首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Jian LI  Per BENGTSON 《土壤圈》2022,32(6):884-892
The rhizosphere priming effect (RPE) is increasingly being considered to be an important regulator of soil organic matter (SOM) decomposition and nutrient turnover, with potential importance for the global CO2 budget. As a result, studies on the RPE have rapidly increased in number over the last few years.Most of these experiments have been performed using unplanted soil as the control, which could potentially lead to incorrect assessment of the RPE. Therefore,we performed a greenhous...  相似文献   

2.
We used a continuous labeling method of naturally 13C-depleted CO2 in a growth chamber to test for rhizosphere effects on soil organic matter (SOM) decomposition. Two C3 plant species, soybean (Glycine max) and sunflower (Helianthus annus), were grown in two previously differently managed soils, an organically farmed soil and a soil from an annual grassland. We maintained a constant atmospheric CO2 concentration at 400±5 ppm and δ13C signature at −24.4‰ by regulating the flow of naturally 13C-depleted CO2 and CO2-free air into the growth chamber, which allowed us to separate new plant-derived CO2-C from original soil-derived CO2-C in soil respiration. Rhizosphere priming effects on SOM decomposition, i.e., differences in soil-derived CO2-C between planted and non-planted treatments, were significantly different between the two soils, but not between the two plant species. Soil-derived CO2-C efflux in the organically farmed soil increased up to 61% compared to the no-plant control, while the annual grassland soil showed a negligible increase (up to 5% increase), despite an overall larger efflux of soil-derived CO2-C and total soil C content. Differences in rhizosphere priming effects on SOM decomposition between the two soils could be largely explained by differences in plant biomass, and in particular leaf biomass, explaining 49% and 74% of the variation in primed soil C among soils and plant species, respectively. Nitrogen uptake rates by soybean and sunflower was relatively high compared to soil C respiration and associated N mineralization, while inorganic N pools were significantly depleted in the organic farm soil by the end of the experiment. Despite relatively large increases in SOM decomposition caused by rhizosphere effects in the organic farm soil, the fast-growing soybean and sunflower plants gained little extra N from the increase in SOM decomposition caused by rhizosphere effects. We conclude that rhizosphere priming effects of annual plants on SOM decomposition are largely driven by plant biomass, especially in soils of high fertility that can sustain high plant productivity.  相似文献   

3.
A greenhouse rhizobox experiment was carried out to investigate the fate and turnover of 13C‐ and 15N‐labeled rhizodeposits within a rhizosphere gradient from 0–8 mm distance to the roots of wheat. Rhizosphere soil layers from 0–1, 1–2, 2–3, 3–4, 4–6, and 6–8 mm distance to separated roots were investigated in an incubation experiment (42 d, 15°C) for changes in total C and N and that derived from rhizodeposition in total soil, in soil microbial biomass, and in the 0.05 M K2SO4–extractable soil fraction. CO2‐C respiration in total and that derived from rhizodeposition were measured from the incubated rhizosphere soil samples. Rhizodeposition C was detected in rhizosphere soil up to 4–6 mm distance from the separated roots. Rhizodeposition N was only detected in the rhizosphere soils up to 3–4 mm distance from the roots. Microbial biomass C and N was increased with increasing proximity to the separated roots. Beside 13C and 15N derived from rhizodeposits, unlabeled soil C and N (native SOM) were incorporated into the growing microbial biomass towards the roots, indicating a distinct acceleration of soil organic matter (SOM) decomposition and N immobilization into the growing microbial biomass, even under the competition of plant growth. During the soil incubation, microbial biomass C and N decreased in all samples. Any decrease in microbial biomass C and N in the incubated rhizosphere soil layers is attributed mainly to a decrease of unlabeled (native) C and N, whereas the main portion of previously incorporated rhizodeposition C and N during the plant growth period remained immobilized in the microbial biomass during the incubation. Mineralization of native SOM C and N was enhanced within the entire investigated rhizosphere gradient. The results indicate complex interactions between substrate input derived from rhizodeposition, microbial growth, and accelerated C and N turnover, including the decomposition of native SOM (i.e., rhizosphere priming effects) at a high spatial resolution from the roots.  相似文献   

4.
Response of microbial metabolism (growth, substrate utilization, energetic metabolism) to fertilization by N and P and resulting changes in soil‐organic‐matter (SOM) decomposition (priming effect) were studied in grassland soils with relatively high organic‐matter content. Treatments with and without glucose addition were studied to simulate difference between rhizosphere and bulk soil. Our expectation was that fertilization would decrease soil respiration in both treatments due to an increased efficiency of microbial metabolism. At first, fertilization activated microbial metabolism in both treatments. In glucose‐nonamended soils, this was connected with a short‐term apparent priming effect but if glucose was available, the higher energetic demand was covered by its mineralization in preference against SOM, causing significant SOM savings as compared to unfertilized soils. After a relatively short period of 1–3 d, however, the phase of deprived microbial metabolism occurred in both treatments, which was characterized by lower soil respiration in fertilized than in unfertilized soils. Fertilization further decreased net microbial growth following glucose addition, shortened turnover time of microbial biomass and changed the partitioning of assimilated glucose within microbial biomass (decreased accumulation of storage compounds and increased the proportion of mineralized glucose). As a result, fertilization reduced soil respiration mainly due to a deprivation of microbial metabolism. The rate and range of microbial response to fertilization and also the amount of saved soil C were larger in the soil with higher SOM content, likely driven by the higher content of microbial biomass.  相似文献   

5.
Agricultural soils receive large amounts of anthropogenic nitrogen (N), which directly and indirectly affect soil organic matter (SOM) stocks and CO2 fluxes. However, our current understanding of mechanisms on how N fertilization affects SOM pools of various ages and turnover remains poor. The δ13C values of SOM after wheat (C3)-maize (C4) vegetation change were used to calculate the contribution of C4-derived rhizodeposited C (rhizo-C) and C3-derived SOM pools, i.e., rhizo-C and SOM. Soil (Ap from Haplic Luvisol) sampled from maize rhizosphere was incubated over 56 days with increasing N fertilization (four levels up to 300 kg N ha?1), and CO2 efflux and its δ13C were measured. Nitrogen fertilization decreased CO2 efflux by 27–42% as compared to unfertilized soil. This CO2 decrease was mainly caused by the retardation of SOM (C3) mineralization. Microbial availability of rhizo-C (released by maize roots within 4 weeks) was about 10 times higher than that of SOM (older than 4 weeks). Microbial biomass and dissolved organic C remained at the same level with increasing N. However, N fertilization increased the relative contribution of rhizo-C to microbial biomass by two to five times and to CO2 for about two times. This increased contribution of rhizo-C reflects strongly accelerated microbial biomass turnover by N addition. The decomposition rate of rhizo-C was 3.7 times faster than that of SOM, and it increased additionally by 6.5 times under 300 kg N ha?1 N fertilization. This is the first report estimating the turnover and incorporation of very recent rhizo-C (4 weeks old) into soil C pools and shows that the turnover of rhizo-C was much faster than that of SOM. We conclude that the contribution of rhizo-C to CO2 and to microbial biomass is highly dependent on N fertilization. Despite acceleration of rhizo-C turnover, the increased N fertilization facilitates C sequestration by decreasing SOM decomposition.  相似文献   

6.
Plant roots can increase microbial activity and soil organic matter (SOM) decomposition via rhizosphere priming effects. It is virtually unknown how differences in the priming effect among plant species and soil type affect N mineralization and plant uptake. In a greenhouse experiment, we tested whether priming effects caused by Fremont cottonwood (Populus fremontii) and Ponderosa pine (Pinus ponderosa) grown in three different soil types increased plant available N. We measured primed C as the difference in soil-derived CO2-C fluxes between planted and non-planted treatments. We calculated “excess plant available N” as the difference in plant available N (estimated from changes in soil inorganic N and plant N pools at the start and end of the experiment) between planted and non-planted treatments. Gross N mineralization at day 105 was significantly greater in the presence of plants across all treatments, while microbial N measured at the same time was not affected by plant presence. Gross N mineralization was significantly positively correlated to the rate of priming. Species effects on plant available N were not consistent among soil types. Plant available N in one soil type increased in the P. fremontii treatment but not in the P. ponderosa treatment, whereas in the other two soils, the effects of the two plant species were reversed. There was no relationship between the cumulative amount of primed C and excess plant available N during the first 107 days of the experiment when inorganic N was still abundant in all planted soils. However, during the second half of the experiment (days 108-398) when soil inorganic N in the planted treatments was depleted by plant N uptake, the cumulative amount of primed C was significantly positively correlated to excess plant available N. Primed C explained 78% of the variability in plant available N for five of the six plant-soil combinations. Excess plant available N could not be predicted from cumulative amount of primed C in one species-soil type combination. Possibly, greater microbial N immobilization due to large inputs of rhizodeposits with low N concentration may have reduced plant available N or we may have underestimated plant available N in this treatment because of N loss through root exudation and death. We conclude that soil N availability cannot be determined by soil properties alone, but that is strongly influenced by root-soil interactions.  相似文献   

7.
While it is well known that soil moisture directly affects microbial activity and soil organic matter (SOM) decomposition, it is unclear if the presence of plants alters these effects through rhizosphere processes. We studied soil moisture effects on SOM decomposition with and without sunflower and soybean. Plants were grown in two different soil types with soil moisture contents of 45% and 85% of field capacity in a greenhouse experiment. We continuously labeled plants with depleted 13C, which allowed us to separate plant-derived CO2-C from original soil-derived CO2-C in soil respiration measurements. We observed an overall increase in soil-derived CO2-C efflux in the presence of plants (priming effect) in both soils. On average a greater priming effect was found in the high soil moisture treatment (up to 76% increase in soil-derived CO2-C compared to control) than in the low soil moisture treatment (up to 52% increase). Greater plant-derived CO2-C and plant biomass in the high soil moisture treatment contributed to greater priming effects, but priming effects remained significantly higher in the high moisture treatment than in the low moisture treatment after correcting for the effects of plant-derived CO2-C and plant biomass. The response to soil moisture particularly occurred in the sandy loam soil by the end of the experiment. Possibly, production of root exudates increased with increased soil moisture content. Root exudation of labile C may also have become more effective in stimulating microbial decomposition in the higher soil moisture treatment and sandy loam soil. Our results indicate that moisture conditions significantly modulate rhizosphere effects on SOM decomposition.  相似文献   

8.
Priming effects: Interactions between living and dead organic matter   总被引:1,自引:0,他引:1  
In this re-evaluation of our 10-year old paper on priming effects, I have considered the latest studies and tried to identify the most important needs for future research. Recent publications have shown that the increase or decrease in soil organic matter mineralization (measured as changes of CO2 efflux and N mineralization) actually results from interactions between living (microbial biomass) and dead organic matter. The priming effect (PE) is not an artifact of incubation studies, as sometimes supposed, but is a natural process sequence in the rhizosphere and detritusphere that is induced by pulses or continuous inputs of fresh organics. The intensity of turnover processes in such hotspots is at least one order of magnitude higher than in the bulk soil. Various prerequisites for high-quality, informative PE studies are outlined: calculating the budget of labeled and total C; investigating the dynamics of released CO2 and its sources; linking C and N dynamics with microbial biomass changes and enzyme activities; evaluating apparent and real PEs; and assessing PE sources as related to soil organic matter stabilization mechanisms. Different approaches for identifying priming, based on the assessment of more than two C sources in CO2 and microbial biomass, are proposed and methodological and statistical uncertainties in PE estimation and approaches to eliminating them are discussed. Future studies should evaluate directions and magnitude of PEs according to expected climate and land-use changes and the increased rhizodeposition under elevated CO2 as well as clarifying the ecological significance of PEs in natural and agricultural ecosystems. The conclusion is that PEs - the interactions between living and dead organic matter - should be incorporated in models of C and N dynamics, and that microbial biomass should regarded not only as a C pool but also as an active driver of C and N turnover.  相似文献   

9.
Elevated CO2 may increase nutrient availability in the rhizosphere by stimulating N release from recalcitrant soil organic matter (SOM) pools through enhanced rhizodeposition. We aimed to elucidate how CO2-induced increases in rhizodeposition affect N release from recalcitrant SOM, and how wild versus cultivated genotypes of wheat mediated differential responses in soil N cycling under elevated CO2. To quantify root-derived soil carbon (C) input and release of N from stable SOM pools, plants were grown for 1 month in microcosms, exposed to 13C labeling at ambient (392 μmol mol−1) and elevated (792 μmol mol−1) CO2 concentrations, in soil containing 15N predominantly incorporated into recalcitrant SOM pools. Decomposition of stable soil C increased by 43%, root-derived soil C increased by 59%, and microbial-13C was enhanced by 50% under elevated compared to ambient CO2. Concurrently, plant 15N uptake increased (+7%) under elevated CO2 while 15N contents in the microbial biomass and mineral N pool decreased. Wild genotypes allocated more C to their roots, while cultivated genotypes allocated more C to their shoots under ambient and elevated CO2. This led to increased stable C decomposition, but not to increased N acquisition for the wild genotypes. Data suggest that increased rhizodeposition under elevated CO2 can stimulate mineralization of N from recalcitrant SOM pools and that contrasting C allocation patterns cannot fully explain plant mediated differential responses in soil N cycling to elevated CO2.  相似文献   

10.
The phenomenon that rhizosphere processes significantly control soil organic matter (SOM) decomposition, also termed rhizosphere priming effect (RPE), is now increasingly recognized as significant as the effects of soil temperature and moisture on SOM decomposition. However, the exact mechanisms responsible for RPE remain largely unknown. Particularly, some reports have suggested that the quality of rhizodeposits may play a significant role in causing different levels of RPE among various plant species. However, direct evidence for the “rhizodeposit quality hypothesis” has been lacking. Here we tested the hypothesis by investigating RPE on soil carbon (C) and nitrogen (N) mineralization of two soybean (Glycine max L. Merr.) isolines differing only in their ability to form nodules and to fix N2, and thus differing in tissue N concentration and rhizodeposit quality. We used a continuous 13C-labeling method for measuring RPE on soil organic C decomposition, and employed an N-budgeting method for quantifying RPE on soil net N mineralization. We found that the rhizodeposits from nodulated soybean produced a stronger RPE (53% vs. 26%) on soil organic C decomposition than the rhizodeposits from non-nodulated soybean at the maturity stage when nodulated soybean had significantly higher plant tissue N concentration but similar plant biomass, while both soybean isolines produced a similar RPE (33–34%) at the vegetative stage when there was no difference in plant tissue N concentration or plant biomass. The levels of RPE on soil net N mineralization were similar between the two isolines, ranging from 25% at the vegetative stage to 38–46% at the maturity stage. Moreover, RPE on soil organic C decomposition was not linearly proportional to RPE on soil net N mineralization. These results indicate that higher rhizodeposit quality is one of the most likely causes to the higher RPE of the nodulated soybean compared to the non-nodulated soybean. Further investigations of rhizodeposit quality and quantity between the two soybean isolines are warranted to further test this rhizodeposit quality hypothesis.  相似文献   

11.
The most frequently used models simulating soil organic matter (SOM) dynamics are based on first-order kinetics. These models fail to describe and predict such interactions as priming effects (PEs), which are short-term changes in SOM decomposition induced by easily available C or N sources. We hypothesized that if decomposition rate depends not only on size of the SOM pool, but also on microbial biomass and its activity, then PE can be simulated. A simple model that included these interactions and that consisted of three C pools - SOM, microbial biomass, and easily available C - was developed. The model was parameterized and evaluated using results of 12C-CO2 and 14C-CO2 efflux after adding 14C-labeled glucose to a loamy Haplic Luvisol. Experimentally measured PE, i.e., changes in SOM decomposition induced by glucose, was compared with simulated PE. The best agreement between measured and simulated CO2 efflux was achieved by considering both the total amount of microbial biomass and its activity. Because it separately described microbial turnover and SOM decomposition, the model successfully simulated apparent and real PE.The proposed PE model was compared with three alternative approaches with similar complexity but lacking interactions between the pools and neglecting the activity of microbial biomass. The comparison showed that proposed new model best described typical PE dynamics in which the first peak of apparent PE lasted for 1 day and the subsequent real PE gradually increased during 60 days. This sequential decomposition scheme of the new model, with immediate microbial consumption only of soluble substrate, was superior to the parallel decomposition scheme with simultaneous microbial consumption of two substrates with different decomposability. Incorporating microbial activity function in the model improved the fit of simulation results with experimental data, by providing the flexibility necessary to properly describe PE dynamics. We conclude that microbial biomass should be considered in models of C and N dynamics in soil not only as a pool but also as an active driver of C and N turnover.  相似文献   

12.
We show that both temperature and priming act differently on distinct C pools in a temperate grassland soil. We used SOM which was 14C-labelled in four different ways: by labelling soil with 14C-glucose, by adding leaf litter from plants pre-labelled with 14CO2, and by labelling in situ with 14CO2 applied to the ryegrass canopy either 6 or 18 months earlier. Samples of each type of 14C labelled soil were incubated at either 4, 10, 15, or 20 °C and the exponential loss of 14CO2 used to characterise treatment effects. 14C allocation to microbial fractions was greater, and so overall mineralization by microbes was greater, as temperature rose, but turnover of the microbial labile pool was temperature-insensitive, and the turnover of microbial structural material was reduced as temperature rose. The ability of the microbial population to degrade just one fraction of plant litter was increased greatly by temperature. A pool of SOM with a half-life of about 70 d was degraded faster at higher temperatures. Less tractable but abundant pools of SOM were not accessed more readily at higher temperatures by the microbial population. Priming with glucose or amino-acids only speeded the mineralization of recent SOM (probably from the living microbial biomass), and was not altered by temperature. These results have implications for the impacts of climate change on soil C cycling.  相似文献   

13.
The presence of plants induces strong accelerations in soil organic matter (SOM) mineralization by stimulating soil microbial activity – a phenomenon known as the rhizosphere priming effect (RPE). The RPE could be induced by several mechanisms including root exudates, arbuscular mycorrhizal fungi (AMF) and root litter. However the contribution of each of these to rhizosphere priming is unknown due to the complexity involved in studying rhizospheric processes. In order to determine the role of each of these mechanisms, we incubated soils enclosed in nylon meshes that were permeable to exudates, or exudates & AMF or exudates, AMF and roots under three grassland plant species grown on sand. Plants were continuously labeled with 13C depleted CO2 that allowed distinguishing plant-derived CO2 from soil-derived CO2. We show that root exudation was the main way by which plants induced RPE (58–96% of total RPE) followed by root litter. AMF did not contribute to rhizosphere priming under the two species that were significantly colonized by them i.e. Poa trivialis and Trifolium repens. Root exudates and root litter differed with respect to their mechanism of inducing RPE. Exudates induced RPE without increasing microbial biomass whereas root litter increased microbial biomass and raised the RPE mediating saprophytic fungi. The RPE efficiency (RPE/unit plant-C assimilated into microbes) was 3–7 times higher for exudates than for root litter. This efficiency of exudates is explained by a microbial allocation of fresh carbon to mineralization activity rather than to growth. These results suggest that root exudation is the main way by which plants stimulated mineralization of soil organic matter. Moreover, the plants through their exudates not only provide energy to soil microorganisms but also seem to control the way the energy is used in order to maximize soil organic matter mineralization and drive their own nutrient supply.  相似文献   

14.
Understanding the chronological changes in soil microbial properties of turfgrass ecosystems is important from both the ecological and management perspectives. We examined soil microbial biomass, activity and N transformations in a chronosequence of turfgrass systems (i.e. 1, 6, 23 and 95 yr golf courses) and assessed soil microbial properties in turfgrass systems against those in adjacent native pines. We observed age-associated changes in soil microbial biomass, CO2 respiration, net and gross N mineralization, and nitrification potential. Changes were more evident in soil samples collected from 0 to 5 cm than the 5 to 15 cm soil depth. While microbial biomass, activity and N transformations per unit soil weight were similar between the youngest turfgrass system and the adjacent native pines, microbial biomass C and N were approximately six times greater in the oldest turfgrass system compared to the adjacent native pines. Potential C and N mineralization also increased with turfgrass age and were three to four times greater in the oldest vs. the youngest turfgrass system. However, microbial biomass and potential mineralization per unit soil C or N decreased with turfgrass age. These reductions were accompanied by increases in microbial C and N use efficiency, as indicated by the significant reduction in microbial C quotient (qCO2) and N quotient (qN) in older turfgrass systems. Independent of turfgrass age, microbial biomass N turnover was rapid, averaging approximately 3 weeks. Similarly, net N mineralization was ∼12% of gross mineralization regardless of turfgrass age. Our results indicate that soil microbial properties are not negatively affected by long-term management practices in turfgrass systems. A tight coupling between N mineralization and immobilization could be sustained in mature turfgrass systems due to its increased microbial C and N use efficiency.  相似文献   

15.
Crop residue quality and quantity have contrasting effects on soil organic matter (SOM) decomposition, but the mechanisms explaining such priming effect (PE) are still elusive. To reveal the role of residue quality and quantity in SOM priming, we applied two rates (5.4–10.8 g kg?1) of 13C-labeled wheat residues (separately: leaves, stems, roots) to soil and incubated for 120 days. To distinguish PE mechanisms, labeled C was traced in CO2 efflux and in microbial biomass and enzyme activities (involved in C, N, and P cycles) were measured during the incubation period. Regardless of residue type, PE intensity declined with increasing C additions. Roots were least mineralized but caused up to 60% higher PE compared to leaves or stems. During intensive residue mineralization (first 2–3 weeks), the low or negative PE resulted from pool substitution. Thereafter (15–60 days), a large decline in microbial biomass along with increased enzyme activity suggested that microbial necromass served as SOM primer. Finally, incorporation of SOM-derived C into remaining microbial biomass corresponded to increased enzyme activity, which is indicative of SOM cometabolism. Both PE and enzyme activities were primarily correlated with residue-metabolizing soil microorganisms. A unifying model demonstrated that PE was a function of residue mineralization, with thresholds for strong PE increase of up to 20% root, 44% stem, and 51% leaf mineralization. Thus, root mineralization has the lowest threshold for a strong PE increase. Our study emphasizes the role of residue-feeding microorganisms as active players in the PE, which are mediated by quality and quantity of crop residue additions.  相似文献   

16.
We examined the impact of long-term cattle grazing on soil processes and microbial activity in a temperate salt marsh. Soil conditions, microbial biomass and respiration, mineralization and denitrification rates were measured in upper salt marsh that had been ungrazed or cattle grazed for several decades. Increased microbial biomass and soil respiration were observed in grazed marsh, most likely stimulated by enhanced rates of root turnover and root exudation. We found a significant positive effect of grazing on potential N mineralization rates measured in the laboratory, but this difference did not translate to in situ net mineralization measured monthly from May to September. Rates of denitrification were lowest in the grazed marsh and appeared to be limited by nitrate availability, possibly due to more anoxic conditions and lower rates of nitrification. The major effect of grazing on N cycling therefore appeared to be in limiting losses of N through denitrification, which may lead to enhanced nutrient availability to saltmarsh plants, but a reduced ability of the marsh to act as a buffer for land-derived nutrients to adjacent coastal areas. Additionally, we investigated if grazing influences the rates of turnover of labile and refractory C in saltmarsh soils by adding 14C-labelled leaf litter or root exudates to soil samples and monitoring the evolution of 14CO2. Grazing had little effect on the rates of mineralization of 14C used as a respiratory substrate, but a larger proportion of 14C was partitioned into microbial biomass and immobilized in long- and medium-term storage pools in the grazed treatment. Grazing slowed down the turnover of the microbial biomass, which resulted in longer turnover times for both leaf litter and root exudates. Grazing may therefore affect the longevity of C in the soil and alter C storage and utilization pathways in the microbial community.  相似文献   

17.
 This study examines the effect of soil P status and N addition on the decomposition of 14C-labelled glucose to assess the consequences of reduced fertilizer inputs on the functioning of pastoral systems. A contrast in soil P fertility was obtained by selecting two hill pasture soils with different fertilizer history. At the two selected sites, representing low (LF) and high (HF) fertility status, total P concentrations were 640 and 820 mg kg–1 and annual pasture production was 4,868 and 14,120 kg DM ha–1 respectively. Soils were amended with 14C-labelled glucose (2,076 mg C kg–1 soil), with and without the addition of N (207 mg kg–1 soil), and incubated for 168 days. During incubation, the amounts of 14CO2 respired, microbial biomass C and 14C, microbial biomass P, extractable inorganic P (Pi) and net N mineralization were determined periodically. Carbon turnover was greatly influenced by nutrient P availability. The amount of glucose-derived 14CO2 production was high (72%) in the HF and low (67%) in the LF soil, as were microbial biomass C and P concentrations. The 14C that remained in the microbial biomass at the end of the 6-month incubation was higher in the LF soil (15%) than in the HF soil (11%). Fluctuations in Pi in the LF soil during incubation were small compared with those in HF soil, suggesting that P was cycling through microbial biomass. The concentrations of Pi were significantly greater in the HF samples throughout the incubation than in the LF samples. Net N mineralization and nitrification rates were also low in the LF soils, indicating a slow turnover of microorganisms under limited nutrient supply. Addition of N had little effect on biomass 14C and glucose utilization. This suggests that, at limiting P fertility, C turnover is retarded because microbial biomass becomes less efficient in the utilization of substrates. Received: 18 October 1999  相似文献   

18.
《Applied soil ecology》2011,47(3):341-346
We examined acid phosphatase activity (APA), N mineralization and nitrification rates, available N and P, and microbial biomass C, N and P in rhizosphere and bulk soils of 18-year-old Siberian elm (Ulmus pumila), Simon poplar (Populus simonii) and Mongolian pine (Pinus sylvestris var. mongolica) plantations on a nutrient-poor sandy soil in Northeast China. The main objective was to compare the rhizosphere effects of different tree species on N and P cycling under nutrient-deficient conditions. All tree species had the similar pattern but considerably different magnitude of rhizosphere effects. The APA, potential net N mineralization and nitrification rates increased significantly (by 27–60%, 110–188% and 106–142% respectively across the three species) in rhizosphere soil compared to bulk soil. This led to significantly higher Olsen-P and NH4+-N concentrations in rhizosphere soil, whereas NO3-N concentration was significantly lower in rhizosphere soil owing to increased microbial immobilization and root uptake. Microbial biomass C and N generally increased while microbial biomass P remained constant in rhizosphere soil relative to bulk soil, indicating the N-limited rather than P-limited microbial growth. Rhizosphere effects on P transformation were most pronounced for Siberian elm, while rhizosphere effects on N transformation were most pronounced for Mongolian pine, implying the different capacities of these species to acquire nutrients.  相似文献   

19.
The mechanisms and specific sources of priming effects, i.e. short term changes of soil organic matter (SOM) decomposition after substance addition, are still not fully understood. These uncertainties are partly method related, i.e. until now only two C sources in released CO2 could be identified. We used a novel approach separating three carbon (C) sources in CO2 efflux from soil. The approach is based on combination of different substances originated from C3 or C4 plants in different treatments and identical transformation of substances like C3 sugar (from sugar beet) and C4 sugar (from sugar cane). We investigated the influence of the addition of two substances having different microbial utilizability, i.e. slurry and sugar on the SOM or/and slurry decomposition in two grassland soils with different levels of Corg (2.3 vs. 5.1% C). Application of slurry to the soil slightly accelerated the SOM decomposition. Addition of sugar lead to changes of SOM and slurry decomposition clearly characterized by two phases: immediately after sugar addition, the microorganisms switched from the decomposition of hardly utilizable SOM to the decomposition of easily utilizable sugar. This first phase was very short (2-3 days), hence was frequently missed in other experiments. The second phase showed a slightly increased slurry and SOM decomposition (compared to the soil without sugar). The separation of three sources in CO2 efflux from grassland soils allowed us to conclude that the C will be utilized according to its utilizability: sugar>slurry>SOM. Additionally, decomposition of more inert C (here SOM) during the period of intensive sugar decomposition was strongly reduced (negative priming effect). We conclude that, priming effects involve a chain of mechanisms: (i) preferential substrate utilization, (ii) activation of microbial biomass by easily utilizable substrate (iii) subsequent increased utilization of following substrates according to their utilizability, and (iv) decline to initial state.  相似文献   

20.
The relationships between soil microbial properties and fine root decomposition processes under elevated CO2 are poorly understood. To address this question, we determined soil microbial biomass carbon (SMB-C) and nitrogen (SMB-N), enzymes related to soil carbon (C) and nitrogen (N) cycling, the abundance of cultivable N-fixing bacteria and cellulolytic fungi, fine root organic matter, lignin and holocellulose decomposition, and N mineralization from 2006 to 2007 in a Mongolian oak (Quercus mongolica Fischer ex Ledebour) ecosystem in northeastern China. The experiment consisted of three treatments: elevated CO2 chambers, ambient CO2 chambers, and chamberless plots. Fine roots had significantly greater organic matter decomposition rates under elevated CO2. This corresponded with significantly greater SMB-C. Changes in the activities of protease and phenol oxidase under elevated CO2 could not explain the changes in fine root N release and lignin decomposition rates, respectively, while holocellulose decomposition rate had the same response to experimental treatments as did cellulase activity. Changes in cultivable N-fixing bacterial and cellulolytic fungal abundances in response to experimental treatments were identical to those of N mineralization and lignin decomposition rates, respectively, suggesting that the two indices were closely related to fine root N mineralization and lignin decomposition. Our results showed that the increased fine root organic matter, lignin and holocellulose decomposition, and N mineralization rates under elevated CO2 could be explained by shifts in SMB-C and the abundance of cellulolytic fungi and N-fixing bacteria. Enzyme activities are not reliable for the assessment of fine root decomposition and more attention should be given to the measurement of specific bacterial and fungal communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号