首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A comprehensive characterization of crop germplasm is critical to the optimal improvement of the quality and productivity of crops. Genetic relationships and variability were evaluated among 63 durum wheat landraces from the Mediterranean basin using amplified fragment length polymorphisms (AFLPs) and microsatellites markers. The genetic diversity indices found were comparable to those of other crop species, with average polymorphism information content (PIC) values of 0.24 and 0.70 for AFLP and microsatellites, respectively. The mean number of alleles observed for the microsatellites loci was 9.15. Non-metric multi-dimensional scaling clustered the accessions according to their geographical origin with the landraces from the South shore of the Mediterranean Sea closely related. The results support two dispersal patterns of durum wheat in the Mediterranean basin, one through its north side and a second one through its south side.  相似文献   

2.
For millennia, wheat (Triticum spp.) has been grown in traditional aflaj-irrigation systems of remote mountain oases in Oman. However, little is known about the diversity of the ancient landraces used. Given recent reports about the occurrence of novel germplasm in such material, the objective of this study was to evaluate the genetic diversity of hexaploid wheat (Triticum aestivum L.) landraces in relation to their geographic origin using microsatellites. The collection covered most of the cultivation areas in northern Oman where wheat landraces are growing. Total genomic DNA was extracted from six pooled plants representing each accession. A total of 161 wheat accessions were assayed using 35 microsatellite loci in which a total of 305 polymorphic bands were recorded for the 35 microsatellites. The polymorphic information content (PIC) across the 35 microsatellite loci ranged from 0.02 to 0.89 with an average of 0.50. A heterozygosity percentage value of 9.09 was determined and the highest level recorded for accessions from the Batinah district. Rare alleles averaged 1.85 with the highest value being from the Dakhilia district. The results indicated a significant correlation between gene diversity and number of alleles across districts. The correlation coefficient between these two variables over the 35 loci was 0.657, whereby correlation coefficients of 0.718, 0.706, 0.657 and 0.651, respectively, were found for the Batinah, Dhahira, Dakhilia and Sharqia materials. Genetic distances indicated that all landraces were closely related. The cluster analysis discriminated most of the landraces accessions. However, it failed to achieve region-specific groupings of landraces. The present study demonstrated the presence of high diversity in Omani landraces and also indicated the effectiveness of microsatellites to describe it.  相似文献   

3.
Portuguese wheat landraces, ‘Arrancada’ were collected from the Aveiro region, Portugal before the 1950s. We found in eight accessions of `Arrancada' hexaploid wheat with the long glume phenotype. We assessed the comparative genetic diversity among Portuguese `Arrancada' wheat and Triticum petropavlovskyi Udacz. et Migusch. using AFLP assays and discuss the origin of long glumed `Arrancada' wheat. With the four primer pairs a total of 4885 visible bands were scored corresponding to 99 AFLP markers as putative loci, of which 55 markers (54%) were polymorphic. UPGMA clustering and PCO grouping showed that long glumed ‘Arrancada’ wheat and T. petropavlovskyi were genetically diverse. Long glumed ‘Arrancada’ hexaploid wheat separated into two clusters (groups) in both the UPGMA dendrogram and in PCO analysis. Four long glumed accessions fell in the cluster of tetraploid wheat. A similar argument could be made for another four accessions which belong to the cluster of hexaploid wheat. The substantial level of genetic variation indicated that long glumed ‘Arrancada’ wheat and T. petropavlovskyi originated independently. It is most likely that the P-gene of long glumed ‘Arrancada’ hexaploid wheat was introduced from T. turgidum ssp. polonicum (L.) Thell. to T. aestivum via natural introgression or breeding. We suggest that the long glumed ‘Arrancada’ hexaploid wheat did not originate from T. aestivum through spontaneous mutation at the P locus  相似文献   

4.
Results of archaeological studies indicate a millennia-old cultivation history for wheat (Triticum spp.) in Oman. However, in spite of numerous collection surveys and efforts for phenotypic characterization of Omani wheat landraces, no attempts have been made using molecular tools to characterize this germplasm. To fill this gap, 29 microsatellite markers revealing 30 loci were used to study the genetic diversity of 38 tetraploid wheat landrace accessions comprising the species T. dicoccon, T. durum and T. aethiopicum. A total of 219 alleles were detected whereby the number of alleles per locus ranged from 2 to 16 with an average number of 7.1 alleles per locus. The highest number of alleles occurred in the B genome with on average 7.9 alleles per locus as compared to the A genome with 6.5 alleles per locus. Heterogeneity was detected for all microsatellites except for GWM 312, GWM 601 and GWM 192B with an average heterogeneity over all primers and lines of 14.4%. Approximately 10% of the accessions contained rare alleles with an average allele frequency <4%. Gene diversity across microsatellite loci ranged from 0.26 to 0.85. The pairwise comparison of genetic similarity ranged from 0.03 to 0.91 with an average of 0.2. Cluster analysis revealed a clear separation of the two species groups T. dicoccon versus T. durum and T. aethiopicum. Within the species clusters regional patterns of subclustering were observed. Overall, this study confirmed the existence of a surprisingly high amount of genetic diversity in Omani wheat landraces as already concluded from previous morphological analyses and showed that SSR markers can be used for landraces’ analysis and a more detailed diversity evaluation.  相似文献   

5.
Temporal variation of diversity in Italian durum wheat germplasm   总被引:1,自引:0,他引:1  
The aim of this work is to analyse the temporal change of genetic diversity in Italian durum wheat germplasm. The germplasm deployed in this study (158 accessions), belonging to 5 different historical classes, was characterised for its microsatellite and gliadin markers. The level of genetic diversity (He), based on gliadin and SSR markers results – on average – greater in indigenous landraces present in Italy before 1915, with the exception of pure line material which had been selected from landraces (showing highest level of heterozigosity for gliadin markers). Genotypes obtained from crosses or mutagenesis (referring to the 1950–1960 period) along with those resulting from crosses between CIMMYT lines and old materials (1970s and beyond) were also genetically more diverse. Forty-nine percent of indigenous landraces were genetically heterogeneous. Nine out of 53 landrace accessions were able to capture 4 different SSR private alleles. It is speculated that the reduction of allele richness is an indicator of the genetic erosion of the pre-breeding germplasm and it is pointed out that the implementation of appropriate methods of genetic conservation of this germplasm is a priority for breeding and food safety.  相似文献   

6.
Little is known about genetic diversity and geographic origin of wheat landraces from Oman, an ancient area of wheat cultivation. The objectives of this study were to investigate the genetic relationships and levels of diversity of six wheat landraces collected in Oman with a set of 30 evenly distributed SSR markers. The total gene diversity, (HT), conserved in the three durum wheat (Triticum durum desf.) landraces (HT = 0.46) was higher than in the three bread wheat (Triticum aestivum L.) landraces (HT = 0.37), which were similar to Turkish and Mexican bread wheat landraces calculated in previous studies. Genetic variation partitioning (GST) showed that variation was mainly distributed within rather than among the durum (GST = 0.30) and bread wheat (GST = 0.19) landraces. Based on modified Rogers’ distance (MRD), the durum and bread wheat landraces were distinct from each other except for a few individuals according to principal coordinate analysis (PCoA). One bread wheat landrace (Greda) was separated into two distinct sub-populations. A joint cluster analysis with other landraces of worldwide origin revealed that Omani bread wheat landraces were different from other landraces. However, two landraces from Pakistan were grouped somewhat closer to Omani landraces indicating a possible, previously unknown relationship. Implications of these results for future wheat landrace collection, evaluation and conservation are discussed.  相似文献   

7.
Random amplified polymorphic DNA markers (RAPD) were used to estimate the variability of 35 tomato accessions (Lycopersicon esculentum Mill.). A total of 257 reproducibly scorable bands were obtained from 20 primers, 78.6% of which were polymorphic. The percentage distribution of RAPD markers shows a bimodal distribution, and the frequency of rare alleles is similar in commercial and landrace accessions. Genetic distances among accessions were calculated and a dendrogram showing the genetic relationships among them was constructed allowing for the separation of four groups. Twenty out of 23 Brazilian landraces fell within one group, whereas commercial cultivars were distributed in the four groups. AMOVA analysis of RAPD data showed that, despite the high within Brazilian landraces and commercial cultivars variation, these two groups are significantly different, indicating that landraces can be a source of variation for breeding programs.  相似文献   

8.
9.
We used AFLP analysis to explore the genetic relationship and diversity between and within 4 Mangifera species. We analyzed 35 accessions comprising 8 cultivars and 3 landraces of M. indica L., 11 landraces of M. odorata Griff., 7 landraces of M. foetida Lour., and 6 landraces of M. caesia Jack. Using 8 primer combinations produced a total of 518 bands, 499 (96.3%) of which were polymorphic among the 35 accessions. Clustering analysis showed that all 35 accessions were basically classified into 4 groups corresponding to the 4 Mangifera species. Our results indicate that the genetic relationship of these 4 Mangifera species based on AFLP analysis is in good agreement with their classification by classic methods. In addition, it was clearly revealed the genetic diversity between and within 4 Mangifera species. The findings obtained in this study are useful for the breeding in Mangifera species.  相似文献   

10.
The genetic variation and relationships among 31 accessions of Phaseolus vulgaris L., and two representatives of Vigna unguiculata L., were evaluated by AFLP analysis. A total of 263 DNA fragments across all materials were scored using nine primer combinations, averaging 32 per primer. More than 95% of the amplification products showed polymorphism, indicating high variation at the DNA level among these accessions. Pair-wise genetic similarity (Jaccard's coefficient) ranged from 0.553 to 0.840, with a mean of 0.765. Twenty-three accessions (70%) clustered into three groups. A majority of the commercial cultivars (91%) clustered within a single group, whereas the landraces were distributed along all the variation. An apparent correlation with phaseolin types was detected. Results of this study suggest that Brazilian landraces truly represent the overall genetic variability of Phaseolus vulgaris, confirming the multiple origins of these materials, and their potential as a source of variation for breeding programs.  相似文献   

11.
Bread wheat (Triticum aestivum L.) landraces held within ex situ collections offer a valuable and largely unexplored genetic resource for wheat improvement programs. To maximise full utilisation of such collections the evaluation of landrace accessions for traits of interest is required. In this study, 250 accessions from 21 countries were screened sequentially for tolerance to aluminium (Al) using haematoxylin staining of root tips and by root regrowth measurement. The staining test indicated tolerance in 35 accessions, with an intermediate response to Al exhibited in a further 21 accessions. Of the 35 accessions classified as tolerant, 33 also exhibited increased root length following exposure to Al. The tolerant genotypes originated from Bulgaria, Croatia, India, Italy, Nepal, Spain, Tunisia, and Turkey. AFLP analysis of the 35 tolerant accessions indicated that these represent diverse genetic backgrounds. These accessions form a valuable set of germplasm for the study of Al tolerance and may be of benefit to breeding programs for expanding the diversity of the gene pool from which tolerant cultivars are developed.  相似文献   

12.
Diversity among 36 snapmelon landraces, collected from 2 agro-ecological regions of India (9 agro-climatic sub-regions), was assayed using RAPD primers, morphological traits of plant habit and fruit, 2 yield-associated traits, pest and disease resistance and biochemical composition (TSS, ascorbic acid, titrable acidity). Typical differences among accessions were observed in plant and fruit characteristics and snapmelon germplasm with high titrable acidity and possessing resistance to downy mildew, Cucumber mosaic virus, Zucchini yellow mosaic virus, Papaya ringspot virus, Aphis gossypii and Meloidogyne incognita was noticed in the collection. RAPD based grouping analysis revealed that Indian snapmelon was rich in genetic variation and region and sub-region approach should be followed across India for acquisition of additional melon landraces. Accessions of var. agrestis and var. momordica clustered together and there was a separate cluster of the accessions of var. reticulatus. Comparative analysis of the genetic variability among Indian snapmelons and an array of previously characterized reference accessions of melon from Spain, Israel, Korea, Japan, Maldives, Iraq, Pakistan and India using SSRs showed that Indian snapmelon germplasm contained a high degree of unique genetic variability which was needed to be preserved to broaden the genetic base of melon germplasm available with the scientific community. N. P. S. Dhillon and Ranjana contributed equally to this work and are considered the first authors.  相似文献   

13.
Sweet potato (Ipomoea batatas L.) is the fifth most important crop in the developing countries after rice, wheat, maize and cassava. The amplified fragment length polymorphism (AFLP) method was used to study the genetic diversity and relationships of sweet potato accessions in the germplasm collection of Sokoine University of Agriculture, Morogoro and Sugarcane Research Institute, Kibaha, Tanzania. AFLP analysis of 97 sweet potato accessions using ten primer combinations gave a total of 202 clear polymorphic bands. Each one of the 97 sweet potato accessions could be distinguished based on these primer combinations. Estimates of genetic similarities were obtained by the Dice coefficient, and a final dendrogram was constructed with the un-weight pair-group method using arithmetic average. AFLP-based genetic similarity varied from 0.388 to 0.941, with a mean of 0.709. Cluster analysis using genetic similarity divided the accessions into two main groups suggesting that there are genetic relationships among the accessions. Principal Coordinate analysis confirmed the pattern of the cluster analysis. Analysis of molecular variance revealed greater variation within regions (96.19%) than among regions (3.81%). The results from the AFLP analysis revealed a relatively low genetic diversity among the germplasm accessions and the genetic distances between regions were low. A maximally diverse subset of 13 accessions capturing 97% of the molecular markers diversity was identified. We were able to detect duplicates accessions in the germplasm collection using the highly polymorphic markers obtained by AFLP, which were found to be an efficient tool to characterize the genetic diversity and relationships of sweet potato accessions in the germplasm collection in Tanzania.  相似文献   

14.
Field and controlled environmental tests indicated that the 49 accessions of closely related species and 12 landraces of wheat (Triticum aestivum L. em. Thell.) from the National Gene Bank of China showed different reactions to powdery mildew (Blumeria graminis (DC.) E. O. Speer. f. sp. tritici) and stripe rust (Puccinia striiformis Westend f. sp. tritici) at adult and seedling stages. Unknown Pm genes or alleles were postulated with Triticum baeoticum Boiss. accessions BO 3 and Triticum monococcum L. MO 4 and MO 5 when inoculated with 21 powdery mildew isolates at seedling stage. Fourteen accessions of T. baeoticum, T. monococcum, Triticum durum, and wheat landraces were inoculated with 30 stripe rust isolates at seedling stage. Unknown Yr genes or alleles were postulated with T. baeoticum Boiss. accession BO 5, as well as wheat landraces Xiaobaimai, Laomangmai, and Shaanxibai. Heterogeniety in reaction to powdery mildew isolates and stripe rust races were observed in related species and landraces of wheat.  相似文献   

15.
The present study demonstrates utilization of 11 microsatellite markers to explore genetic diversity held in Perilla frutescens (L.) Britt. landrace accessions growing on farms in different parts of Korea and Japan and to assess their genetic relationships. All microsatellite loci were polymorphic and produced a total of 96 alleles ranging from 4 to 20, with an average of 8.7 alleles per locus. Of the 96 alleles found, a total of 15 unique landrace-specific alleles were observed at 9 different loci. The locus GBPFM203 provided the highest number of alleles (20), of which five were unique and each specific to a particular landrace accession. The occurrence of unique, accession-specific alleles presented molecular evidence for the generation of new alleles within on-farm collection of Perilla. The mean values of observed (H O) and expected heterozygosity (H E) were 0.39 and 0.68, respectively, indicating a considerable amount of polymorphism within this collection. A genetic distance-based phylogeny grouped the two Perilla varieties, var. frutescens and var. crispa (Thunb.) Decne into two distinct groups. Accessions belonging to var. frutescens could also be divided into two subgroups at a close genetic distance (GD = 0.432). The overall clustering pattern did not strictly follow the grouping of accessions according to their geographic origins. These observations are indicative of extensive germplasm exchange among farms from different geographical regions. The genetic similarity observed among the Perilla landraces may be useful for future Perilla crop variety identification, conservation, and improvement programs.  相似文献   

16.
The high molecular weight (HMW) glutenin subunit composition of 111 common landraces of bread wheat collected from Hubei province, China has been determined by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Ninety six of the accessions were homogeneous for HMW glutenin subunit composition and 15 were heterogeneous. For the Glu-1 loci, 16 alleles were detected, 3 at the Glu-A1locus, 9 at the Glu-B1and 4 at the Glu-D1. Three novel alleles were identified, two at the Glu-B1 and one at the Glu-D1locus. Combination of these 16 alleles resulted in 14 different HMW subunit patterns. The distribution of HMW glutenin subunit alleles in a subset of 105 of the 111 accessions representing six populations was assessed both at the individual population and whole population levels. The results demonstrated that the distribution of allelic patterns varied among populations. Taken together, 62.5% of the alleles detected were considered to be rare alleles while the Glu-A1c (null), Glu-B1b (1Bx7 + 1By8) and Glu-D1a (1Dx2 + 1Dy12) alleles were found most frequently in the six populations. The subset exhibited relatively high genetic diversity (A = 5.33, P = 1.00, Ae = 1.352 and He = 0.238) with 81.5% of the diversity being within populations and 18.5% between populations.  相似文献   

17.
Lima bean (Phaseolus lunatus L.) is an important crop in traditional Mayan agriculture of the Yucatan Peninsula, Mexico, its Mesoamerican center of diversity. Genetic erosion in this species is currently a threat in this region out of 3 of 21 landraces dominate 71.24% of the cultivated area, and 12 are rare landraces grown only in 6.29%. Using 90 ISSR loci, we estimated the diversity and genetic relationships for 21 landraces to analyzing their risk of genetic erosion, and generate data for their in situ conservation. Total genetic diversity was high (h = 0.29), however it was lower than wild gene pool reported (h = 0.69). The abundant landraces had genetic diversity values lower (h = 0.13, I = 0.17) than the common (h = 0.26, I = 0.33) and rare landraces (h = 0.24, I = 0.27). However, the rare landraces are in a higher risk of genetic erosion due to local extinction. The cluster analysis showed no groups corresponding to morpho-phenological characteristics, geographic origin or traditional classification, which resulted from high inter-landraces gene flow levels. The molecular data confirmed that the domesticated Lima bean pool of the Yucatan Peninsula has a high risk of genetic erosion. If current tendencies in landrace cultivation continue, many will no longer be planted within two to three generations, with a consequent loss of their alleles. Programs urgently need to be established for in situ conservation of Lima bean landraces in this region.  相似文献   

18.
Genetic diversity among some important Syrian wheat cultivars was estimated using Amplified Fragment Length Polymorphism (AFLP) markers. Five Triticum aestivum L. and 10 Triticum turgidum ssp. durum were analyzed with 11 EcoRI–MseI primer pair combinations. Of the approximately 525 detected AFLP markers, only 46.67% were polymorphic. Cluster analysis with the entire AFLP data divided all cultivars into two major groups reflecting their origins. The first one contained T. aestivum L. cultivars, and the T. turgidum ssp. durum cultivars and landraces were grouped in the second. Narrow genetic diversity among all cultivars was detected with an average genetic similarity of 0.884. The lowest similarity index (0.9) was found between Cham5 and Hamary (durum wheat), whereas this value was 0.93 between Salamony and Bouhouth 4 (T. aestivum L.). The narrow genetic diversity level indicates that these genotypes could be originated from the same source. AFLP analysis provides crucial information for studying genetic variation among wheat cultivars and provides important information for plant improvement.  相似文献   

19.
Sample populations of 157 Cannabis accessions of diverse geographic origin were surveyed for allozyme variation at 17 gene loci. The frequencies of 52 alleles were subjected to principal components analysis. A scatter plot revealed two major groups of accessions. The sativa gene pool includes fiber/seed landraces from Europe, Asia Minor, and Central Asia, and ruderal populations from Eastern Europe. The indica gene pool includes fiber/seed landraces from eastern Asia, narrow-leafleted drug strains from southern Asia, Africa, and Latin America, wide-leafleted drug strains from Afghanistan and Pakistan, and feral populations from India and Nepal. A third putative gene pool includes ruderal populations from Central Asia. None of the previous taxonomic concepts that were tested adequately circumscribe the sativa and indica gene pools. A polytypic concept of Cannabis is proposed, which recognizes three species, C. sativa, C. indica and C. ruderalis, and seven putative taxa.  相似文献   

20.
The management of genebank collections of cultivated potato is costly due to the need for in vitro maintenance and virus eradication. Therefore, it is important to set up conservation strategies, which prevent duplicates entering the collections. In this study, 32 Nordic potato landraces were studied for 57 morphological traits and analysed for amplified fragment length polymorphism (AFLP). Most landraces could be distinguished based on the morphological characters, except five accessions. Using five primer combinations to generate 114 reproducible AFLPs, of which 63 (55%) were polymorphic, the five morphologically indistinguishable accessions were placed into two groups with identical AFLP patterns, suggesting that some of the accessions were redundant for long-term preservation. The AFLP data showed that the Nordic collection of potato landraces is composed of genetically different clones, and morphological analysis revealed a wide range of variability. This variability seems to be distributed randomly over the Nordic region since the cluster analysis based on AFLPs and morphological traits revealed no grouping based on the country of origin. Principal component analysis suggests that fewer morphological traits than used in this study will be sufficient to discriminate between different genotypes of cultivated potato (Solanum tuberosum L.). Future possibilities for rationalising potato collections are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号