laboratory of the National Agricultural Research Centre, Islamabad. Data of flow measurements were recorded under free and submerged flow conditions with a cut-throat flume and a broad-crested weir as compared to a standard V notch. The results indicated that for free flow conditions cut-throat flumes can be used with –2.2 to 8.6% error. However, the use of cut-throat flumes under flat gradient channels may cause problem of over-topping at the upstream end. Under submerged flow conditions, the percent error in the flow measurements of –3.2 to 14.6% was observed. Therefore, cut-throat flumes cannot provide reasonable flow measurements under submerged flow conditions. For accurate flow measurements broad-crested weirs should be used with percent error of –1.5 to 5.8. Such flumes can be easily manufactured in Pakistan to suit different flow regimes and flat gradient channels.  相似文献   

13.
The performance of a bucket drip irrigation system (BDI) powered by treadle pump was evaluated on tomato and intercropped maize/bean crops, between 2005 and 2007 in Malawi. It was a split plot experiment with three replicates. The BDI system consisted of a 1,300-l tank mounted 1.5 m above ground and connected with a 32-mm mainline and 15-mm lateral lines spaced at 1 m by 0.6 m. A treadle pump was used to uplift water to the tank. Tomato and intercropped maize/bean were irrigated every 4 days. The system reduced labour and water by >25% and it showed high uniform application depth and wetted diameter. Yields were significantly different between tomato varieties (P < 0.05). Maize/bean yields were highly significantly different between monoculture, intercropping system and bean varieties (P < 0.001). Consequently, an economic analysis shows that there is a significant difference, in terms of net income, between the various crop enterprises. Tomato was more valuable with BDI, compared to maize and beans. It can be concluded that BDI, powered by a treadle pump, saves labour and time and it provides uniform irrigation for crop production. Therefore, tomato is recommended for use with this system, compared to maize and bean.  相似文献   

14.
Chloride mass balance (steady state or transient state) models are used extensively in Vertisols of Queensland and New South Wales (NSW) in Australia to estimate deep drainage. The aim of this study was to compare deep drainage estimated assuming steady state and transient state conditions with chloride mass balance models in irrigated cotton (Gossypium hirsutum L.)-based farming systems in the lower Namoi Valley of North Western NSW. Drainage was estimated at seven sites, and treatments included rotation crops such as wheat (21–62 mm/year) (Triticum aestivum), sorghum (12–47 mm/year) (Sorghum bicolor) and dolichos (12–21 mm/year) (Lablab purpureus), minimum tillage (62–83 mm/year), where cotton was sown into standing wheat stubble, and conventional tillage where stubble was incorporated (35–78 mm/year). Soil water content was measured with a neutron moisture meter in the 0.2–1.2 m depth. Soil was sampled before sowing and after harvest to a depth of 1.2 m along diagonal transects. The soil chloride concentration was determined by titration with AgNO3. Irrigation water was also analysed for chloride. The deep drainage estimates were compared using regression analysis and students paired t-test. In addition, a paired t-test of the soil chloride concentration before sowing and after harvest was used to determine if the soil chloride flux was either in a steady state or transient state. In 9 out of the 13 data sets (69%), drainage estimated with the models agreed with changes between pre- and post-season soil chloride concentrations. Under frequently irrigated summer crops such as cotton and sorghum and in better structured soils chloride flux reached steady state conditions whereas under partially-irrigated crops or where soil structure was poorer, the chloride flux deviated markedly from steady-state conditions. The latter observation may be due to preferential flow via deep cracks in infrequently irrigated soil. Deep cracking would be due to the more intense shrinking and swelling in partially irrigated soil in comparison with frequently-irrigated crops. Comparison of estimated deep drainage with pre- and post-season soil chloride concentrations showed that the steady state mass balance model best estimated deep drainage under cotton crops which were irrigated more frequently or wheat crops which had better soil structure.
T. B. WeaverEmail: Phone: +61-2-67991570Fax: +61-2-67991503
  相似文献   

15.
A drip-irrigation module was developed and included in an ecosystem model and tested on two independent datasets, spring and autumn, on field-grown tomato. Simulated soil evaporation correlated well with measurements for spring (2.62 mm d−1 compared to 2.60 mm d−1). Changes in soil water content were less well portrayed by the model (spring r 2 = 0.27; autumn r 2 = 0.45). More independent data is needed for further model testing in combination with developments of the spatial representation of below-ground variables. In a fresh-water drip-irrigated system, about 30% of the incoming water was transpired, 40% was lost as non-productive evaporative flows, and the remainder left the system as surface runoff or drainage. Simulations showed that saline water irrigation (6 dS m−1) caused reduced transpiration, which led to higher drainage and soil evaporation, compared with fresh water. Covering the soil with plastic mulch resulted in an increase in yield and transpiration. Finally, two different drip-irrigation discharge rates (0.2 and 2.5 l h−1) were compared; however the simulations indicated that the discharge rate did not have any impact on the partitioning of the incoming water to the system. The model proved to be a useful tool for evaluating the importance of specific management options.
Louise KarlbergEmail:
  相似文献   

16.
The Upper Swat Canal (USC) System became operational in 1917–1918 in North West Frontier Province (NWFP) of Pakistan. The rehabilitation and modernization of the USC was undertaken with a view to overcoming the shortage of water supplies for irrigation. The water allowance was enhanced from 0.39 to 0.77 Ls−1 ha−1 in the study area. Recently, the operation and management of a secondary canal or ‘distributary’ was transferred to the Farmers Organization (FO). This distributary named ‘Chowki’ offtakes from the Maira Branch of the USC. The cultivable command area (CCA) of this distributary is 4,306 ha and it serves 1,485 beneficiaries. A management committee on Chowki Distributary was formed in 2003. This distributary consists of one main and two minor channels having twenty-eight direct outlets. The Simulation of Irrigation Canal (SIC) hydrodynamic model was used to evaluate the flexibility of Chowki Distributary. The model was calibrated at 100, 80 and 70% of the design discharge (Q d) and it was validated at 90, 85 and 60% of the design discharge. The observed and simulated water levels were in close agreement with each other for the calibration and validation periods. The statistical analysis and paired t-test indicate that the model results are not statistically different from the measured values at 1% significance level. The simulated results of the SIC model were applied to studying flexibility of the outlet structures along the Chowki Distributary. The flexibility analysis demonstrates that poor performance is inbuilt into the system due to inadequate control over the accuracy of the crest setting during the construction of the outlets.  相似文献   

17.
18.
In humid regions, the timing and quantity of a complementary irrigation regime is challenging because of the irregularity of rainfalls events. In this study, we tested the use of a thermal infrared derived empirical crop water stress index (CWSIe) as an in situ measurement of the water status of sugarcane, to better monitor the irrigation scheduling. To do this, we set up a 2-year experiment in Reunion Island, on a trial with plots under different water conditions (rainfed and irrigated). Crop surface temperature was measured daily with infrared radiometers (Apogee Instruments) installed above the canopy, and soil moisture and drainage measurements were used to derive the ratio between actual and maximum evapotranspiration (AET/MET) values that were then averaged on “hydrically homogeneous” time periods (between 7 and 25 days). Only the thermal data acquired on clear days and 1 h after noon in 2007 were used to define the empirical lower and upper baselines required for the calculation of empirical CWSI. The data set acquired in 2008 was used to test the robustness of the method as we used the upper and lower baselines defined in 2007 to calculate CWSIe. The linear regression between AET/MET and (1 − CWSIe) averaged on the same periods (values ranging between 0.4 and 1) showed a significant correlation for both experimental years (global R2 = 0.75 and RMSE = 0.12). This result indicates the effectiveness of the CWSIe to measure the water status of the sugarcane crop, even in humid conditions with a vapor pressure deficit (VPD) between 0.5 and 2.1. We conclude the study by discussing the complementarity of this remote water stress index (CWSIe) with OSIRI water balance modelling tool currently used in Reunion Island for monitoring sugarcane crop irrigation.  相似文献   

19.
The neutron moisture meter (NMM) is a widely used device for sensing soil water content (SWC). Calibration accuracy and precision of the NMM are critical to obtain reliable results, and linear regression analysis of SWC against NMM count data is the most common method of calibration. In this study, artificial neural network (ANN) calibration models were developed and compared with linear regression. For this purposes, training and validation data were obtained from 2 calibration and 16 testing plots, respectively. Calibration plots consist of wet and dry soil water conditions separately. Data measured in dry beans and red pepper plots that have four different water levels were used to determine validity of regression and ANN-based calibration models. Volumetric SWC and NMM count ratio measurements were taken for depth intervals of 30 cm throughout a 120-cm-deep soil profile. Several neural network architectures were explored in order to determine the optimal network architecture. Data analyses were conducted for each soil layer and for the whole profile, separately, based on both linear regression and ANN. Linear regression calibration equation coefficients of determination (r 2) for the 0–30, 30–60, 60–90 and 90–120 cm depth ranges calculated by regression models were 0.85, 0.84, 0.72 and 0.82, respectively, and r 2 values were 0.94, 0.95, 0.87 and 0.88 based on ANN models, respectively. Using the data set from the entire 120-cm soil profile for calibration by ANN, the r 2 value was raised to 0.97.  相似文献   

20.
Four different levels of drip fertigated irrigation equivalent to 100, 75, 50 and 25% of crop evapotranspiration (ETc), based on Penman–Monteith (PM) method, were tested for their effect on crop growth, crop yield, and water productivity. Tomato (Lycopersicon esculentum, Troy 489 variety) plants were grown in a poly-net greenhouse. Results were compared with the open cultivation system as a control. Two modes of irrigation application namely continuous and intermittent were used. The distribution uniformity, emitter flow rate and pressure head were used to evaluate the performance of drip irrigation system with emitters of 2, 4, 6, and 8 l/h discharge. The results revealed that the optimum water requirement for the Troy 489 variety of tomato is around 75% of the ETc. Based on this, the actual irrigation water for tomato crop in tropical greenhouse could be recommended between 4.1 and 5.6 mm day−1 or equivalent to 0.3–0.4 l plant−1 day−1. Statistically, the effect of depth of water application on the crop growth, yield and irrigation water productivity was significant, while the irrigation mode did not show any effect on the crop performance. Drip irrigation at 75% of ETc provided the maximum crop yields and irrigation water productivity. Based on the observed climatic data inside the greenhouse, the calculated ETc matched the 75–80% of the ETc computed with the climatic parameters observed in the open environment. The distribution uniformity dropped from 93.4 to 90.6%. The emitter flow rate was also dropped by about 5–10% over the experimental period. This is due to clogging caused by minerals of fertilizer and algae in the emitters. It was recommended that the cleaning of irrigation equipments (pipe and emitter) should be done at least once during the entire cultivation period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号