首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objective of this study was to determine if a reduction in dietary CP, with partial replacement of the intact protein with crystalline AA (CAA), would alter growth, morphology, and free or peptide-bound AA concentrations of intestinal mucosa in growing pigs. Twenty-four barrows (37.0 +/- 1.5 kg of BW) were fed 1 of 4 diets for 24 d: 16.1% CP with no CAA, or 12.8, 10.1, or 7.8% CP (analyzed values, as-fed) containing CAA. As CP decreased, CAA were gradually increased to meet requirements on a true ileal digestible basis. Pigs were euthanized 2 h postmeal on d 24, and mucosal samples from duodenum, jejunum, and ileum were collected. Reducing dietary CP decreased ADG, G:F, and final weight (linear, P < 0.05). With reduced dietary CP, mucosal protein concentration decreased in the jejunum (quadratic, P < 0.05) and tended to decrease in the ileum (linear, P = 0.062). Reduction of the dietary CP concentration from 16.1 to 7.8% tended to decrease the crypt depth (linear, P < 0.10) and decreased villus width (linear, P < 0.05) in duodenum and jejunum mucosa but did not reduce villus height or villus surface area in any regions of the small intestine. In the duodenum, a reduction in dietary CP increased free Lys, Met, and Thr (linear, P < 0.05) and peptide-bound Lys and Thr (quadratic, P < 0.10). In the jejunum, reducing CP decreased free Cys (linear P < 0.05) and tended to decrease free Asn and His (linear, P < 0.10) and peptide-bound His (quadratic, P = 0.061) and Ile, Leu, and Val (linear, P < 0.10). In the ileum, reducing CP decreased free Asn, Ser, Tyr, Arg, His, Phe (linear, P < 0.05), and Leu (linear, P = 0.054) and peptide-bound Gly and Ser (linear, P < 0.05) and tended to decrease peptide-bound Ile, Leu, Phe, Val (linear, P < 0.10), and Lys (linear P < 0.05). In conclusion, reduced-CP diets supplemented with CAA lead to a reduction in growth performance, associated with biochemical and morphological modifications of the intestinal mucosa.  相似文献   

2.
3.
The objective of this study was to determine whether the porcine mammary gland responds to increasing dietary CP concentration through changes in AA arteriovenous difference (a-v). Sixteen Landrace x Yorkshire lactating sows were provided ad libitum access to one of four isocaloric diets varying in CP concentration (7.8, 13.0, 18.2, and 23.5 %; as-fed basis). Litters were adjusted to 11 pigs within 48 h of birth. Sows were fitted with catheters in the carotid artery and main mammary vein on d 4. On d 10, 14, 18, and 22 of lactation, arterial and venous blood samples were obtained every 30 min over 6 h. Milk yield was estimated on d 11 and 21 using the D2O dilution technique. Final litter sizes on d 21 were 10.3, 11, 9.5, and 11 piglets for sows fed the 7.8, 13.0, 18.2, and 23.5% CP diets, respectively. Piglet ADG tended (P = 0.088) to increase with increasing dietary CP concentration and were 186, 221, 220, and 202 g for sows fed the 7.8, 13.0, 18.2, and 23.5% CP diet, respectively. Daily total milk yield on d 21 (kg milk/d) tended (P = 0.099) to increase, and average milk yield per nursed piglet (kg of milk-pig(-1)d(-1)) increased (P < 0.05) with increasing CP concentration and were, on a per-piglet basis, 0.95, 1.19, 1.14 and 1.13 kg of milk/d for the 7.8, 13.0, 18.2, and 23.5% CP diets, respectively. As dietary CP increased from 7.8 to 23.5%, isoleucine and leucine a-v increased linearly only (linear, P < 0.01); all other AA a-v increased, reached a maximum in sows fed 18.2% CP, and decreased thereafter in sows fed 23.5% CP (quadratic, from P = 0.10 to P < 0.05). Amino acid uptake by the entire udder and by each gland increased (linear, P < 0.05) with increasing dietary CP. Arteriovenous differences response to increasing day of lactation varied among AA, from no change for histidine, isoleucine, lysine, methionine, tryptophan, and valine, to a linear trend increase for arginine (P = 0.055), leucine (P = 0.064), phenylalanine (P = 0.101), and threonine (P = 0.057). In summary, for the majority of AA, a-v increased with increasing dietary CP concentration from 7.8 to 18.2%, but decreased when CP concentration exceeded 18.2%. In contrast, mammary AA uptake, piglet ADG and milk yield per pig increased linearly with increasing dietary CP, suggesting a coordinated regulation between AA delivery and transport to meet the demand for milk yield.  相似文献   

4.
Plasma AA in horses fed either an all-hay or a hay and grain diet in a traditional format have not been investigated. Eight horses were divided into 2 groups: a hay group fed only grass hay or a hay and a grain group (HG) fed in a crossover design for two 5-wk periods. After the first period, horses were fasted overnight, followed by feeding with blood sampling every hour for 6 h. A 4-d total fecal and urine collection to evaluate N balance followed. A 10-d washout period separated the 5-wk feeding periods, during which horses switched diets. The second period was also followed by fasting, feeding, blood sampling, and a 4-d collection period. Horses consumed 840 g of CP in the hay group and 865 g of CP in the HG group. Horses in the hay group had a 2.4 ± 2.4 g/d N balance, which was not different from 0 (P = 0.34), whereas horses in the HG group had 5.4 ± 2.4 g/d N balance, which was different from 0 (P = 0.045). Fecal N excretion was greater for the hay group compared with the HG group (hay = 51.1 ± 1.3 g/d and HG = 45.5 ± 1.3 g/d; P = 0.011), and urine N excretion was greater for the HG group compared with the hay group (hay = 79.3 ± 2.8 g/d and HG = 89.2 ± 2.8 g/d; P = 0.026). Plasma AA concentrations were greater in the HG group compared with the hay group for Met (P = 0.001), Lys (P = 0.001), Ile (P = 0.047), Arg (P < 0.001), Gln (P = 0.009), and Orn (P = 0.002). Plasma concentrations were less for the HG group compared with the hay group for Thr (P < 0.001) and Ala (P < 0.001). Plasma concentrations of urea were greater for the HG group compared with the hay group (P < 0.001), whereas 3-methyl-histidine concentrations were greater for the hay group compared with the HG group (P < 0.001). The effect of diet on the excretion of N via feces vs. urine in the hay and HG groups is typical. The early increases in the plasma concentrations of Met, Val, Ile, Leu, Phe, Lys, Arg, and Ala during the postfeeding phase are most likely due to increased foregut digestibility as well as a greater quality AA profile in the grain. The greater concentrations of Thr, Leu, and Val later in the postfeeding phase for the hay group most likely reflects slower digestion because of prolonged consumption time compared with the HG group. Improved N balance observed in the HG group supports the fact that the HG group had more available AA via the AA profile and foregut digestibility of the HG diet. Despite the fact that both groups consumed similar amounts of CP, the AA profile and availability affected N balance.  相似文献   

5.
Two studies were conducted to assess the effect of dietary protein reduction on N utilization, N excretion, and AA digestibility in growing pigs. The objective was to determine whether pigs fed diets with a reduced CP concentration could maintain the same N retention as pigs fed an adequate diet. The second objective was to test whether reducing dietary CP concentration decreases AA digestibility. In each study, six barrows were allotted to one of six dietary treatments in a Latin square design. Treatments consisted of four corn-soybean meal-based diets containing 15, 12, 9, and 6% CP, a casein-based diet containing 15% CP, and a protein-free diet. Crystalline AA were included in the 12, 9, and 6% CP diets. The indispensable:dispensable AA ratio was maintained at 45:55 with the addition of L-glutamic acid to the 9 and 6% CP diets. The casein-based and protein-free diets were used to determine endogenous total tract N and ileal AA losses. In the first study, total N losses and N absorbed decreased linearly (P < 0.001) as dietary CP concentration decreased from 15 to 6%. Both a linear (P < 0.001) and a quadratic (P < 0.05) decrease in N retention were found with decreasing dietary CP concentration. Nitrogen retained as a percentage of intake and absorbed increased (P < 0.001) as dietary CP concentration was reduced from 15 to 6%. In the second study, six barrows were surgically fitted with a T-cannula at the terminal ileum to determine ileal AA digestibility. For all dispensable and most indispensable AA, apparent and standardized ileal digestibility increased linearly (P 0.01, and for arginine, P < 0.05) as dietary CP concentration decreased. These results indicate that dietary CP concentration can be decreased from 15 to 12% with crystalline AA supplementation to meet an ideal AA profile without adversely affecting N retention, and that decreasing dietary CP concentration from 15 to 6% increases both dispensable and indispensable AA ileal digestibility.  相似文献   

6.
Ten crossbred barrows (48.3 +/- 2.3 kg of initial BW) fitted with steered ileo-cecal valve cannulas were used to investigate the effects of supplemental microbial phytase on the apparent ileal digestibilities (AID) of AA, Ca, P, N, and DM, and the apparent total tract digestibilities of Ca, P, N, and DM. All diets were corn-soybean meal-based, and contained 0.44% Ca and 0.40% total P. Diets 1, 2, and 3 contained 12.0, 11.1, and 10.2% CP, respectively. Diets 4 and 5 had the same ingredient composition as diet 3, plus 250 and 500 U/kg phytase (Natuphos), respectively. Pigs were randomly allotted to 1 of 5 dietary treatments in a paired 5 x 5 Latin square with an extra period to test for carryover effects. Each 14-d period consisted of a 7-d adjustment followed by a 3-d total collection, a 12-h ileal digesta collection, a 3-d readjustment, and a second 12-h ileal digesta collection. Pigs were housed individually in metabolism pens (1.2 x 1.2 m). Water was supplied ad libitum, and feed was supplied at a level of 9% of the metabolic BW (BW(0.75)) per day in 2 equal daily feedings. As the dietary CP concentration increased, the AID of CP and all AA measured increased linearly (P < 0.05) with the exception of proline. In addition, the apparent total tract digestibilities (grams per day) and retention of N (grams per day) increased linearly (P < 0.01) with increasing CP levels. Supplementing diets with phytase increased the AID of Ca (P < 0.01), P (P < 0.001), CP (P = 0.07), and the AA (P < 0.10) Gly, Ala, Val, Ile, Thr, TSAA, Asp, Glu, Phe, Lys, and Arg. Protein and phytase response equations were generated for those AA affected (P < 0.10) by both CP level and phytase supplementation. Based on these equations, 500 U/kg of phytase can replace 0.52 percentage units of the dietary CP, which includes a 0.03 percentage unit improvement in Lys AID. The results of this study show that supplementing pig diets with microbial phytase improves CP and AA digestibilities in addition to Ca and P digestibilities.  相似文献   

7.
The effects of Ile and Val supplementation of a low-CP, corn-wheat-soybean meal-based piglet diet on growth performance, incidence of diarrhea, and N balance were studied using 60 Landrace x Duroc male piglets in a 4-wk experiment. The 60 individually caged piglets were divided into 5 dietary treatments, each consisting of 12 piglets. Diet 1 was a positive control diet (20% CP); diet 2 was a low-CP negative control diet (17% CP); diets 3, 4, and 5 were low-CP diets to which Ile, Val, or the combination of Ile and Val were added, respectively. All diets were supplemented with Lys, Met, Thr, and Trp to provide the required concentrations of these AA according to the 1998 NRC. Average daily gain and ADFI were similar among pigs fed the positive control, Val-added, and the Val plus Ile-added diets. On wk-2 and wk-4, fecal score was greater (softer feces) in piglets fed the 20% CP level compared with the remaining treatments (P < 0.01). Nitrogen intake was decreased (P < 0.0001) in pigs fed diets containing low levels of CP compared with pigs fed the 20% CP diet. Fecal N excretion (g/d) was decreased (P < 0.05) in piglets fed low-CP diets at wk 1 and wk 4 of feeding, and in urine at wk 4 of feeding. Crude protein levels or AA supplementation had no effect on N retention efficiencies. These results indicate that the supplementation of Val alone, or in combination with Ile, to a low-CP piglet diet with adequate levels of Lys, Met, Thr, and Trp is necessary to achieve maximum performance in pigs consuming corn-wheat-soybean meal-based diets.  相似文献   

8.
Male Holstein calves < 1 wk of age were allowed a 2-wk adaptation period after purchase, and then were blocked by BW and assigned randomly within block to either a baseline slaughter group or one of four experimental groups (n = 8 to 9 per group). Treatments were isocaloric milk replacers (12.5% solids) fed at 12% of BW that contained 16.1, 18.5, 22.9, or 25.8% CP (DM basis) from whey protein sources. After a 6-wk feeding period, all calves were slaughtered and the weights and chemical composition of the viscera-free carcasses (VFC; including head, hide, feet, and tail) were determined. Gain of BW (0.38, 0.45, 0.56, and 0.62 kg/d) and gain:feed ratio (0.51, 0.59, 0.71, and 0.78) increased linearly (P < 0.001) as dietary CP increased; rate of change in body length, wither height, and heart girth also increased linearly (P < or = 0.05). Balance measurements conducted during wk 3 and 4 of the experimental period showed that both absorbed N (16.9, 20.0, 25.8, and 30.6 g/d) and retained N (7.6, 9.0, 13.2, and 15.6 g/d) increased linearly (P < 0.001) as dietary CP increased. Retained N as a percentage of absorbed N increased linearly (P < 0.01) as dietary CP increased (44.3, 44.7, 50.7, and 50.9%), whereas biological value was unaffected (71.1, 68.7, 69.5, and 67.3%; P = 0.26). Digestible energy and ME represented 94.5 and 89.7% of intake energy, respectively, and were not affected by dietary CP content. Plasma urea N concentration increased linearly (2.9, 3.3, 4.6, and 6.0 mg/dL) as dietary CP increased. Contents of water (68.2, 69.1, 70.2, and 70.5%; P < 0.001) and protein (19.6, 20.0, 20.0, and 20.2%; P < 0.10) in VFC increased linearly, whereas contents of fat (7.2, 6.2, 5.5, and 5.2%; P < 0.001) and ash (5.1, 5.2, 4.8, and 4.7%; P < 0.02) decreased linearly as dietary CP increased. Trends in visceral tissue composition were similar to those for VFC. The content of water in VFC tissue gain increased, whereas contents of fat and energy decreased, as dietary CP increased. Final VFC energy and gain of energy in VFC were not affected by dietary CP. At similar initial ME intakes, increasing dietary CP (i.e., increasing protein: energy) linearly increased ADG, gain:feed, N retention, and deposition of lean tissue in VFC, demonstrating that diet composition can markedly affect components of body growth in preruminant dairy calves.  相似文献   

9.
This study investigated the effect of modifying the n-6:n-3 fatty acid ratio (FAR) of diets using linseed, soybean, and cottonseed oils on apparent digestibility, ruminal fermentation characteristics, growth performance, key circulating hormones, and the fatty acid profile of ruminal digesta, liver, and fore-shank muscle of growing lambs fed a high concentrate diet. Forty individually housed Katadhin Dorper lambs (average of 20.0 kg of BW) were fed Bermudagrass hay in ad libitum amounts and concentrates at 3.7% of BW daily. The concentrate contained 68.9% corn, 23.8% soybean meal, 3.3% limestone, and 4.0% oil supplements (DM basis). The treatments consisted of dietary n-6:n-3 FAR of 2.3:1, 8.8:1, 12.8:1, and 15.6:1. After feeding for 35 d in metabolism crates, lambs were slaughtered 15 h after feeding, and samples of ruminal digesta, blood, liver, and foreshank tissue were collected. Increasing dietary n-6:n-3 FAR did not affect the intake of DM nor the apparent digestibility of DM, ether extract, NDF, or ADF, but did increase apparent digestibility of CP (linear, P < 0.05). Concentrations of ruminal butyrate increased linearly (P < 0.05) with increasing dietary n-6:n-3 FAR, whereas the valerate concentration decreased linearly (P < 0.001). Concentrations of plasma insulin and IGF-I were not affected by dietary n-6:n-3 FAR. Concentrations of C18:3n-3 increased linearly (P < 0.001), whereas that of C18:2n-6 decreased linearly (P < 0.001) in ruminal digesta with decreasing dietary n-6:n-3 FAR. Concentrations of transisomers of fatty acids in ruminal digesta did not change. Proportions of C18:0 in liver and foreshank muscle were unchanged by diet. The proportion of trans11 C18:1 and cis-9 trans11 CLA decreased (P < 0.05) in liver but increased (P < 0.05) in foreshank muscle as dietary n-6:n-3 FAR decreased. Proportions of all measured n-3 fatty acids were greater in liver when diets contained more C18:3n-3 from linseed oil. By decreasing the dietary n-6:n-3 FAR, the proportions of n-6 fatty acids in foreshank muscle decreased dramatically; specifically, C18:2n-6 decreased linearly (P < 0.001) from 28.0 to 16.5% and C20:4n-6 decreased linearly (P < 0.001) from 14.7 to 8.6%. Although feeding a diet that contained more n-3 fatty acids increased the n-3 fatty acid concentration of muscle, the ratio of PUFA to SFA was decreased.  相似文献   

10.
Diarrhea incidence in weaned pigs may be associated with the concentration of intestinal microbial metabolites (ammonia, amines, and VFA) that are influenced by dietary CP content. Three experiments were conducted to determine effects of a low-protein, AA-supplemented diet on ileal AA digestibility, growth performance, diarrhea incidence, and concentration of microbial metabolites in ileal and cecal digesta of pigs weaned at 14 d of age. In Exp. 1, 8 pigs fitted with a simple T-cannula at the distal ileum were assigned in a crossover design to 2 diets containing 24 or 20% CP using wheat, corn, full-fat soybeans, whey powder, fish meal, and blood plasma as the main ingredients. Supplemental AA were added to the diets to meet the AA standards according to the 1998 NRC recommendations. Chromic oxide was used as an indigestible marker. Diets were fed at 2.5 times the ME requirement for maintenance. The reduction of dietary CP decreased (P < 0.05) the apparent ileal digestibility of most AA, except Lys, Met, Thr, Val, and Pro. Dietary CP content did not affect the pH of ileal digesta or ileal concentrations of ammonia N, cadaverine, putrescine, or VFA. In Exp. 2, 8 pigs fitted with a simple T-cannula in the cecum were assigned to 2 diets, similar to Exp. 1. Dietary CP content did not affect the pH of cecal digesta. The reduction in CP content decreased (P < 0.05) cecal ammonia N, acetic acid, isobutyric acid, isovaleric acid, total VFA, and putrescine concentrations by 28 to 39%. In Exp. 3, 32 pigs were assigned to 2 diets, similar to Exp. 1, according to a randomized complete block design. Pigs had free access to feed and water. Dietary CP content did not affect growth performance or fecal consistency scores during the 3-wk study, and diarrhea was not observed. The results of these experiments indicate that lowering the dietary CP content combined with supplementation of AA markedly reduced the production of potentially harmful microbial metabolites in cecal digesta of early-weaned pigs without affecting growth performance.  相似文献   

11.
An experiment was conducted to investigate pig performance, carcass quality, and palatability of pork from pigs fed distillers dried grains with solubles (DDGS), high-protein distillers dried grains (HPDDG), and corn germ. Eighty-four pigs (initial BW, 22 +/- 1.7 kg) were allotted to 7 dietary treatments with 6 replicates per treatment and 2 pigs per pen. Diets were fed for 114 d in a 3-phase program. The control treatment was based on corn and soybean meal. Two treatments were formulated using 10 or 20% DDGS in each phase. Two additional treatments contained HP-DDG in amounts sufficient to substitute for either 50 or 100% of the soybean meal used in the control treatment. An additional 2 treatments contained 5 or 10% corn germ, which was calculated to provide the same amount of fat as 10 or 20% DDGS. Results showed that for the entire experiment, pig performance was not affected by DDGS or HP-DDG, but final BW increased (linear, P < 0.05) as corn germ was included in the diets. Carcass composition and muscle quality were not affected by DDGS, but LM area and LM depth decreased (linear, P < 0.05) as HP-DDG was added to the diets. Lean meat percentage increased and drip loss decreased as corn germ was included in the diets (quadratic, P < 0.05). There was no effect of DDGS on fat quality except that belly firmness decreased (linear, P < 0.05) as dietary DDGS concentration increased. Including HP-DDG or corn germ in the diets did not affect fat quality, except that the iodine value increased (linear, P < 0.05) in pigs fed HP-DDG diets and decreased (linear, P < 0.05) in pigs fed corn germ diets. Cooking loss, shear force, and bacon distortion score were not affected by the inclusion of DDGS, HP-DDG, or corn germ in the diets, and the overall palatability of the bacon and pork chops was not affected by dietary treatment. In conclusion, feeding 20% DDGS or high levels of HP-DDG to growing-finishing pigs did not negatively affect overall pig performance, carcass composition, muscle quality, or palatability but may decrease fat quality. Feeding up to 10% corn germ did not negatively affect pig performance, carcass composition, carcass quality, or pork palatability but increased final BW of the pigs and reduced the iodine value of belly fat.  相似文献   

12.
The study was conducted to determine the effects of feeding a 16% CP diet, a 12% CP diet, or a 12% CP diet supplemented with crystalline Lys, Trp, and Thr (12% CP + AA diet) in a thermal-neutral (23 degrees C) or heat-stressed (33 degrees C) environment on various body and physiological measurements in growing pigs. Heat-stressed pigs were given a 15% lower daily feed allowance than thermal-neutral pigs to remove the confounding effect of feed intake caused by high temperature. No diet x temperature interaction was observed for any variables (P > 0.09) except for pig activity and pancreas weight. At 33 degrees C, pig activity and pancreas weight did not differ among dietary treatments (P > 0.05). In contrast, at 23 degrees C, pigs fed the 12% CP diet had greater activity than those fed the 16% CP diet or the 12% CP + AA diet (P < 0.05). Pancreas weight was greater for pigs fed the 12% CP + AA diet than those fed the 12% CP diet (P < 0.05) when maintained at 23 degrees C. Compared with 23 degrees C, the 33 degrees C temperature decreased pig activity, heat production, daily gain, feed efficiency, and affected the concentration and accretion of empty body protein and ash, as well as weights of heart, pancreas, stomach, and large intestine (P < 0.05). Pigs fed the 12% CP + AA diet attained similar levels of performance and rates of empty body water, protein, lipid, and ash deposition as pigs fed the 16% CP diet (P > 0.10). Pigs fed the 12% CP + AA diet had lower serum urea plus ammonia nitrogen concentrations (P < 0.01) and total heat production (P < 0.05) compared with those fed the 16% CP diet or the 12% CP diet. These results confirm that, with crystalline AA supplementation, growing pigs fed a 12% CP diet will perform similar to pigs fed a 16% CP diet. The data further indicate that lowering dietary CP and supplementing crystalline AA will decrease total heat production in growing pigs whether they are housed in a thermal-neutral or heat-stressed environment.  相似文献   

13.
Prepubertal Friesian heifer calves (n = 24, initial BW = 195 +/- 5 kg) were assigned to a 2 x 2 factorial block design and used to evaluate the effects of daily GH treatment (0 or 15 mg/d) at either a low or a high feeding level in a 5-wk treatment period on endocrine measurements, hormone receptors, muscle growth, and overall performance. In the pretreatment period, a low feeding level was employed for all calves. During the treatment period, animals at the low feeding level had free access to a roughage-based mixture, whereas animals at the high feeding level had free access to a concentrate mixture and were offered 2 kg/d of the roughage-based mixture. Blood samples were collected weekly starting 3 wk before treatment. Longissimus (LM) and supraspinatus (SS) muscles were obtained at slaughter. Metabolizable energy intake was 81% higher, digestible CP intake was 140% higher, and ADG was 115% higher (all P < 0.001) at the high vs. low feeding level. Feed (DMI, ME, and protein) intake was not affected by GH treatment, but ADG was 18% higher (P < 0.13) in GH-treated than in control heifers at both feeding levels. Although of different magnitudes, the muscle anabolic effects of GH treatment and high vs. low feeding level were additive, and both treatments increased carcass weights (P < 0.02 and P < 0.001, respectively), LM (P < 0.05 and P < 0.001), and SS (P < 0.06 and P < 0.003). The anabolic effect of GH treatment was similar in both muscles, whereas the effect of feeding level was most pronounced in LM. Overall, GH treatment increased plasma GH, IGF-I (both P < 0.001), and IGFBP-3 (P < 0.02); however, GH treatment increased total IGF-I, free IGF-I, and IGFBP-3, and decreased IGFBP-2 mainly at the high feeding level (GH x feeding level interaction; P < 0.02, 0.01, 0.03, and 0.10, respectively). The high feeding level increased insulin, free and total IGF-I, and IGFBP-3 (all P < 0.001), but decreased GH and IGFBP-2 (both P < 0.001). High feeding increased type-1 IGF receptor density (P < 0.02), mainly in LM, in accordance with the largest anabolic response in this muscle, whereas GH treatment had no effect on type-1 IGF receptors. The results suggest that in skeletal muscle, the anabolic effects of exogenous GH are related to endocrine changes in the GH-IGF axis, whereas the effects of feeding level also seem to rely on IGF receptor density in the muscles.  相似文献   

14.
The objective of this study was to determine the effect of CP level in corn- and soybean meal-based diets on apparent (AID) and standardized ileal digestibility (SID) of AA. Six pigs (initial BW, 47.1 ± 1.0 kg) fitted with T-cannula at the distal ileum were fed 6 diets for 6 periods in a 6 × 6 Latin square design. The 6 diets consisted of a nitrogen-free diet and 5 corn- and soybean meal-based diets that contained CP of 68, 105, 141, 177, and 214 g/kg. Each period consisted of a 5-d adjustment period and 2 d of ileal digesta collection for 10 h on each of d 6 and 7. The ratio of corn:soybean meal was fixed at 3 to 2 by weight and cornstarch was added to dilute the CP concentration. Chromic oxide was added at 5 g/kg as an indigestible marker. The results showed basal endogenous loss ranged from 65 mg/kg of DMI for Met to 3,104 mg/kg of DMI for Pro. Proline and Gly (1,053 mg/kg of DMI) were the 2 most abundant AA in endogenous flow and together accounted for approximately 43% of the total endogenous AA flow. Of the basal ileal endogenous CP, total AA accounted for 82%. The AID were 80.9 to 84.7%, 85.1 to 87.4%, 72.9 to 79.5%, and 86.5 to 87.9% for Lys, Met, Thr, and Trp, respectively, with corresponding SID being 86.6 to 89.0%, 87.5 to 90.5%, 82.7 to 88.2%, and 90.2 to 94.6%, respectively, as dietary CP increased from 68 to 214 g/kg. There were linear increases in AID of N, Arg, Gly, Ile, Lys, Ser, Thr, Tyr, and Val (P ≤ 0.05) as CP increased and linear decreases in SID of N and all AA measured in this study except Lys, Met, and Pro (P ≤ 0.05). Both linear and quadratic effects were observed in AID for Pro (P < 0.05). In conclusion, the protein content of corn-soybean meal diets evaluated in the current study affected SID of most indispensable and dispensable AA, excluding Lys, Met, and Pro.  相似文献   

15.
Two experiments were conducted at two locations to determine the effects of dietary CP concentration and source on performance, carcass characteristics, and serum urea nitrogen (SUN) concentrations of finishing beef steers. British x Continental steers were blocked by BW (357 +/- 28 and 305 +/- 25 kg initial BW; n = 360 and 225; four and five pens per treatment in Exp. 1 and 2, respectively). Steam-flaked corn-based diets were arranged in a 3 x 3 factorial with three CP concentrations (11.5, 13, or 14.5% of DM) and three sources of supplemental CP (N basis): 100% urea; 50:50 blend of urea and cottonseed meal; or 100% cottonseed meal. Steers in both experiments were initially implanted with Ralgro and reimplanted with Revalor-S on d 56. Performance and carcass data were pooled across locations. Crude protein concentration x source interactions were not observed (P = 0.22 to 0.93) for performance and carcass data. Crude protein concentration affected ADG (P = 0.02) and carcass-adjusted (to a common dressing percent within location) ADG quadratically (P = 0.06). Increasing the concentration of supplemental urea linearly increased carcass-adjusted ADG and G:F (P < 0.05) and carcass-adjusted G:F (P < 0.001). Dry matter intake was not affected (P = 0.93) by either CP concentration or source. Hot carcass weight (HCW; P = 0.02), LM area (P = 0.05), and dressing percent (P = 0.03) increased linearly with increasing urea concentration, whereas increasing CP concentration quadratically affected HCW (P = 0.02), with a maximum at 13% CP. Differences in backfat thickness and yield grade were negligible across treatments. Neither marbling score nor percentage of carcasses grading USDA Choice was affected by CP concentration or source. At all times measured, SUN concentrations increased (P < 0.05) with increasing CP concentration, but effects of CP source were small and variable across time. Results indicate that increasing CP concentrations from 11.5 to 13% slightly increased ADG and carcass-adjusted ADG, whereas increasing the proportion of supplemental urea increased carcass-adjusted ADG, G:F, and carcass-adjusted G:F and increased HCW, LM area, and dressing percent. A CP concentration above 13% seemed detrimental to ADG and HCW. Serum urea N increased over time, with CP concentration having a greater effect than CP source.  相似文献   

16.
Two experiments were conducted to determine the CP concentration below which N retention and growth performance are reduced when low-protein, amino acid-supplemented, corn-soybean meal diets are fed. In a N balance trial (Exp. 1), 12 gilts (initial weight 41 kg) were fitted with urinary catheters and fed six different diets during three 7-d periods in an incomplete block design. The diets were: 1) 18% CP; 2) 14% CP + AA, 3) 16% CP; 4) 12% CP + AA; 5) 14% CP; and 6) 10% CP + AA. Amino acids (lysine, threonine, tryptophan, and methionine) were supplemented such that the concentrations in the low-protein diets were equal to those in their standard (4% CP higher) counterparts. Nitrogen retention (g/d) decreased (P < 0.01) as CP decreased, in both standard (27.10, 24.53, and 20.99) and low-protein (21.51, 19.18, and 15.83) diets, but was lower (P < 0.01) in low-protein diets. There were no differences among treatments (P > 0.05) in biological value (68.2% standard vs 71.0% low-protein). In a growth performance trial (Exp. 2), 36 gilts (initial weight 19.5 kg) were penned individually and fed one of six diets for 35 d in a randomized complete block design. Dietary treatments were a 16% CP standard diet and low-protein diets formulated to contain 15, 14, 13, 12, and 11% CP supplemented with crystalline lysine, tryptophan, threonine, and methionine to equal the total concentrations in the standard diet. Protein concentration affected (P < or = 0.05) ADG, ADFI, feed efficiency, fat-free lean gain, longissimus muscle area, plasma urea, and plasma concentrations of most essential AA. For most of these traits, the major difference was poor performance of pigs fed the 11% CP diet. Thus, in Exp. 1, at AA concentrations from deficient to excess, low-protein, amino acid-supplemented diets failed to produce the same N retention as the equivalent corn-soybean meal diets. However in Exp. 2, the same performance was obtained with 16, 15, 14, 13, and 12% CP. Based on these data, we suggest that N balance is more sensitive than growth to amino acid adequacy andthat other AA (e.g., isoleucine and valine) may limit growth performance when the protein concentration is reduced by more than four percentage units.  相似文献   

17.
Previous research has demonstrated that increasing the CP concentration from 16 to 26% in milk replacers fed to male preruminant dairy calves at 1.5% of BW (DM basis) daily resulted in increased ADG, G:F, and deposition of lean tissue. However, the effects of dietary CP would be expected to vary depending on ME intake. Here, male Holstein calves < 1 wk old were used to determine the effects of feeding rate and CP concentration of isocaloric, whey protein-based milk replacers on growth and body composition. After a 2-wk standardization period, calves were assigned randomly to an initial baseline group or to treatments in a 2 x 4 factorial arrangement of feeding rate (1.25 or 1.75% of BW daily, DM basis) and milk replacer CP concentration (14, 18, 22, or 26% of DM). No starter was offered, but calves had free access to water. After a 5-wk feeding period, calves were slaughtered and body composition was determined. Increasing the feeding rate increased (P < 0.05) ADG, G:F, empty-body gains of chemical components and energy, the percentage of fat in empty BW gain and in the final empty body, and concentrations of IGF-I and insulin in plasma. Increasing the feeding rate decreased (P < 0.01) percentages of water and protein in the empty body and decreased urea N in plasma. Increasing dietary CP concentration linearly increased (P < 0.05) ADG, body length, heart girth, and gains of water and protein but linearly decreased (P < 0.05) fat gain. As dietary CP increased, fat content in empty body gain decreased, and water and protein increased. Increasing CP concentration increased (quadratic, P < 0.02) G:F, with greatest efficiencies for calves fed 22% CP. Gross energetic efficiency (retained energy:intake energy) was greater (P < 0.05) for calves fed at 1.75% of BW daily. Efficiency of dietary protein use for protein gain was greater for calves fed at 1.75% of BW daily but was not affected by dietary CP. The ratio of protein gain to apparently digestible protein intake above maintenance decreased as dietary CP increased. Interactions (P < 0.05) of feeding rate and CP concentration for gains of water and protein indicated that when dietary CP was 26% the ME supply limited protein use by calves fed at 1.25% of BW daily. Body composition of preruminant calves can be markedly altered by manipulating the protein to energy ratio in milk replacers. These dietary effects on body composition and growth are not predicted by current NRC standards.  相似文献   

18.
Eighty-four crossbred gilts were used to evaluate the effects of dietary choice white grease (CWG) or poultry fat (PF) on growth performance, carcass characteristics, and quality characteristics of longissimus muscle (LM), belly, and bacon of growing-finishing pigs. Pigs (initially 60 kg) were fed a control diet with no added fat or diets containing 2, 4, or 6% CWG or PF. Diets were fed from 60 to 110 kg and contained 2.26 g lysine/Mcal ME. Data were analyzed as a 2 x 3 factorial plus a control with main effects of fat source (CWG and PF) and fat level (2, 4, and 6%). Pigs fed the control diet, 2% fat, and 4% fat had greater (P < 0.05) ADFI than pigs fed 6% fat. Pigs fed 6% fat had greater (P < 0.05) gain/feed (G/F) than pigs fed the control diet or other fat levels. Subcutaneous fat over the longissimus muscle from pigs fed CWG had more (P < 0.05) moisture than that from pigs fed PF. Feeding dietary fat (regardless of source or level) reduced (P < 0.05) the amount of saturated fats present in the LM. Similarly, 4 or 6% fat decreased (P < 0.05) the amount of saturated fats and increased unsaturated fats present in the bacon. No differences (P > 0.05) were observed for ADG, dressing percentage, leaf fat weight, LM pH, backfat depth, LM area, percentage lean, LM visual evaluation, LM waterholding capacity, Warner-Bratzler shear and sensory evaluation of the LM and bacon, fat color and firmness measurements, or bacon processing characteristics. Adding dietary fat improved G/F and altered the fatty acid profiles of the LM and bacon, but differences in growth rate, carcass characteristics, and quality and sensory characteristics of the LM and bacon were minimal. Dietary additions of up to 6% CWG or PF can be made with little effect on quality of pork LM, belly, or bacon.  相似文献   

19.
Different dietary nitrogen (N) patterns may have different effects on gut microbiota. To investigate the effects of different crude protein (CP) levels or essential amino acids (EAA) supplementation patterns on the structure and functions of colonic microbiota, 42 barrows (25 ± 0.39 kg) were randomly assigned to 7 dietary treatments including: diet 1, a high CP diet with balanced 10 EAA; diet 2, a medium CP diet with approximately 2% decreased CP level from diet 1 and balanced 10 EAA; diets 3, 4, 5, 6 and 7, low CP diets with 4% decreased CP level from diet 1. Specifically, diet 3 was only balanced for Lys, Met, Thr and Trp; diets 4, 5 and 6 were further supplemented with Ile, Val and Ile + Val on the basis of diet 3, respectively; and diet 7 was balanced for 10 EAA. Results over a 110-d trial showed that reducing the CP level by 2% or 4% dramatically decreased N intake and excretion (P < 0.05) in the presence of balanced 10 EAA, which was not observed when altering the EAA supplementation patterns in low CP diet (−4%). With balanced 10 EAA, 2% reduction in dietary CP significantly reduced Firmicutes-to-Bacteroidetes (F:B) ratio and significantly elevated the abundance of Prevotellaceae NK3B31 (P < 0.05); whereas 4% reduction evidently increased the abundances of Proteobacteria, Succinivibrio and Lachnospiraceae XPB1014 (P < 0.05). Among the 5 low CP diets (−4%), supplementation with Ile, or Val + Ile, or balanced 10 EAA increased F:B ratio and the abundance of Proteobacteria. In addition, the predicted functions revealed that different CP levels and EAA balanced patterns dramatically altered the mRNA expression profiles of N-metabolizing genes, the “N and energy metabolism” pathways or the metabolism of some small substances, such as amino acids (AA) and vitamins. Our findings suggested that reducing the dietary CP levels by 2% to 4% with balancing 10 EAA, or only further supplementation with Ile or Val + Ile to a low protein diet (−4%) reduced the N contents entering the hindgut to various degrees, altered the abundances of N-metabolizing bacteria, and improved the abilities of N utilization.  相似文献   

20.
Insulin-like growth factor-I (IGF-I), growth hormone (GH), and prolactin (PRL) play important roles in milk protein synthesis, and their plasma concentrations were reported to be affected by dietary protein intake. To investigate the relationship between circulating amino acid (AA) and concentrations of these hormones, 18 Wistar rats aged 14 wk were assigned to a low (LP; 9% protein), standard (SP; 21% protein), or high-protein (HP; 35% protein) diet from parturition through day 15 of lactation. Plasma, liver, pituitary gland, skeletal muscle, and mammary gland samples were collected at the end of treatment. Circulating and hepatic IGF-I concentrations increased linearly with elevated dietary protein concentrations (P < 0.0001). Rats receiving the HP diet had higher circulating GH (P < 0.01) and pituitary PRL concentrations (P < 0.0001) but lower pituitary GH concentration (P < 0.0001) relative to those in rats receiving the LP and SP diets. Pearson correlation test performed on composed data across treatments showed that several circulating AAs were correlated with circulating and tissue concentrations of IGF-I, GH, and PRL. Multiple linear regression analyses identified Leu, Gln, Ala, Gly, and Arg as the main AAs associated with hormone responses (R2 = 0.37 ~ 0.80; P < 0.05). Rats fed the LP and HP diets had greater Igf1 and Ghr gene expression in skeletal muscle than those fed the SP diets (P < 0.01). However, LP treatment decreased Prlr mRNA abundance in mammary glands as compared with the SP and HP treatments (P < 0.05). The HP diets increased AA transporter expression (P < 0.01) but decreased mammalian target of rapamycin (P < 0.05) and 70 kDa ribosomal protein S6 kinase 1 (P < 0.01) phosphorylation in mammary glands as compared with the LP and SP diets. The results of the present study suggested that several circulating AAs mediated the effects of dietary protein supply on concentrations of IGF-I, GH, and PRL, which in turn altered the metabolism status in peripheral tissues including the lactating mammary glands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号