首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous investigations of coffee flavor have been confined to the analysis of the aroma substances. These investigations showed that about 30 volatile compounds were substantially responsible for the coffee flavor. The aim of this study was to investigate the influence of different milk additives and one coffee whitener on the release of flavor impact compounds from coffee beverages. For the investigation of these effects an external static headspace technique was developed. With this technique the most potent odorants of the coffee beverage were determined. Analyses were performed by gas chromatography/olfactometry, flame ionization detection, and mass spectrometric detection. In addition, sensory studies of the odor profiles were performed. Milk and vegetable products as additives for coffee beverages affected the release of aroma substances in the brew through their lipid, protein, and carbohydrate components. All beverages with an additive showed reduced, but typical, odor profiles for each additive.  相似文献   

2.
The perceived intensities of savory flavors in hydrocolloid-thickened solutions were investigated using sensory paired comparison tests between two distinct thickener concentrations (high and low viscosities). The perceived saltiness of 3.5 g/L NaCl was found to be significantly reduced (P < 0.01) at the higher thickener concentration of both hydroxypropylmethyl cellulose (HPMC) and lambda-carrageenan, relative to the lower concentration. Mushroom flavor (8 ppm of 1-octen-3-ol with 3 g/L NaCl) was perceived as significantly more intense (P < 0.05) in 1.7 g/L lambda-carrageenan as compared with the same concentration of flavoring in 10.2 g/L lambda-carrageenan. Garlic flavor (2.5 ppm of diallyl disulfide with 2 g/L NaCl) was perceived to be significantly more intense in 2 g/L HPMC (P < 0.01) than in 10 g/L HPMC. However, when the NaCl concentration in the more viscous sample was increased to 3 g/L, the garlic flavor intensities of the two systems were not significantly different, suggesting a perceptual interaction (enhancement) between salt taste and garlic flavor. In vivo aroma release measurements from the same samples, using API-MS, showed that hydrocolloid concentration did not significantly alter the amount of mushroom or garlic aromas released when solutions were consumed. It was concluded that changes in perceived saltiness were driving the reduction in savory flavor perception even though the aroma stimulus was unchanged (a taste-aroma interaction). These findings parallel previous results in sweet hydrocolloid-thickened solutions.  相似文献   

3.
The influence of xanthan concentration (0, 0.02, 0.1, 0.4, and 0.8% w/w) and bulk viscosity on the release of 20 aroma compounds of different chemical classes (5 aldehydes, 4 esters, 5 ketones, 3 alcohols, and 3 terpenes) was evaluated in xanthan-thickened food model systems having different viscosities. Interactions between flavor compounds and xanthan were assessed by measuring air-liquid partition coefficients, K, of aroma compounds in pure water and in the xanthan solutions by static headspace gas chromatography. Mass transfer of aroma compounds was estimated by dynamic headspace gas chromatography. Notably, limonene and some of the esters and aldehydes exhibited decreased K values in the presence of xanthan, indicating that the release of these volatile aroma compounds was reduced due to interaction with the xanthan matrix. The degree of interaction depended on the physicochemical characteristics of the aroma compounds. A similar tendency was observed at nonequilibrium with the decreases in release rates being most pronounced for limonene, followed by the esters and aldehydes, with no effect for ketones and an apparent "salting out" effect for alcohols. The reduction in flavor release by xanthan was thus dependent on the physicochemical properties of the aroma compounds and was apparently a result of the aroma-xanthan interactions and not influenced by the viscosity of the system itself.  相似文献   

4.
The increasing popularity of low-fat products increases the need for a better understanding of how flavor release is affected by partial substitution of fat with hydrocolloids. Partitioning and release of aroma compounds from four pectin gels with different compositions were studied with static headspace and with a model mouth. Air/product partition coefficients determine the potential extent of aroma release, and mass transfer determines the rate at which aroma compounds are released to the vapor phase. This study showed that the gel network had large effects on the partition of aroma compounds between the gel and vapor phase. The specific properties of the aroma compounds were also of importance for the air/gel partition. Storage of the four gels showed that one of the weaker gels was influencing the concentration of aroma compounds in the headspace, probably caused by formation of a denser network over time.  相似文献   

5.
Static equilibrium was established between the gas phase (headspace) and an unstirred aqueous phase in a sealed vessel. The headspace was then diluted with air to mimic the situation when a container of food is opened and the volatiles are diluted by the surrounding air. Because this first volatile signal can influence overall flavor perception, the parameters controlling volatile release under these conditions are of interest. A mechanistic model was developed and validated experimentally. Release of compounds depended on the air-water partition coefficient (K(aw)) and the mass transport in both phases. For compounds with K(aw) values <10(-)(3), K(aw) was the factor determining release rate. When K(aw) was >10(-)(3), mass transport in the gas phase became significant and the Reynolds number played a role. Because release from packaged foods occurs at low Reynolds numbers, whereas most experiments are conducted at medium to high Reynolds numbers, the experimentally defined profile may not reflect the real situation.  相似文献   

6.
A fully computer-controlled apparatus was designed. It combines a glass reactor with a temperature-controlled hood, in which headspace volatiles are captured. Flavored liquids can be introduced into the reactor and exposed to conditions of temperature, air flow, shear rate, and saliva flow as they occur in the mouth. As the reactor is completely filled before measurements are started, creation of headspace just before sampling start prevents untimely flavor release resulting in real time data. In the first 30 s of flavor release the concentrations of the volatiles can be measured up to four times by on-line sampling of the dynamic headspace, followed by off-line trapping of the samples on corresponding Tenax traps and analysis using GC-TDS-FID. Flavor compounds from different chemical classes were dissolved in water to achieve concentrations typically present in food (micrograms to milligrams per liter). Most of the compounds showed constant release rates, and the summed quantities of each volatile of three 10 s time intervals correlated linearly with time. The entire method of measurement including sample preparation, release, sampling, trapping, thermodesorption, and GC analysis showed good sensitivity [nanograms (10 s)(-1)] and reproducibility (mean coefficient of variation = 7.2%).  相似文献   

7.
The use of solvent-assisted flavor evaporation extraction (SAFE) and purge and trap in Tenax allowed the identification of more than 100 volatile compounds in a sponge cake (SC-e). Gas chromatography-olfactometry (GC-O) of the SAFE extracts of crumb and crust were achieved in order to determine the most potent odorants of SC-e. The change in the traditional dough formulation of SC-e in which eggs were substituted by baking powder (SC-b) as the leavening agent produced important changes in some key aroma compounds. The release curves of some aroma compounds-some of them generated during baking and others added in the dough-were followed by cumulative headspace analysis. In the flavored SC-b, the aroma release curves showed a plateau after 15 min of purge, while the release increased proportionally with the purge time in the flavored SC-e. In general, except for some of the aroma compounds with the highest log P values, the rate of release of most of the added and generated aroma compounds was significantly influenced by the changes in the cake formulation. The higher rates of release found for the aroma compounds in SC-b could contribute to explain its rapid exhaustion of aroma compounds in the purge and trap experiments and might lead to poorer sensorial characteristics of this cake during storage.  相似文献   

8.
This study was conducted to determine the volatile flavor composition of fresh changpo (Acorus calamus var. angustatus Bess) leaves quantitatively and qualitatively by use of two internal standards and to determine which volatile compounds are primarily responsible for the aroma of this aquatic herb. The headspace composition of fresh changpo leaves was also analyzed by a solid-phase microextraction method. Aroma extract dilution analysis (AEDA) and sniffing test by gas chromatography-olfactometry were used for the detection of aroma-active compounds of this herb. According to the instrumental analyses of the changpo oil, octanoic acid (49.13%), alpha-cedrene (16.71%), alpha-phellandrene (4.46%), and gamma-elemene (3.75%) were the most abundant compounds. n-Butylidene dihydrophthalide (8.61%), trans,trans-farnesyl acetate (7.29%), and trans-2-dodecenal (7%) were the main components of changpo headspace. cis-beta-Farnesene was evaluated as the key aroma compound of this herb from results of AEDA and sniffing test.  相似文献   

9.
The effect of lambda-carrageenan addition level (0.1, 0.25, 0.4, and 0.5% w/w) and viscosity on the release of systematic series of aroma compounds (aldehydes, esters, ketones, and alcohols) was studied in thickened viscous solutions containing lambda-carrageenan and 10 wt % of sucrose. Air-liquid partition coefficients K (37 degrees C) of a total of 43 aroma compounds were determined in pure water and in the lambda-carrageenan solutions by static headspace gas chromatography. Mass transfer of the aroma compounds in water and in the thickened lambda-carrageenan solutions which had a wide viscosity range was assessed by dynamic headspace gas chromatography. K (37 degrees C) increased as the carbon chain increased within each homologous series. Esters exhibited the highest volatility, followed by aldehydes, ketones, and alcohols. Under equilibrium, no overall effect of lambda-carrageenan was found, except with the most hydrophobic compounds. Analysis of flavor release under nonequilibrium conditions revealed a suppressing effect of lambda-carrageenan on the release rates of aroma compounds, and the extent of decrease in release rates was dependent on the physicochemical characteristics of the aroma compounds, with the largest effect for the most volatile compounds. However, none of the effects was of a magnitude similar to the obtained changes in the macroscopic viscosity, and the suppressing effects are therefore attributable to the thickener and not the physical properties of the increasingly viscous systems.  相似文献   

10.
Release of aroma compounds in selected iota-carrageenan systems was studied by static headspace analysis. By varying the sodium chloride content, different rheological behaviors were obtained ranging from solution to gel. From the release curves, mass transfer (h(D)) and partition coefficients (K(ga)) of ethyl butanoate, ethyl hexanoate, and linalool were extracted using a mathematical model based on the penetration theory. This model, previously developed for flavor release from stirred solutions, was found to fit well the data obtained from structured systems (nonstirred conditions) at the beginning and at the end of the release curves: this allowed the determination of h(D) and K(ga). Matrix effects appeared to be dependent on the chemical class of the compounds. For the alcohol, the main effect on both equilibrium partitioning and mass transfer across the interface was ascribed to a salting effect. In the opposite, for esters, iota-carrageenan addition induced an increase of aroma retention and also a slower transfer across the interface. The respective effects of an increasing viscosity of the medium and of the formation of a tridimensionnal network are discussed.  相似文献   

11.
The relationship between the physical structure of espresso coffee foam, called crema, and the above-the-cup aroma release was studied. Espresso coffee samples were produced using the Nespresso extraction system. The samples were extracted with water with different levels of mineral content, which resulted in liquid phases with similar volatile profiles but foams with different structure properties. The structure parameters foam volume, foam drainage, and lamella film thickness at the foam surface were quantified using computer-assisted microscopic image analysis and a digital caliper. The above-the-cup volatile concentration was measured online by using PTR-MS and headspace sampling. A correlation study was done between crema structure parameters and above-the-cup volatile concentration. In the first 2.5 min after the start of the coffee extraction, the presence of foam induced an increase of concentration of selected volatile markers, independently if the crema was of high or low stability. At times longer than 2.5 min, the aroma marker concentration depends on both the stability of the crema and the volatility of the specific aroma compounds. Mechanisms of above-the-cup volatile release involved gas bubble stability, evaporation, and diffusion. It was concluded that after the initial aroma burst (during the first 2-3 min after the beginning of extraction), for the present sample space a crema of high stability provides a stronger aroma barrier over several minutes.  相似文献   

12.
The effect of dispersed aqueous droplets in water-in-oil (W/O)-emulsion semisolid fats on aroma release and sensory perception was investigated on margarine models where model aroma substances were added. Aroma release from W/O-emulsion fat blends and bulk fat blends with added monoglycerides combining different fatty acids of various short-chain free fatty acids, methylketones, esters, and lactones were measured using headspace solid phase microextraction-gas chromatography/mass spectrometry (SPME-GC/MS), and their perception profiles were evaluated by sensory analysis. The presence of aqueous phase in a fat blend significantly reduced the headspace concentrations of butanoic acid and hexanoic acid, and also decreased the perceived intensity of total aroma and cheesy aroma. The aroma release of methylketones, esters, and lactones from the W/O-emulsion fat blends increased with increasing carbon chain length of the volatile molecules. The intensity of aroma perception in a W/O-emulsion fat blend depended on the melting point of the fatty acids (oleic, palmitic, stearic, and behenic) of the monoglyceride used as an emulsifier. Thus, aroma release from a W/O-emulsion semisolid fat blend was influenced by interactions between aroma volatiles and the dispersed aqueous droplets and by their viscoelastic properties.  相似文献   

13.
The aroma-active compounds in two apple ciders were identified using gas chromatography-olfactometry (GC-O) and GC-mass spectrometry (MS) techniques. The volatile compounds were extracted using solvent-assisted flavor evaporation (SAFE) and headspace solid-phase microextraction (HS-SPME). On the basis of odor intensity, the most important aroma compounds in the two apple cider samples were 2-phenylethanol, butanoic acid, octanoic acid, 2-methylbutanoic acid, 2-phenylethyl acetate, ethyl 2-methylbutanoate, ethyl butanoate, ethyl hexanoate, 4-ethylguaiacol, eugenol, and 4-vinylphenol. Sulfur-containing compounds, terpene derivatives, and lactones were also detected in ciders. Although most of the aroma compounds were common in both ciders, the aroma intensities were different. Comparison of extraction techniques showed that the SAFE technique had a higher recovery for acids and hydroxy-containing compounds, whereas the HS-SPME technique had a higher recovery for esters and highly volatile compounds.  相似文献   

14.
Interaction of flavor compounds with proteins is known to have an influence on the release of flavor from food. Hydrophobic interactions were found between beta-lactoglobulin and methyl ketones; the affinity constant increases by increasing the hydrophobic chain. Addition of beta-lactoglobulin (0.5 and 1%) to aroma solutions (12.5, 50, and 100 microL L(-)(1)) of three methyl ketones induces a significant decrease in odor intensity. The chosen methyl ketones were 2-heptanone (K(b) = 330), 2-octanone (K(b) = 950), and 2-nonanone (K(b) = 2440). The release of these flavor compounds (50 microL L(-)(1)) was studied by static headspace in water solution (50 mM NaCl, pH 3) with different concentrations of beta-lactoglobulin (0, 0.5, 1, 2, 3, and 4%). Increasing the concentration of protein increases the retention of volatiles, and this effect is greatest for 2-nonanone, the compound with the highest affinity constant, and lowest for 2-heptanone. A mathematical model previously developed to describe flavor release from aqueous solutions containing flavor-binding polymers (Harrison, M.; Hills, B. P. J. Agric. Food Chem. 1997, 45, 1883-1890) was used to interpret the data. The model assumes that the polymer-flavor interaction is reversible and the rate-limiting step for release is the transfer of volatiles across the macroscopic gas-liquid interface. This model was used to predict the equilibrium partitioning properties and the rate of release of the three methyl ketones. Increasing the affinity constant leads to decreased release rates and a lower final headspace aroma concentration.  相似文献   

15.
On the basis of a mechanistic model, the overall and liquid mass transfer coefficients of aroma compounds were estimated during aroma release when an inert gas diluted the static headspace over simple ethanol/water solutions (ethanol concentration = 120 mL x L(-1)). Studied for a range of 17 compounds, they were both increased in the ethanol/water solution compared to the water solution, showing a better mass transfer due to the presence of ethanol, additively to partition coefficient variation. Thermal imaging results showed differences in convection of the two systems (water and ethanol/water) arguing for ethanol convection enhancement inside the liquid. The effect of ethanol in the solution on mass transfer coefficients at different temperatures was minor. On the contrary, at different headspace dilution rates, the effect of ethanol in the solution helped to maintain the volatile headspace concentration close to equilibrium concentration, when the headspace was replenished 1-3 times per minute.  相似文献   

16.
The release of volatile compounds from infused tea was monitored using on-line atmospheric pressure chemical ionization (APCI) mass spectrometry. Assignment of the APCI ions to particular compounds was achieved using gas chromatography of tea headspace with dual electron ionization and APCI-MS detectors. Six ions in the APCI spectrum could be assigned to individual compounds, five ions were associated with isobaric compounds (e.g., 2- and 3-methylbutanal and pentanal) or stereoisomers (e.g., heptenals or heptadienals), and a further four ions monitored were identified compounds but with some unknown impurities. Reproducibility of infusion preparation and the analytical system was good with percentage variation values generally below 5%. The analysis was used to study the effect of infusion and holding temperatures on the volatile profile of tea headspace samples, and this was found to be compound-dependent. Both the extraction of volatiles from leaf tea and the release of volatiles into the headspace play a role in creating the aroma profile that the consumer experiences.  相似文献   

17.
The volatile composition of the headspace from Citrus unshiu Marcov. forma Miyagawa-wase blossom was investigated. The volatile constituents were absorbed by a solid-phase microextraction (SPME) fiber and directly transferred to a GC-MS. Volatile compositional changes of C. unshiu blossom prepared via different drying methods (shade, microwave, and freeze-drying methods) were also determined. A total of 96 volatile constituents were confirmed in the headspace from these samples. Monoterpene hydrocarbons were prominent in the headspace volatiles of C. unshiu blossom: fresh, 84.1%; shade-dried, 60.0%; microwave-dried, 88.4%; and freeze-dried, 29.9%. p-Cymene (23.3%) was the most abundant component in the headspace of fresh C. unshiu blossom; gamma-terpinene was the most abundant in shade- and microwave-dried samples (26.8 and 31.2%, respectively) and beta-caryophyllene (10.5%) in freeze-dried sample. By using an electronic nose consisting of six metal oxide sensors, principal component analysis of the volatile compounds showed a clear aroma discrimination of the fresh and all dried blossom samples.  相似文献   

18.
Interactions between 10 aroma compounds from different chemical classes and 5 mixtures of milk proteins have been studied using static or dynamic headspace gas chromatography and solid-phase microextraction (SPME). Static headspace analysis allows the quantification of the release of only the most abundant compounds. Dynamic headspace analysis does not allow the discrimination of flavor release from the different protein mixtures, probably due to a displacement of headspace equilibrium. By SPME analysis and quantification by GC-MS (SIM mode) all of the volatiles were quantified. This method was optimized to better discriminate aroma release from the different milk protein mixtures and then from oil/water emulsions made with these proteins. The highest difference between the release in different proteins was observed for ethyl hexanoate, which has a great affinity for beta-lactoglobulin. Ethyl hexanoate is thus less released from models and emulsions containing this protein.  相似文献   

19.
The influence of flavor solvent [triacetin (TA), propylene glycol (PG), medium chained triglycerides (MCT), or no flavor solvent (NFS)] on the flavor release profile, the textural properties, and the sensory perception of a sugar-free chewing gum was investigated. Time course analysis of the exhaled breath and saliva during chewing gum mastication indicated that flavor solvent addition or type did not influence the aroma release profile; however, the sorbitol release rate was statistically lower for the TA formulated sample in comparison to those with PG, MCT, or NFS. Sensory time-intensity analysis also indicated that the TA formulated sample was statistically lower in perceived sweetness intensity, in comparison with the other chewing gum samples, and also had lower cinnamon-like aroma intensity, presumably due to an interaction between sweetness intensity on aroma perception. Measurement of the chewing gum macroscopic texture by compression analysis during consumption was not correlated to the unique flavor release properties of the TA-chewing gum. However, a relationship between gum base plasticity and retention of sugar alcohol during mastication was proposed to explain the different flavor properties of the TA sample.  相似文献   

20.
Static headspace (SHS), headspace solid phase microextraction (HS-SPME), headspace sorptive extraction (HSSE), and direct thermal desorption (DTD) were applied to the analysis of four French virgin olive oils from Corsica. More than 60 compounds were isolated and characterized by GC-RI and GC-MS. SHS was not suited to the characterization of olive oil volatile compounds because of low sensitivity. The SPME and HSSE techniques were successfully applied to olive oil headspace analysis. Both methods allow the characterization of volatile compounds (mainly C(6) aldehydes and alcohols), which contribute significantly to the "green" flavor note of virgin olive oils. The PDMS stir bar showed a higher concentration capacity than a DVB/CAR/PDMS SPME fiber due to the higher volume of polymeric coating. DTD was a very good tool for extracting volatile and especially semivolatile compounds, such as sesquiterpenes, but requires a significant investment like that for HSSE. Finally, SPME may be a more appropriate technique for routine quality control due to its operational simplicity, repeatability, and low cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号