首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Replantation of degraded forest using rapidgrowth trees can play a significant role in global carbon budget by storing large quantities of carbon in live biomass,forest floor,and soil organic matter.We assessed the potential of 20-year old stands of three rapid-growth tree species,including Alnus subcordata,Populus deltoides and Taxodium distichum,for carbon(C) storage at ecosystem level.In September 2013,48 replicate plots(16 m × 16 m) in 8 stands of three plantations were established.36 trees were felled down and fresh biomass of different components was weighed in the field.Biomass equations were fitted using data based on the 36 felled trees.The biomass of understory vegetation and litter were measured by harvesting all the components.The C fraction of understory,litter,and soil were measured.The ecosystem C storage was as follows: A.subcordata(626.5 Mg ha~(-1)) [ P.deltoides(542.9Mg ha~(-1)) [ T.distichum(486.8 Mg ha~(-1))(P \ 0.001),of which78.1–87.4% was in the soil.P.deltoides plantation reached the highest tree biomass(206.6 Mg ha~(-1)),followed by A.subcordata(134.5 Mg ha~(-1)) and T.distichum(123.3 Mg ha~(-1)).The highest soil C was stored in theplantation of A.subcordata(555.5 Mg ha~(-1)).The C storage and sequestration of the plantations after 20 years were considerable(25–30 Mg ha~(-1) year~(-1)) and broadleaves species had higher potential.Native species had a higher soil C storage while the potential of introduced species for live biomass production was higher.  相似文献   

2.

Key message

A generalized algebraic difference approach (GADA) developed in this study improved the estimation of aboveground biomass dynamics of Cunninghamia lanceolata (Lamb.) Hook and Castanopsis sclerophylla (Lindl.) Schott forests. This could significantly improve the fieldwork efficiency for dynamic biomass estimation without repeated measurements.

Context

The estimation of biomass growth dynamics and stocks is a fundamental requirement for evaluating both the capability and potential of forest carbon sequestration. However, the biomass dynamics of Cunninghamia lanceolata and Castanopsis sclerophylla using the generalized algebraic difference approach (GADA) model has not been made to date.

Aims

This study aimed to quantify aboveground biomass (AGB, including stem, branch and leaf biomass) dynamics and AGB increment in C. lanceolata and C. sclerophylla forests by combining a GADA for diameter prediction with allometric biomass models.

Methods

A total of 12 plots for a C. lanceolata plantation and 11 plots for a C. sclerophylla forest were selected randomly from a 100 m × 100 m systematic grid placed over the study area. GADA model was developed based on tree ring data for each stand.

Results

GADA models performed well for diameter prediction and successfully predicted AGB dynamics for both stands. The mean AGB of the C. lanceolata stand ranged from 69.4 ± 7.7 Mg ha?1 in 2010 to 102.5 ± 11.4 Mg ha?1 in 2013, compared to 136.9 ± 7.0 Mg ha?1 in 2010 to 154.8 ± 8.0 Mg ha?1 in 2013 for C. sclerophylla. The stem was the main component of AGB stocks and production. Significantly higher production efficiency (stem production/leaf area index) and AGB increment was observed for C. lancolata compared to C. sclerophylla.

Conclusion

Dynamic GADA models could overcome the limitations posed by within-stand competition and limited biometric data, can be applied to study AGB dynamics and AGB increment, and contribute to improving our understanding of net primary production and carbon sequestration dynamics in forest ecosystems.
  相似文献   

3.
Diverse kinds of fast growing multipurpose trees are traditionally grown as support trees (standards) for trailing black pepper vines in the humid tropics of India. Apart from differential black pepper yields, such trees exhibit considerable variability to accumulate biomass, carbon and nutrients. An attempt was made to assess the biomass production, carbon sequestration potential (tree + soil) and nutrient stocks of six multipurpose tree species (age: 22 years) used for trailing black pepper vines (Acacia auriculiformis, Artocarpus heterophyllus, Grevillea robusta, Macaranga peltata, Ailanthus triphysa and Casuarina equisetifolia). Results indicate that G. robusta showed the highest total biomass production (365.72 Mg ha?1), with A. triphysa having the least value (155.13 Mg ha?1). Biomass allocation among tissue types followed the order stemwood > roots > branchwood > twigs > leaves. Total C stocks were also highest for G. robusta (169 Mg C ha?1), followed by A. auriculiformis (155 Mg C ha?1). Mean annual carbon increment also followed a similar trend. Among the various tissue fractions, stemwood accounted for the highest N, P and K stocks, implying the potential for nutrient export from the site through wood harvest. All the support trees showed significantly higher soil carbon content compared to the treeless control. Soil N, P and K contents were higher under A. auriculiformis than other species. Nitrogen fixation potential, successional stage of the species, stand age and tree management practices such as lopping may modify the biomass allocation patterns and system productivity.  相似文献   

4.
Allometric equations are routinely used in the estimation of biomass stocks for carbon accounting within forest ecosystems. However, generic equations may not reflect the growth trajectories of afforestation species that are introduced to degraded farmland characterized by water and nutrient limitations. Using sequential measurements of the height, basal diameter, and above- and belowground biomass of juvenile trees, we developed allometric equations for five woody species (Moringa oleifera Lam., Leucaena leucocephala Lam., Jatropha curcas L., Anacardium occidentale L. and Parkia biglobosa Jacq.) subjected to a gradient of water and nutrient availability in an afforestation trial on degraded cropland in the semi-arid zone of Benin, West Africa. For three of the species studied, the allometric relationships between basal diameter and biomass components (i.e. leaves, stems and roots) were described best by a simple power-law model (R2 > 0.93). The incorporation of species-specific height–diameter relationships and total height as additional predictors in the power-law function also produced reasonable estimates of biomass. Fifteen months after planting, roots accounted for 10–58% of the total biomass while the root-to-shoot ratio ranged between 0.16 and 0.73. The total biomass of the saplings ranged between 1.4 and 10.3 Mg ha?1, yielding 0.6–4.3 Mg C ha?1, far exceeding the biomass in the traditional fallow system. The rate of stem carbon sequestration measured ca. 0.62 Mg C ha?1 year?1. Overall, the allometric equations developed in this study are generally useful for assessing the standing shoot and root biomass of the five afforestation species during the juvenile growth stage and can help in reporting and verifying carbon stocks in young forests.  相似文献   

5.
Our understanding of the processes influencing the storage and dynamics of carbon (C) in soils under semi-arid agroforestry systems in Sub-Saharan Africa (SSA) is limited. This study evaluated soil C pools in woodlot species of Albizia lebbeck (L.) Benth., Leucaena leucocephala (Lam.) de Wit, Melia azedarach (L.), and Gmelina arborea Roxb.; and in farmland and Ngitili, a traditional silvopastoral system in northwestern Tanzania. Soil organic carbon (SOC) was analyzed in the whole soil to 1 m depth and to 0.4 m in macroaggregates (2000–250 μm), microaggregates (250–53 μm), and silt and clay-sized aggregates (<53 μm) to provide information of C dynamics and stabilization in various land uses. Synchrotron-based C K-edge x-ray absorption near-edge structure (XANES) spectroscopy was also used to study the influence of these land use systems on the soil organic matter (SOM) chemistry to understand the mechanisms of soil C changes. Whole soil C stocks in woodlots (43–67 Mg C ha?1) were similar to those in the reserved Ngitili systems (50–59 Mg C ha?1), indicating the ability of the planted woodlots on degraded lands to restore SOC levels similar to the natural woodlands. SOC in the woodlots were found to be associated more with the micro and silt-and clay-sized aggregates than with macroaggregates, reflecting higher stability of SOC in the woodlot systems. The continuous addition of litter in the woodlots preserved recalcitrant aromatic C compounds in the silt and clay-sized aggregates as revealed by the XANES C K-edge spectra. Therefore establishment of woodlots in semi-arid regions in Tanzania appear to make significant contributions to the long-term SOC stabilization in soil fractions.  相似文献   

6.
Soil organic carbon (SOC) plays an important role in soil fertility and productivity. It occurs in soil in labile and non-labile forms that help in maintaining the soil health. An investigation was undertaken to evaluate the dynamics of total soil organic carbon (C tot), oxidisable organic carbon (C oc), very labile carbon (C frac 1), labile carbon (C frac 2), less labile carbon (C frac 3), non-labile carbon (C frac 4), microbial biomass carbon (C mic) and SOC sequestration in a 6-year-old fruit orchards. The mango, guava and litchi orchards caused an enrichment of C tot by 17.2, 12.6 and 11 %, respectively, over the control. The mango orchard registered highest significant increase of 20.7, 13.5 and 17.4 % in C frac 1, C frac 2 and C frac 4, respectively, over control. There is greater accumulation of all the C fractions in the surface soil (0–0.30 m). The maximum total active carbon pool was 36.2 Mg C ha?1 in mango orchard and resulted in 1.2 times higher than control. The passive pool of carbon constituted about 42.4 % of C tot and registered maximum in the mango orchard. The maximum C mic was 370 mg C kg?1 in guava orchard and constituted 4.2 % of C tot. The carbon management index registered 1.2 (mango orchard)- and 1.13 (guava and litchi orchard)-fold increase over control. The mango orchard registered highest carbon build rate of 1.53 Mg C ha?1 year?1 and resulted in 17.3 % carbon build-up over control. Among the carbon fractions, C frac 1 was highly correlated (r = 0.567**) with C mic.  相似文献   

7.
The effect of forest conservation on the organic carbon (C) stock of temperate forest soils is hardly investigated. Coarse woody debris (CWD) represents an important C reservoir in unmanaged forests and potential source of C input to soils. Here, we compared aboveground CWD and soil C stocks at the stand level of three unmanaged and three adjacent managed forests in different geological and climatic regions of Bavaria, Germany. CWD accumulated over 40–100 years and yielded C stocks of 11 Mg C ha?1 in the unmanaged spruce forest and 23 and 30 Mg C ha?1 in the two unmanaged beech–oak forests. C stocks of the organic layer were smaller in the beech–oak forests (8 and 19 Mg C ha?1) and greater in the spruce forest (36 Mg C ha?1) than the C stock of CWD. Elevated aboveground CWD stocks did not coincide with greater C stocks in the organic layers and the mineral soils of the unmanaged forests. However, radiocarbon signatures of the O e and O a horizons differed among unmanaged and managed beech–oak forests. We attributed these differences to partly faster turnover of organic C, stimulated by greater CWD input in the unmanaged forest. Alternatively, the slower turnover of organic C in the managed forests resulted from lower litter quality following thinning or different tree species composition. Radiocarbon signatures of water-extractable dissolved organic carbon (DOC) from the top mineral soils point to CWD as potent DOC source. Our results suggest that 40–100 years of forest protection is too short to generate significant changes in C stocks and radiocarbon signatures of forest soils at the stand level.  相似文献   

8.
Where there is limited availability of conventional fertilizers, the use of organic materials is considered a viable alternative to increase the productive capacity of soils. Many potential plant residues remain underutilized due to limited research on their use as a nutrient source. In this study, the nitrogen supplying capabilities of ten rarely-used leaf biomass sources (Acacia auriculiformis, Baphia nitida, Albizia zygia, Azadirachta indica, Senna siamea, Senna spectabilis, Tithonia diversifolia, Gliricidia sepium, Leucaena leucocephala and Zea mays) were tested based on their nutrient content, N mineralization patterns and effect on maize yield (in comparison with inorganic fertilizer). N mineralization was studied in the laboratory using an incubation experiment. Field trials were also established using a randomized complete block design. Plant residues were applied at 5 t dry matter ha?1 a week before planting maize while fertilizer was split-applied at 90 kg N ha?1 on designated plots. From the results on plant residue chemistry, most of the plant residues recorded relatively high N concentration (≥24.9 g kg?1) and low C/N ratio (≤20.1) although neither N content nor C/N ratio significantly (p > 0.05) affected their N mineralization patterns. Leaf biomass application of B. nitida, A. auriculiformis, A. zygia and maize stover resulted in an initial net N immobilization that lasted for 14 days. Application of all plant materials significantly increased the biological yield and N uptake of maize with G. sepium and T. diversifolia producing the greatest impact especially in the major rainy season. Relative to the control, total grain yield after four cropping seasons was comparable between inorganic fertilizer (9.2 t ha?1), G. sepium (8.8 t ha?1) and T. diversifolia (9.4 t ha?1) treatments. The results on maize biological yield were significantly correlated with the effects of the treatments on N uptake. The findings suggest that in locations where inorganic fertilizers are limited, leaf biomass from G. sepium and T. diversifolia could offer the most suitable option in comparison with the other species used in this study.  相似文献   

9.
With increasing concerns raised by climate change, understanding biological processes within cocoa (Theobroma cacao L.) agroforest (CAF) and fallow systems is a prerequisite for developing actions related to emission reduction in the shifting agricultural landscape of Cameroon. Carbon (C) stocks and accretion were assessed and modeled in various C components (large trees, small trees, dead wood, litter, roots, soil, and total C) of fallow and CAF systems along a 50-year chronosequence. Several functions were empirically fitted to a time series of C stocks. Large tree, soil, and total C stocks were best described by a logistic growth function while that for small trees by a rational quadratic function. The best-fitted functions explained 72–96 % of C stock accumulation over time. Two metrics describing C stock accretion were derived from these functions: the point of maximum C growth and the C growth coefficient (GC). The rate of maximum growth of total C stock was reached after 12–13 years in both fallow and CAF, with maximum GCs of 6.9 and 6.3 Mg C ha?1 year?1, respectively. Over the 50-year period, the GCs of total C stocks varied between 0.2 and 6.9 Mg C ha?1 year?1, with quick accumulation within the first decade that then slowed until it levelled off after 45 years. Over a period of about 30 years, both systems sequestered a total of ~200 Mg C ha?1. This indicates that cocoa agroforests, a main source of income for local populations, can also provide significant climate change mitigation services.  相似文献   

10.
Afforestation has been implemented to reduce soil erosion and improve the environment of the Loess Plateau,China.Although it increased soil organic carbon(SOC),the stability of the increase is unknown.Additionally,the variations of soil inorganic carbon(SIC) following afforestation needs to be reconfirmed.After planting Robinia pseudoacacia,Pinus tabuliformis,and Hippophae rhamnoides on bare land on the Loess Plateau,total soil carbon(TSC) was measured and its two components,SIC and SOC,as well as the light and heavy fractions within SOC under bare lands and woodlands at the soil surface(0–20 cm).The results show that TSC on bare land was 24.5 Mg ha~(-1) and significantly increased to 51.6 Mg ha~(-1) for R.pseudoacacia,47.0 Mg ha~(-1) for P.tabuliformis and 39.9 Mg ha~(-1) for H.rhamnoides.The accumulated total soil carbon under R.pseudoacacia,P.tabuliformis,and H.rhamnoides,the heavy fraction(HFSOC) accounted for 65.2,31.7 and 76.2%,respectively; the light fraction(LF-SOC) accounted for 18.0,52.0 and 4.0%,respectively; SIC occupied 15.6,15.3 and 19.7%,respectively.The accumulation rates of TSC under R.pseudoacacia,P.tabuliformis,and H.rhamnoides reached159.5,112.4 and 102.5 g m~(-2) a~(-1),respectively.The results demonstrate that afforestation on bare land has high potential for soil carbon accumulation on the Loess Plateau.Among the newly sequestrated total soil carbon,the heavy fraction(HF-SOC) with a slow turnover rate accounted for a considerably high percentage,suggesting that significant sequestrated carbon can be stored in soils following afforestation.Furthermore,afforestation induces SIC sequestration.Although its contribution to TSC accumulation was less than SOC,overlooking it may substantially underestimate the capacity of carbon sequestration after afforestation on the Loess Plateau.  相似文献   

11.
We studied leaf litter fall, decomposition and nutrient release patterns of Shorea robusta and Tectona grandis by using a litter bag technique to better understand the release pattern of nutrients to soil from leaf litter. Annual litterfall varied from 13.40 ± 2.56 t ha?1 a?1 for S. robusta to 11.03 ± 3.72 t ha?1 a?1 for T. grandis and the decay constant (k) of decomposed leaf litter was distinctly higher for T. grandis (2.70 ± 0.50 a?1) compared to S. robusta (2.41 ± 0.30 a?1). Biomass loss was positively correlated with the initial litter C, WSC, C/N and ash content in S. robusta and N, P and K concentration for T. grandis. Biomass was negatively correlated with lignin and L/N ratio for S. robusta and L, WSC, L/N and C/N ratio for T. grandis (P < 0.01). Nutrient use efficiency (NUE) and nutrient accumulation index (NAI) of S. robusta was higher than for T. grandis. The retranslocation of bioelements from senescent leaves ranked as P > N > K. Annual N, P and K input to soil through litterfall differed significantly between the two species in the following order: N>K>P. S. robusta was superior in terms of K and P return and T. grandis was superior in terms of N return. The two tree species showed a similar patterns of nutrient release (K > P > N) during decomposition of their leaf litter. Nutrients of N, K and P were the primary limiting nutrients returned to soil through litterfall with important roles in soil fertility and forest productivity.  相似文献   

12.
The present study was an effort to understand the amount of litter fall and its subsequent decomposition and quantify the release of available nutrients and soil physicochemical characteristics in plantations of four forest tree species(Lagerstroemia parviflora, Tectona grandis, Shorea robusta and Michelia champaca) in the Chilapatta Reserve Forest of the Cooch Behar Wildlife Division in the Terai zone of West Bengal, India. The most litter(5.61 Mg ha~(-1))was produced by T. grandis plantation and the least(4.72 Mg ha~(-1)) by L. parviflora. The material turnover rate to the soil through decomposition from total litter was fastest during the first quarter of the year and subsequently decreased during the next two quarters. The material turnover rate was only 1 year, which indicates that more than90% of the total litter produced decomposed within a year.The available primary nutrient content in litter varied across the four plantations over the year. The plantations generally did not significantly influence the soil physical characteristics but did significantly influence the availability of primary nutrients and organic carbon at two depths(1–15 and16–30 cm) over the year. The availability of soil primary nutrients in the four plantations also increased gradually from the first quarter of the year to the third quarter and then decreased during the last quarter to the same level as in the first quarter of the year at both depths. The availability for soil organic carbon in the plantations followed a similar trend. The amount of litter produced and the material turnover in the soil in the different plantations differed, influencing the nutrient availability and organic carbon at the plantations. The amount of soil organic carbon was highest for T. grandis(2.52 Mg ha~(-1)) and lowest for L. parviflora(2.12 Mg ha~(-1)). Litter is the source of soil organic matter,and more the litter that is produced by the plantations, the higher will be the content and amount of soil organic carbon in the plantation.  相似文献   

13.
Understanding the impact of plant litters on soil nitrogen(N) dynamics could facilitate development of management strategies that promote plantation ecosystem function.Our objective was to evaluate the effects of different litter types on N mineralization and availability,microbial biomass, and activities of L-asparaginase and odiphenol oxidase(o-DPO) in soils of a poplar(Populus deltoides) plantation through 24 weeks of incubation experiments.The tested litters included foliage(F), branch(B), or root(R) of poplar trees, and understory vegetation(U) or a mixture of F, B, and U(M).Litter amendments led to rapid N immobilization during the first 4 weeks of incubation, while net N mineralization was detected in all tested soils from 6 to 24 weeks of incubation, with zeroorder reaction rate constants(k) ranging from 7.7 to9.6 mg N released kg~(-1) soil wk~(-1).Moreover, litter addition led to increased microbial biomass carbon(C) 49–128% and increased MBC:MBN ratio by 5–92%,strengthened activities of L-asparaginase and o-DPO by14–74%; Up to about 37 kg N ha~(-1) net increase in mineralized N in litter added soils during 24 weeks of incubation suggests that adequate poplar and understory litter management could lead to reduced inputs while facilitate sustainable and economic viable plantation production.  相似文献   

14.

Key message

The carbon density was not different between natural and planted forests, while the biomass carbon density was greater in natural forests than in planted forests. The difference is due primarily to the larger carbon density in the standing trees in natural forests compared to planted forests (at an average age of 50.6 and 15.7 years, respectively).

Context

Afforestation and reforestation programs might have noticeable effect on carbon stock. An integrated assessment of the forest carbon density in mountain regions is vital to evaluate the contribution of planted forests to carbon sequestration.

Aims

We compared the carbon densities and carbon stocks between natural and planted forests in the Lüliang Mountains region where large-scale afforestation and reforestation programs have been implemented. The introduced peashrubs (Caragana spp.), poplars (Populus spp.), black locust (Robinia pseudoacacia), and native Chinese pine (Pinus tabulaeformis) were the four most common species in planted forests. In contrast, the deciduous oaks (Quercus spp.), Asia white birch (Betula platyphylla), wild poplar (Populus davidiana), and Chinese pine (Pinus tabulaeformis) dominated in natural forests.

Methods

Based on the forest inventory data of 3768 sample plots, we estimated the values of carbon densities and carbon stocks of natural and planted forests, and analyzed the spatial patterns of carbon densities and the effects of various factors on carbon densities using semivariogram analysis and nested analysis of variance (nested ANOVA), respectively.

Results

The carbon density was 123.7 and 119.7 Mg ha?1 for natural and planted forests respectively. Natural and planted forests accounted for 54.8% and 45.2% of the total carbon stock over the whole region, respectively. The biomass carbon density (the above- and belowground biomass plus dead wood and litter biomass carbon density) was greater in natural forests than in planted forests (22.5 versus 13.2 Mg ha?1). The higher (lower) spatial carbon density variability of natural (planted) forests was featured with a much smaller (larger) range value of 32.7 km (102.0 km) within which a strong (moderate) spatial autocorrelation could be observed. Stand age, stand density, annual mean temperature, and annual precipitation had statistically significant effects on the carbon density of all forests in the region.

Conclusion

No significant difference was detected in the carbon densities between natural and planted forests, and planted forests have made a substantial contribution to the total carbon stock of the region due to the implementation of large-scale afforestation and reforestation programs. The spatial patterns of carbon densities were clearly different between natural and planted forests. Stand age, stand density, temperature, and precipitation were important factors influencing forest carbon density over the mountain region.
  相似文献   

15.
Most Eucalyptus plantations are intensively managed as short-rotation plantations and carbon (C) storage in plants and soils in stands older than 10 years is not well understood. We examined the changes in plant biomass C and soil organic C (SOC) storage across a chronosequence of E. urophylla × E. grandis forests (4-, 7-, 10-, 13-, and 21-year-old) in subtropical China. Biomass C stock significantly increased with stand age. SOC storage increased initially after afforestation, peaking in 10-year-old stands, and declined gradually. Ecosystem C pools in the five development stages were 111.76, 167.66, 234.04, 281.00, and 299.29 Mg ha?1, respectively. Trees and soils were the dominant C pools across all stand ages with the contribution of tree biomass C storage significantly increasing and SOC storage decreasing with age. Eucalyptus plantations are still in vigorous growth phase and have great potential for C sequestration at the end of the current rotation length (within 7 years). Considering the sharp decrease of annual biomass C increment rate and the gradual loss of SOC storage in stands older than 13 years, we recommend the optimal length for one full Eucalyptus plantation cycle should be 12–15 years in subtropical China to maximize land-use value and carbon sink value.  相似文献   

16.
Montado decline has been reported since the end of the nineteenth century in southern Portugal and increased markedly during the 1980s. Consensual reports in the literature suggest that this decline is due to a number of factors, such as environmental constraints, forest diseases, inappropriate management, and socioeconomic issues. An assessment on the pattern of montado distribution was conducted to reveal how the extent of land management, environmental variables, and spatial factors contributed to montado area loss in southern Portugal from 1990 to 2006. A total of 14 independent variables, presumably related to montado loss, were grouped into three sets: environmental variables, land management variables, and spatial variables. From 1990 to 2006, approximately 90,054 ha disappeared in the montado area, with an estimated annual regression rate of 0.14 % year?1. Variation partitioning showed that the land management model accounted for the highest percentage of explained variance (51.8 %), followed by spatial factors (44.6 %) and environmental factors (35.5 %). These results indicate that most variance in the large-scale distribution of recent montado loss is due to land management, either alone or in combination with environmental and spatial factors. The full GAM model showed that different livestock grazing is one of the most important variables affecting montado loss. This suggests that optimum carrying capacity should decrease to 0.18–0.60 LU ha?1 for livestock grazing in montado under current ecological conditions in southern Portugal. This study also showed that land abandonment, wildfire, and agricultural practices (to promote pastures, crops or fallow lands) were three significant variables influencing montado loss.  相似文献   

17.
Few studies have analyzed how tree species within a mixed natural forest affect the dynamics of soil chemical properties and soil biological activity. This study examines seasonal changes in earthworm populations and microbial respiration under several forest species (Carpinus betulus, Ulmus minor, Pterocarya fraxinifolia, Alnus glutinosa, Populus caspica and Quercus castaneifolia) in a temperate mixed forest situated in northern Iran. Soil samplings were taken under six individual tree species (n = 5) in April, June, August and October (a total of 30 trees each month) to examine seasonal variability in soil chemical properties and soil biological activity. Earthworm density/biomass varied seasonally but not significantly between tree species. Maximum values were found in spring (10.04 m?2/16.06 mg m?2) and autumn (9.7 m?2/16.98 mg m?2) and minimum in the summer (0.43 m?2/1.26 mg m?2). Soil microbial respiration did not differ between tree species and showed similar temporal trends in all soils under different tree species. In contrast to earthworm activity, maximum microbial activity was measured in summer (0.44 mg CO2–C g soil?1 day?1) and minimum in winter (0.24 mg CO2–C g soil?1 day?1). This study shows that although tree species affected soil chemical properties (pH, organic C, total N content of mineral soils), earthworm density/biomass and microbial respiration are not affected by tree species but are controlled by tree activity and climate with strong seasonal dynamics in this temperate forest.  相似文献   

18.
Although agrosystems are recognized for their socio-economic value, few works have been conducted to assign its sequestration potential and ecological services. Accordingly, this study aimed to evaluate the ecological services of the eucalyptus stands in order to permit to small producers the access in carbon credit market. Three stands were selected according to age. Data were compared to that of a savannah (control). In total, 12,817 individuals belonging to 30 families, 53 genera and 70 species were identified in the plantations against 7107 individuals belonging to 24 families, 36 genera and 42 species in the savannah. Gmelina, Annona, Hymenocardia, Allophyllus, Daniellia, Terminalia and Piliostigma were the most represented genera. There was no significant difference between Savannah and plantations in terms of diversity (p > 0.05). The largest stock of carbon was found in oldest stands (108.51 ± 26.46 t C/ha) against 13.62 ± 3.03 t C/ha in Savannah. Eucalyptus saligna stored 39.66 t C/ha (4 t C ha?1year?1) in young stands; 57.28 t C/ha (6 t C ha?1year?1) in medium stands and 85.46 t C/ha (9 t C ha?1year?1) in old stands. The sequestration potential was higher in eucalyptus stands (398.25 t CO2eq/ha) than savannah (50.05 t CO2eq/ha). In total 956.82 t CO2eq/ha were sequestered for an economic value of $9568.45/ha against 50.05 t CO2eq/ha corresponding to $500.56/ha in Savannah. Eucalyptus stands are carbon sinks and could be an opportunity for financial benefits in the event of payment for environmental services in the context of the CDM process.  相似文献   

19.
Volatile organic compounds (VOCs) released from Chamaecyparis formosensis, Cryptomeria japonica, Cunninghamia lanceolata, Chamaecyparis obtusa var. formosana, and Taiwania cryptomerioides five major building and interior decoration timbers and their essential oil components were analyzed using GC–MS and TD/GC–MS/FID. Results showed that C. obtusa var. formosana had the highest yield of essential oil (3.42%), followed by C. formosensis (3.14%), while C. japonica had the lowest yield (0.95%). Moreover, oxygenated sesquiterpene was the highest relative content in all five essential oils and their main constituents were trans-myrtanol (18.04%), 1-epi-cubenol (15.99%), cedrol (62.26%), α-cadinol (26.42%), and α-cadinol (27.98%), respectively. In terms of emission quantity of top VOC, the results showed the decreasing order of C. formosensis (myrtenal, 74.21 mg/m2)?>?T. cryptomerioides (thujopsene, 12.00 mg/m2)?>?C. lanceolata (α-cedrene, 10.27 mg/m2)?>?C. obtusa var. formosana (α-pinene, 8.05 mg/m2)?>?C. japonica (α-cedrene, 4.25 mg/m2). C. formosensis had a greater amount of VOCs emitted and hence gave off more fragrance than C. obtusa var. formosana initially. However, after indoor exposure of 24 weeks, the VOC emission quantity of C. obtusa var. formosana exceeded that of C. formosensis. α-Cedrene and thujopsene were the top two major VOCs of both C. lanceolata and T. cryptomerioides. However, they both showed a trend of decrease in emission with prolonged exposure. All five plantation timbers showed good antifungal, antimicrobial, antibacterial, and antitermitic properties, making them ideal materials for interior decoration. Not only do they have strong bioactivities, they can also provide a fragrant and healthy living environment.  相似文献   

20.
Northern hardwood stands, notably those with American beech (Fagus grandifolia Ehrh), sugar maple (Acer saccharum Marsh.), and yellow birch (Betula alleghaniensis Britton), are abundant across the forested landscapes of northeastern USA and southeastern Canada. Recent studies have reported an increasing dominance of American beech in the understory and midstory of these forests. Beech is a commercially less desirable tree species due to its association with beech-bark disease, and because it commonly interferes with the regeneration of other more desirable tree species. We examined hardwood regeneration characteristics nine years after application of a 3 × 4 factorial combination of glyphosate herbicide (0.56, 1.12, and 1.68 kg ha?1) and surfactant concentrations (0.0, 0.25, 0.5, and 1.0% v v?1) to release sugar maple regeneration from beech-dominated understories using three stands that received shelterwood seed cutting in central Maine. Measurements nine years after treatment showed that glyphosate rate increased both absolute (AD) and relative density (RD) of sugar maple regeneration, but not its height (HT). In contrast, beech AD, RD, and HT were all significantly reduced with increasing glyphosate rate. Post-release browsing by ungulates and a high residual overstory basal area resulted in reduced sugar maple HT. Our results indicated that glyphosate herbicide applied in stands that have been recently shelterwood seed cut can significantly increase the abundance of sugar maple regeneration. However, subsequent browsing damage combined with the negative influence of the residual overstory cover can limit the longer-term benefit of understory herbicide treatments. Subsequent removal of the overstory and browsing-control measures may be needed to promote sugar maple regeneration over beech in similar northern hardwood stands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号