首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
 The impact of land use (unfertilized continuous maize cropping, unfertilized and fertilized alley cropping with maize, Gliricidia sepium tree fallow, natural fallow) on the soil organic matter (SOM) status and general soil fertility characteristics were investigated for a series of soils representative for the West African moist savanna zone. Three soils from the humid forest zone were also included. In an associated pot experiment, relationships between maize N and P uptake and SOM and general soil characteristics were developed. Soils under natural fallow contained the highest amount of organic C (1.72%), total N (0.158%), and had the highest effective cation exchange capacity (ECEC) [8.9 mEq 100 g–1 dry soil], while the Olsen P content was highest in the fertilized alley cropping plots (13.7 mg kg–1) and lowest under natural fallow (6.3 mg kg–1). The N concentration of the particulate organic matter (POM) was highest in the unfertilized alley cropping plots (2.4%), while the total POM N content was highest under natural fallow (370 mg N kg–1) and lowest in continuously cropped plots (107 mg N kg–1). After addition of all nutrients except N, a highly significant linear relationship (R 2=0.91) was observed between the total N uptake in the shoots and roots of 7-week-old maize and the POM N content for the savanna soils. POM in the humid forest soils was presumably protected from decomposition due to its higher silt and clay content. After addition of all nutrients except P, the total maize P uptake was linearly related to the Olsen P content. R 2 increased from 0.56 to 0.67 in a multiple linear regression analysis including the Olsen P content and clay content (which explained 11% of the variation in P uptake). Both the SOM status and N availability were shown to be improved in land-use systems with organic matter additions, while only the addition of P fertilizer could improve P availability. Received: 9 April 1999  相似文献   

2.
In Venezuelan Amazonian, some producers have established small agroforestry systems of production on sandy savanna soils by a long-term addition (more than 25 years) of animal manures at a low dressing (2 Mg ha−1) as fertilizer input. As a result of the organic fertilizers regime, the original savanna soil has been changed in terms of soil quality parameters. The main objective of the study was to investigate using sequential fractionation of soil P the impact of organic manures on the amount and partitioning of bioavailable P in soils of the Amazonas. Fractionation was carried out on Typic Ustipsamments amended with three different organic manure sources for extended periods. In general, after fertilization, all Pi and Po fractions increased significantly. The increase was striking in the resin-Pi and HCl-Pi, and among the organic P fractions, the changes were highest for the NaOH-Po sonicated and non-sonicated fractions. The total P increment was more relevant when soils were amended with chicken manure (1,194 mg Pt kg−1) and less relevant for the farm soil treated with compost (500 mg Pt kg−1), where the soil amended with cattle waste presented an intermediate value in total soil P (851 mg Pt kg−1). The importance of this field study was to assess the sustainability of long-term established organic management characterized by the low inputs, and this information is poor in the Amazonas.  相似文献   

3.
Phosphorus (P) solubility and transformation in soils determine its availability to plants and loss potential to the environment, and soil P dynamics is impacted by fertilization and soil properties. A Ultisol sample was interacted with 20 mg L?1 P solution from one to ten times. The P-reacted soils were then analyzed for water-soluble P (0.01 M calcium chloride (CaCl2)–extractable P); plant-available P (Olsen P); ammonium chloride P, aluminum P, iron P (NH4Cl-P, Al-P, Fe-P, respectively); and occluded P (Oc-P). The degree of P saturation (DPS) was calculated from ammonium oxalate–extractable Al, Fe, and P. The amount of P sorbed by the soil was highly correlated with the frequency of P addition with high percentage of P adsorbed initially and gradually decreased as the P addition continued. The relative abundance of the five P fractions in the P-reacted soil was in the order of Fe-P (36.5 percent) > Al-P (35.6 percent) > Oc-P (22.8 percent) > Ca-P (2.7 percent) > NH4Cl-P (2.3 percent). Both Olsen P and CaCl2-P were significantly increased by the repeated P addition process and highly correlated in an exponential function. The DPS was increased above the so-called critical point of 25 percent after the first P saturation process and kept increasing as the P addition continued. The P availability and adsorption in the soil were controlled by soil free and amorphous Al and Fe. The results suggest that repeated P application will build soil P to an excessive level, and consequently result in poor P-use efficiency and high P-loss potential to surface and groundwater.  相似文献   

4.
Abstract

Various soil tests are used to estimate phosphorus (P) availability for both crop uptake and potential loss to water. Conversion equations may provide a basis for comparison between different tests and regions, although the extent to which information can be interchanged is uncertain. The objective was to determine and quantify relationships between specific soil test extractants for samples taken annually in October and February over 4 years from four sites in each of eight soil series under grassland. The extractants comprised Mehlich‐3, Morgan, Olsen, Bray‐1, lactate–acetate, CaCl2 (1∶2 and 1∶10 soil–solution ratios), and resin. The results showed distinct relationships for each soil series, for which individual lines regression models (different intercepts and slopes) were superior to a single conversion equation across all soils. The ensuing difference between soils was large and ranged from 1.9 to 8.0 and 9.2 to 15.6 mg kg?1 P for Morgan and Olsen, respectively, at 20 mg kg?1 Mehlich‐3 P. Generally, the environmentally oriented tests CaCl2 and resin correlated best with Morgan. Some soil‐specific limitations were also observed. CaCl2 was less efficient than Morgan, and Morgan less efficient than Mehlich‐3 on a high Fe–P soil derived from Ordovician‐shale diamicton, compared with the general trend for other soils. This finding suggests that further disparity may arise where evaluation of critical, or other, limits across regions involves even a limited sequence of tests.  相似文献   

5.
Sun  Xiaolei  Li  Meng  Wang  Guoxi  Drosos  Marios  Liu  Fulai  Hu  Zhengyi 《Journal of Soils and Sediments》2019,19(3):1109-1119
Purpose

Identification of phosphorus (P) species is essential to understand the transformation and availability of P in soil. However, P species as affected by land use change along with fertilization has received little attention in a sub-alpine humid soil of Tibet plateau.

Materials and methods

In this study, we investigated the changes in P species using Hedley sequential fractionation and liquid-state 31P-NMR spectroscopy in soils under meadow (M) and under cropland with (CF) or without (CNF) long-term fertilization for 26 years in a sub-alpine cold-humid region in Qinghai–Tibet plateau.

Results and discussion

Land-use change and long-term fertilization affected the status and fractions of P. A strong mineralization of organic P (OP) was induced by losing protection of soil organic matter (SOM) and Fe and Al oxides during land-use change and resulted in an increase of orthophosphate (from 56.49 mg kg?1 in M soils to 130.07 mg kg?1 in CNF soils) and great decreases of orthophosphate diesters (diester-P, from 23.35 mg kg?1 in M soils to 10.68 mg kg?1 in CNF soils) and monoesters (from 336.04 mg kg?1 in M soils to 73.26 mg kg?1 in CNF soils). Long-term fertilization boosted P supply but failed to reclaim soil diester-P (from 10.68 mg kg?1 in CNF soils to 7.79 mg kg?1 in CF soils). This may be due to the fragile protection from the combination of SOM with diester-P when long-term fertilization had only improved SOM in a slight extent.

Conclusions

These results suggest that SOM plays an important role in the soil P cycling and prevents OP mineralization and losses from soil. It is recommended that optimization of soil nutrient management integrated with SOM was required to improve the P use efficiency for the development of sustainable agriculture.

  相似文献   

6.
Abstract

Sustainable food production includes mitigating environmental pollution and avoiding unnecessary use of non-renewable mineral phosphate resources. Efficient phosphorus (P) utilization from organic wastes is crucial for alternative P sources to be adopted as fertilizers. There must be predictable plant responses in terms of P uptake and plant growth. An 18-week pot experiment was conducted to assess corn (Zea mays L.) plant growth, P uptake, soil test P and P fractionation in response to application of organic P fertilizer versus inorganic P fertilizer in five soils. Fertilizers were applied at a single P rate using: mono-ammonium phosphate, anaerobically digested dairy manure, composted chicken manure, vegetable compost and a no-P control. Five soils used varied in soil texture and pH. Corn biomass and tissue P concentrations were different among P fertilizers in two soils (Warden and Quincy), with greater shoot biomass for composted chicken manure and higher tissue P concentration for MAP. Plant dry biomass ranged from highest to lowest with fertilizer treatment as follows: composted chicken manure?>?AD dairy?=?MAP?=?no-P control?=?vegetable compost. Soil test P was higher in soils with any P fertilizer treatment versus the no-P control. The loosely bound and soluble P (2.7?mg P kg?1) accounted for the smallest pool of inorganic P fractions, followed by iron bound P (13.7?mg P kg?1), aluminum bound P (43.4?mg P kg?1) and reductant soluble P (67.9?mg P kg?1) while calcium bound P (584.6?mg P kg?1) represented the largest pool of inorganic P.  相似文献   

7.
Phosphorus (P) availability in acid soils is affected and hence it is important to monitor the distribution of P in acid soils. Here, the relationship was investigated taking 81 surface (0–0.20 m) soil samples into consideration collected from 21 mothbean cultivated areas and were analyzed for different phosphorus fractions in relation to their physical and chemical properties. Results revealed that available P ranged from 8.19 to 15.46 kg ha–1 which lies in a slightly low-to-medium range. Available P was significantly positively correlated with organic carbon and cation exchange capacity (CEC). The content of soil total P increased significantly with organic carbon and was found in range between 201.00 and 596.11 mg kg–1 which was in suffice category. Various phosphorus fractions under study viz., Al–P, Fe–P and Ca–P ranged between 20.23–32.28, 34.80–51.44 and 8.57–15.00 mg kg?1, respectively. Among the various P fractions, organic carbon was positively correlated with Fe–P and Ca–P.  相似文献   

8.
A greenhouse experiment was conducted in a red sandy loam soil (Alfisol) to study the responses of arbuscular mycorrhizal (AM) fungus Glomus intraradices Schenck & Smith inoculated (M+) and uninoculated (M−) maize (Zea mays L) plants exposed to various levels of P (15 and 30 mg kg−1) and Zn (0, 1.25, and 2.5 mg kg−1). Roots and shoots were sampled at 55 and 75 days after sowing and assessed for their nutritional status, root morphology, and root cation exchange capacity (CEC) besides grain quality. Mycorrhizal plants had longer and more extensive root systems than nonmycorrhizal plants, indicating that M+ plants are nutritionally rich, especially with P, which directly assisted in the proliferation of roots. Further, root CEC of M+ plants were consistently higher than those of M− plants, suggesting that mycorrhizal colonization assists in the acquisition of nutrients from soil solution. Mycorrhizal inoculated plants had significantly (P ≤ 0.01) higher P and Zn concentrations in roots, shoots, and grains, regardless of P or Zn levels. The available Zn and P status of AM fungus-inoculated soils were higher than unioculated soils. The data suggest that mycorrhizal symbiosis improves root morphology and CEC and nutritional status of maize plants by orchestrating the synergistic interaction between Zn and P besides enhancing soil available nutrient status that enables the host plant to sustain zinc-deficient conditions.  相似文献   

9.
A 25-week laboratory study was carried out to determine sulfur, carbon, and nitrogen mineralization rates in soil samples obtained from representative soils in France. Their relationship with some of the soil properties was investigated to find a predictor of mineralized S in soils. At 20°C and 80% water-holding capacity, the S mineralization rate ranged from 0.02 to 0.16 mg kg−1 day−1. It was significantly positively related to soil organic C and N and to C and N mineralization rates. It was weakly related to total soil S. The results suggest that the S mineralization is predominantly driven by heterotrophic microbial activity. A predictive equation for S mineralization based on soil C content, soil pH, and clay content is proposed.  相似文献   

10.
评价城市土壤磷素淋溶风险的化学指标   总被引:8,自引:0,他引:8  
Soils from urban and suburban areas are normally enriched with phosphorus (P). Sixteen urban soils with a wide range of total P concentrations under typical urban land uses were sampled and analyzed for extractable P concentrations using water, sodium bicarbonate and citric acid. Meanwhile the soils were artificially leached in columns and P concentrations in the leachates were determined. With linear regression a two-stage linear relationship was found to exis tbetween concentrations of P in the leachates and soil P contents obtained by various chemical measurements, i.e., there was a “change-point” denoting the critical threshold value for extractable P between the regression lines, above which concentrations of P in leachates increased substantially. These threshold “change-point” values were 1.5 mg kg^-1 for water-soluble P and CaCl2-P, 25 mg kg^-1 for Olsen-P, and 250-350 mg kg^-1 for citric acid-P with the sharpest change and the best predictor [τ2 (upper) = 0.928, τ2 (lower) = 0.807] appearing for Olsen-P. These “change-points” were considered important criteria in assessing the risk of P leaching from urban soils and could be used as standards to delineate and target hazardous areas in urban and suburban areas.  相似文献   

11.
Abstract

Iron (Fe)‐enriched concretions, a complex natural matrix with high chemical heterogeneity and phosphate‐sorption capacity, is widespread in soils with restrictive drainage in Greece. However, the phosphorus (P) status and related characteristics of Fe‐enriched concretions in agricultural soils in areas where P fertilization is mainly inorganic are relatively unknown. Active noncrystalline Fe and aluminum (Al) oxides (Feox, Alox), oxalate extractable P (Pox), P sorption capacity (PSC), and the degree of P saturation (DPS) of Fe‐enriched concretions from agricultural imperfectly drained soils in central Greece were determined using the acid ammonium oxalate method. The concretions contain 13 times as much Feox, twice as much Alox, and almost 15 times as much Pox than the surrounding soil matrix. Pox accounted for 50–80% of total P of the soil concretions, indicating strong accumulation of noncrystalline P components (Al‐ and Fe‐P). The PSC, expressed as a 0.5 (Alox+Feox), ranged from 184.7 to 314 mmol kg?1, demonstrating the strong affinity of the Fe‐enriched concretions for P. The DPS, which represents the fraction of concretion sorbent surface coverage by P, was computed as 100 (Pox/PSC) with values ranging from 6 to 13% (mean=8%). The results of this study indicate that the Fe‐enriched concretions, due to their high noncrystalline Fe and Al oxides content, act as major sink of phosphate, controlling the location, mobility, and dynamics of P in agricultural soils with restrictive drainage.  相似文献   

12.
This study investigated the effects of historical long‐term and recent single applications of pig slurry on phosphorus (P) leaching from intact columns of two sandy topsoils (Mellby and Böslid). The soils had similar physical properties, but different soil P status (ammonium lactate‐extractable P; P‐AL) and degree of P saturation (DPS‐AL). Mellby had P‐AL of 220–280 mg/kg and DPS‐AL of 32–42%, which was higher than for Böslid (P‐AL 140 mg/kg and DPS 21%). The study investigated the effects since 1983 of four treatments with different fertilizer histories, in summary high (HighSlurryMellby) and low (LowSlurryMellby) rates of pig slurry and mineral P (MinMellby) applications at Mellby and mineral P application at Böslid (MinBöslid). The columns were irrigated in the laboratory five times before and five times after a single application of pig slurry (22 kg P/ha). Concentrations of dissolved reactive P (DRP), dissolved organic P and total‐P (TP) in leachate and loads were significantly higher (P < 0.005) from the treatments at Mellby than those at Böslid. TP concentrations followed the trend: HighSlurryMellby (0.57–0.59 mg/L) > MinMellby (0.41–0.49 mg/L) > LowSlurryMellby (0.31–0.36 mg/L) > MinBöslid (0.14–0.15 mg/L), both before and after the single slurry application. DRP concentrations in leachate were positively correlated with DPS‐AL values in the topsoil (R2 = 0.95, P < 0.0001) and increased with greater DPS‐AL values after the single slurry application (R2 = 0.79, P < 0.0001). Thus, DPS‐AL can be an appropriate indicator of P leaching risk from sandy soils. Moreover, the build‐up of soil P because of long‐term repeated manure applications seems to be more important for potential P losses than a single manure application.  相似文献   

13.
ABSTRACT

Soil phosphorus (P) forms have been practically defined as chemically fractionated pools. A knowledge of the abundance and diversity of P forms in soil, and the factors affecting them, will lead to better soil management. However, little is known about the differences in P forms among soils with different geological properties in tropical Africa. The aim of this study was to investigate the P forms in soils with different physicochemical properties formed under different geological conditions in southern Tanzania and to identify the factors affecting the P forms in these soils. In total, 37 surface soil samples were collected from three geological groups; the plutonic (mainly granite) rock (PL) group, the sedimentary and metamorphic rock (SM) group, and the volcanic ash (V) group. Soil P was sequentially extracted by NH4Cl, NH4F, NaHCO3, NaOH + NaCl, and HCl, and inorganic (Pi) and organic P (Po) in each fraction were determined. The lowest total P was in the PL group (average, 360 mg P kg-1) because of the high sand content. Iron (Fe)-P (NaOH-Pi) was the major form in this group, accounting for 8.4% of total P. In the SM group (average total P, 860 mg P kg-1), Fe-P was the major form in most, accounting for 7.8% of total P. Soils in the SM group occasionally had high calcium (Ca)-P due to application of chemical fertilizer at the collection site. The V group had the highest total P (average, 1600 mg P kg-1) and its major P form was Ca-P, which was possibly derived from primary minerals (i.e., apatite), accounting for 14% of total P. In addition, the high oxalate-extractable Al possibly caused the accumulation of Al-P in the V group. Oxalate-extractable Fe generally increased with increasing Fe-Pi, while oxalate-extractable Al increased with increasing organic P and Al-Pi in soils in all three geological groups. These results demonstrate that the soil P forms differ greatly among sites in southern Tanzania with different geological conditions and associated soil properties.  相似文献   

14.
In the Mesopotamia region (Argentina), rice is cropped on a wide range of soil types, and the response of rice to fertilizer application has been inconsistent even in soils with very low levels of available phosphorus. Phosphorus transformations in flooded soils depend on soil characteristics that may affect phosphorus availability. This study was conducted to determine which soil characteristics were related to the changes in P fractions during soil flooding. Soils were chosen from ten sites within the Mesopotamia region that are included in five different soil orders: Oxisols, Ultisols, Alfisols, Mollisols, and Vertisols. Soil phosphorus (P) was fractionated by a modified Hedley method before and after a 45 d anaerobic‐incubation period. Changes in the inorganic P extracted with resin depended on soil pH and were related to the exchangeable‐Fe concentration of soils (extracted with EDTA). Inorganic P extracted with alkaline extractants (NaHCO3 and NaOH) increased due to soil flooding. This increase was related to the organic‐C (OC) percentage of soils (r2 = 0.62, p < 0.01), and ranged from 13 to 55 mg kg–1. Even though previous studies showed that P associated with poorly crystalline Fe played an important role in the P nutrition of flooded rice, in this study, there was no relationship between ammonium oxalate–extractable Fe and P changes in soils due to flooding. Our results suggest that in the Mesopotamia region, changes in P fractions due to soil flooding are related to soil OC, soil pH, and soluble and weakly adsorbed Fe.  相似文献   

15.
Phosphorus (P) sorption processes in soils contribute to important problems in agriculture: a deficiency of this plant nutrient and eutrophication in aquatic systems. Soil organic matter (SOM) plays a major role in sorption processes, but its influence on P sorption remains unclear and needs to be elucidated to improve the ability to effectively manage soil P. The aim of this research was to investigate the influence of SOM on P sorption. The study was conducted in sandy soil profiles and in topsoils before and after removal of SOM with H2O2. The results were interpreted with the Langmuir and Freundlich isotherms. Our results indicated that SOM affected P sorption in sandy soils, but that P sorption also depended on specific soil properties (e.g. values of the degree of P saturation (DPS), P sorption capacity (PSC) and pH) often related to land use. Removal of SOM decreased PSC in most of the topsoils tested; other soil properties became important in controlling P sorption. An increase in P desorption observed after SOM removal indicated that SOM was potentially that soil constituent which increased P binding and limited P leaching from these sandy soils.  相似文献   

16.
Organic farming (OF) is a fast growing alternative for sustainable agriculture in Korea. However, information on the effects of OF on the soil properties and environmental conservation is limited. In order to determine the effects of OF on the soil properties, 31 fields under OF (hereafter referred to as "OF fields") and 61 fields under conventional farming (CF) (hereafter referred to as "CF fields") in plastic film houses were selected throughout Korea and the soil chemical properties were investigated, including the P distribution characteristics. Average organic matter (OM) content was significantly higher (44 g kg-1) in the OF fields then in the CF fields (24 g kg-1). Bray-2 P values were 986 and 935 mg kg-1 in the OF and CF soils, respectively, markedly exceeding the optimum range. Average total P (T-P) values were 2,973 mg kg-1 in the OF fields and 1,830 mg kg-1 in the CF fields. The high T-P values were due to repeated application of manure compost with a low N/P ratio. Inorganic P was the dominant fraction with 62–65% of T-P. The amounts of residual and organic P were significantly lower. The level of OF organic P was significantly higher (453 mg kg-1) compared to the 106 mg kg-1 value for the CF fields. Fractionation of soil inorganic P showed that Ca-P predominated with 1,332 mg kg-1 in the OF fields, which was associated with soil pH values over 6.0. The main inorganic P fraction in the CF soils whose pH values were generally less than 6.0 consisted of Al-/Fe-P. The levels of water-soluble P was significantly higher (65 mg kg-1) in the OF fields than in the CF fields (24 mg kg-1). These results indicated that the OF system may lead to a serious degradation of the soil environment due to the accumulation of phosphorus and may be an important source of water pollution compared to the CF systems in Korea.  相似文献   

17.
The following six pig slurries obtained after acidification and/or solid/liquid separation were used in the research: original (S) and acidified (AS) pig slurry, nonacidified (LF) and acidified (ALF) pig slurry liquid fraction, and nonacidified (SF) and acidified (ASF) pig slurry solid fraction. Laboratory incubations were performed to assess the effect of the application of these slurries on N mineralization and CO2 and N2O emissions from a sandy soil. Acidification maintained higher NH4 +-N contents in soil particularly in the ALF-treated soil where NH4 +-N contents were two times higher than in LF-treated soil during the 55–171-day interval. At the end of the incubation (171 days), 32.9 and 24.2 mg N kg−1 dry soil were mineralized in the ASF- and SF-treated soils, respectively, but no mineralization occurred in LF- and S-treated soils, although acidification decreased N immobilization in ALF- (−25.3 mg N kg−1 soil) and AS- (−12.7 mg N kg−1 soil) compared to LF- (−34.4 mg N kg−1 soil) and S-treated (−18.6 mg N kg−1 soil) soils, respectively. Most of the dissolved CO2 was lost during the acidification process. More than 90% of the applied C in the LF-treated soil was lost during the incubation, indicating a high availability of the added organic compounds. Nitrous oxide emissions occurred only after day 12 and at a lower rate in soils treated with acidified than nonacidified slurries. However, during the first 61 days of incubation, 1,157 μg N kg−1 soil was lost as N2O in the AS-treated soil and only 937 in the S-treated soil.  相似文献   

18.
The water-soluble organic C in composted manure contains a portion of labile C which can stimulate soil microbial activity. The objective of this experiment was to evaluate the effects of water-soluble organic C extracted from composted dairy manure on C mineralization in soil with different textures. Three soils with textures varying from 3 to 54% clay were amended with 0 to 80 mg water-soluble organic C kg–1 soil extracted from a composted dairy manure and incubated for 16 weeks at 23°C. The total amount of C mineralized was greater than the amount of C added in the three soils. Differences in mineralizable C with and without added water-soluble organic C were approximately 13–16 times, 4.8–8 times, and 7.5–8 times greater than the amount of C added to clay, loam, and sand soils, respectively. The results of this experiment suggest that immediately following composted manure applications, C mineralization rates increase, and that most of the C mineralized comes mainly from the indigenous soil organic C pool.CLBRR contribution No. 94-71  相似文献   

19.
Phosphorus (P) loss from urban areas has been identified as a major contributor to declining surface water quality. The objective of this study was to determine the relationship between extractable soil P, depth of soil sampling, and dissolved reactive P (DP) concentration in runoff from turfgrass areas. At each site, runoff was generated on turfgrass and adjoining areas where turfgrass cover was removed. Across all six locations and the wide range of nutrient management schemes, variation of extractable soil P concentration and saturation ratios of 0–2cm samples accounted for 49–59% (r 2 = 0.49–0.59, n = 92) of variation of DP concentration in runoff from bare soil and soil with turfgrass cover. Despite a high degree of soil P stratification, changing sampling depth generally did not improve the relationship between soil test P and runoff DP concentrations. Across the narrower range of soil P levels common to lawns in New York (0–50mg kg?1 Morgan extractable soil P), none of the soil tests or P saturation levels (for 0–2cm depth) could accurately predict runoff P concentrations from soil with turfgrass cover (r 2 = 0.02 to 0.23, n = 72). For bare soil plots, restricting the analysis to the same range (<50mg kg?1 Morgan extractable P) did not alter the relationship between soil test P and runoff DP concentrations observed for the entire range (0–658mg kg?1) of soil-test P concentrations. These results suggest soil testing will not be an effective tool to predict runoff from turfgrass areas across the range of soil P levels common to New York State.  相似文献   

20.
Cost‐effective strategies for using chemically amended organic fertilizers need to be developed to minimize nutrient losses in surface and groundwater. Coupling specific soil physical and chemical characteristics with amendment type could increase their effectiveness. This study investigated how water‐extractable phosphorus (P) was affected by chemical amendments added to pig slurry and how this effect varied with soil properties. A 3‐month incubation study was conducted on 18 different mineral soils, stored at 10 °C and 75% humidity and treated with unamended and amended slurry which was incorporated at a rate equivalent to 19 kg total P (TP )/ha. The amendments examined were commercial‐grade liquid alum, applied at a rate of 0.88:1 [Al:TP ], and commercial‐grade liquid poly‐aluminium chloride (PAC ), applied at a rate of 0.72:1 [Al:TP ]. These amendments were previously identified by the authors as being effective in reducing incidental losses of P. The efficacy of the amendments varied with the soil test P, the degree of P saturation (DPS ) and the Mehlich aluminium, iron and calcium, but not soil texture. Chemical amendments were most effective in soils with DPS over approximately 20%. Due to their high cost, the incorporation of amendments into existing management practices can only be justified as part of a holistic management plan where soils have high DPS .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号