首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Summary Various wild relatives of pigeonpea,Cajanus cajan, namely some species ofAtylosia andRhynchosia, possess desirable characteristics that could be utilized for effecting genetic improvement of this crop. In total 73 cross combinations among two cultivars ofC. cajan and one accession each of eightAtylosia species and one ofRhynchosia were attempted. Twelve hybrids were obtained. Seven of these were analysed for F1 fertility and their utility for agronomic improvement of theC. cajan. Fertility behaviour of the different F1 hybrids varied and indicated that potential of gene transfer between the two genera,Atylosia andCajanus, was as good as within the genusAtylosia. From F2 and F3 families ofC. cajan × A. scarabaeoides andC. cajan × A. albicans, plants were selected with greater physiological efficiency and agronomic superiority. The prospects of transferring pod borer resistance and higher seed protein content from someAtylosia species to pigeonpea are discussed.  相似文献   

2.
The genetic divergence among 34 genotypes belonging to 12 species of genus Cajanus were carried out using plant pest interaction and DNA marker analysis. Principal component analysis based on average percentage of pod damage caused by pod borer, plume moth, and blue butterfly in the field conditions, and growth of their larva and pupa on an artificial diet in vitro dispersed these genotypes into four coordinates evincing high genetic divergence as expected. DNA marker analysis using 11 pairs of SSR and nine ISSR primers showed higher polymorphism at the species level, and these primers exhibited variation with regard to average band informativeness, resolving power, and PIC value. No single primer was able to distinguish between all the 34 genotypes of Cajanus but nine species specific amplified fragments were generated by five ISSR primers. The pairwise Jaccard’s similarity coefficient and Nei’s genetic distance values revealed a higher level of inter-specific genetic variation in the genus Cajanus. The clustering of genotypes based on Jaccard’s similarity coefficient vis-a-vis Nei’s genetic distance agreed with the sectional classification of the genus Cajanus. Seven cultivars of C. cajan and the genotypes of their wild progenitor C. cajanifolius remained in one cluster, whereas accessions of C. platycarpus and C. scarabaeoides were out grouped. The rest of the genotypes belonging to nine species of Cajanus formed another cluster. The principal coordinate analysis also supported this clustering pattern. Moreover, these findings have good many implications for future breeding endeavors aimed at the introgression of pod borer resistance alleles.  相似文献   

3.
G. Ladizinsky  A. Hamel 《Euphytica》1980,29(2):313-317
Summary The seed protein profile of pigeon pea (Cajanus cajan) appeared to be highly stable. The standard profile of this cultigen was found in 86 of the 90 accessions examined. Each of the Atylosia species, A. lineata, A. platycarpa, A. cajanifolia and A. scarabaeoides has its own profile but each band of the Atylosia species had a homologue in the standard profile of Cajanus or in one of its variants. This was taken as an indication for the polyphyletic origin of Cajanus from several Atylosia species. The appearance of specific Atylosia bands in some of the electrophoretic variants of Cajanus suggests that gene flow is still effective between pigeon pea and various Atylosia species. The poor solubility of the Atylosia seed protein in comparison to Cajanus indicates that domestication of Cajanus was coupled with increased solubility and perhaps a better nutritional value of this pulse as well.  相似文献   

4.
Summary Cajanus platycarpus, an incompatible wild species from the tertiary gene pool of pigeonpea (C. cajan (L.) Millspaugh), has many desirable characteristics for the improvement of cultivated varieties. To necessitate such transfers, embryo rescue techniques were used to obtain F1 hybrids. The F1 hybrids were treated with colchicine to obtain tetraploid hybrids, that were selfed to obtain F2, F3 and F4 progenies. All of the hybrids and subsequent progenies had an intermediate morphology between the two parents. Backcrossing of the tetraploid hybrids with cultivated pigeonpea was not possible given embryo abortion, with smaller aborted embryos than those obtained in the F0 parental cross.As a route of introgression, diploid F1 hybrids were backcrossed with cultivated pigeonpea and BC1 progeny obtained by in vitro culture of aborting embryos. BC2 plants were obtained by normal, mature seed germination. Although embryo rescue techniques had to be used to obtain F1 and BC1 plants, it was possible to produce BC2 and subsequent generations through direct mature seed. Every backcross to cultivated pigeonpea increased pollen fertility and the formation of mature seeds.Special project assistant till December, 2003.  相似文献   

5.
Summary Atylosia scarabaeoides (L.) Benth., a wild relative of pigeonpea, possesses several useful genes which can be utilized for pigeonpea improvement. In the present study, 33 accessions of A. scarabaeoides were evaluated at ICRISAT Center during the 1987 rainy season for variation in some useful traits to identify parents for inter-generic hybridization. A large variation was observed for leaf components, seed size, pod length, seeds/pod, days to flowering, seed protein, sulphur amino acids, resistance to cyst nematode, phytophthora blight, sterility mosaic, fusarium wilt, pod borer, pod fly, and pod wasp. Only four accessions were found to have more than 28% protein content. Methionine and cystine contents were marginally higher than in pigeonpea but the variation was not large enough to utilize them in the breeding program. In A. scarabaeoides. accessions resistant to fusarium wilt, phytophthora blight, sterility mosaic, and cyst nematode were detected. Compared to pigeonpea, the A. scarabaeoides accessions were less susceptible to lepidopteran borer and were immune to pod fly damage. Accessions ICPW 89 and ICPW 111 in short- (100–120 days), and ICPW 94 and ICPW 118 in medium-duration (140–180 days) were identified as potential parents for use in inter-generic hybridization.ICRISAT Journal Article No. 967  相似文献   

6.
The legume pod borer, Helicoverpa armigera, is one of the most devastating pests of pigeonpea. High levels of resistance to pod borer have been reported in the wild relative of pigeonpea, Cajanus scarabaeoides. Trichomes (their type, orientation, density and length) and their exudates on pod wall surface play an important role in the ovipositional behavior and host selection process of insect herbivores. They have been widely exploited as an insect defense mechanism in number of crops. In the present investigation, inheritance of resistance to pod borer and different types of trichomes (A, B, C and D) on the pod wall surface in the parents (C. cajan and C. scarabaeoides) and their F1, F2, BC1 (C. cajan × F1), and F3 generations has been studied. Trichomes of the wild parents (high density of the non-glandular trichomes C and D, and glandular trichome B and low density of glandular trichome A) were dominant over the trichome features of C. cajan. A single dominant gene as indicated by the segregation patterns individually will govern each trait in the F2 and backcross generation. Segregation ratio of 3 (resistant): 1 (susceptible) for resistance to pod borer in the F2 generation under field conditions was corroborated with a ratio of 1:1 in the backcross generation, and the ratio of 1 non-segregating (resistant): 2 segregating (3 resistant: 1 susceptible): 1 non-segregating (susceptible) in F3 generation. Similar results were obtained for pod borer resistance under no-choice conditions. Resistance to pod borer and trichomes associated with it (low density of type A trichome and high density of type C) are governed individually by a dominant allele of a single gene in C. scarabaeoides. Following backcrossing, these traits can be transferred from C. scarabaeoides into the cultivated background.  相似文献   

7.
Summary Esterase isozymes were studied in seed extracts of Cajanus cajan and six Atylosia species by polyacrylamide gel electrophoresis and isoelectrofocusing. The isozyme patterns were stable and accession specific. Within the accessions of the Atylosia species, A. albicans and A. scarabaeoides showed three common bands indicating that they are more closely related to each other than to the other species. Of the accessions of Atylosia only A. cajanifolia shares the esterase isozyme of C. cajan and hence seems to be the closest wild relative of C. cajan.  相似文献   

8.
Summary Crossability of two cultivars of Cajanus cajan, eight species of Atylosia and one of Rhynchosia was investigated. Of the 73 combinations attempted, success was achieved in 12 cases. C. cajan crossed successfully with A. albicans, A. cajanifolia, A. lineata, A. scarabaeoides, and A. trinervia. Within the genus Atylosia, A. lineata crossed with A. albicans and A. scarabaeoides, and A. scarabaeoides with A. sericea. Three species A. platycarpa, A. volubilis and R. rothii did not cross with any other one. In most of the unsuccessful combinations, although the pollen germinated on the receiving stigmas, the pollen tube growth was inhibited inside the stigma or in the stylar tissue.  相似文献   

9.
Randomly amplified polymorphic DNA (RAPD) markers were used for the identification of two pigeonpea cytoplasmic genic male sterile (CMS) lines derived from crosses between the wild (Cajanus scarabaeoides & C. sericeus) and the cultivated species of Cajanus cajan. The male sterile (A) line and its maintainer (B) line could be easily differentiated with certain random primers. The two male sterile (288 A and 67 A)systems are based on C. scarabaeoidesand the other is based on C. sericeus could also be differentiated. Amplification product of 600bp amplified by primer OPC-11 was observed in both the cytoplasmic male sterile lines (288 A and 67A), which was absent in the maintainer lines (288 B and 67 B) and the putative R-line (TRR 5 and TRR 6). CMS lines, putative R lines, other cultivars and wild species under the study could be easily distinguished with the help of different primers. Dendrogram constructed based on the similarity index showed that considerable genetic variation exist sbetween CMS lines, two putative R line and wild species studied. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Summary Atylosia scarabaeoides Benth. and A. platycarpa Benth., close relatives of the species Cajanus cajan (L.) Millsp., were screened for photoperiodic response. Four photoperiods ranging from 12 h 45 min to 19 h were studied in three environments. A. scarabaeoides flowered freely only in the first photoperiod. A. platycarpa not only flowered early (39 to 63 days after planting) in all four photoperiods, but also exhibited a relatively constant vegetative phase up to 16 h of illumination. Cajanus cajan, in which most cultivars-if not all-exhibit a response to photoperiod, was successfully hybridized with the two Atylosia species. It is suggested that genes for earliness and insensitivity to day-length could be transferred from A. platycarpa to C. cajan.  相似文献   

11.
D. A. Odeny    Jayashree  B.  M. Ferguson    D. Hoisington    J. Crouch    C. Gebhardt 《Plant Breeding》2007,126(2):130-136
Pigeonpea is a major legume of the semi‐arid tropics that has been neglected in terms of molecular breeding. The objectives of this study were to develop microsatellite markers and evaluate their potential for use in pigeonpea genetics and breeding. Two hundred and eight microsatellite loci were isolated by screening a non‐enriched partial genomic library. Primers were designed for 39 microsatellite loci, 20 of which amplified polymerase chain reaction products of the expected size. Nineteen of the primer pairs were polymorphic amongst 15 cultivated and nine wild pigeonpea accessions providing evidence for cross‐species transferability within the genus Cajanus. A total of 98 alleles were detected at the 19 polymorphic loci with an average of 4.9 alleles per locus. The observed heterozygosity ranged from 0.17 to 0.80 with a mean of 0.42 per locus. Less allelic variation (31 alleles) was observed within the cultivated species than across the wild species (92 alleles). The diversity analysis readily distinguished all wild relatives from each other and from the cultivated germplasm. Development of more microsatellites is recommended for future genomic studies in pigeonpea.  相似文献   

12.
With the exception of Cajanus cajan (L.) Millspaugh (pigeonpea), the remaining species of genus Cajanus have not been domesticated. For millennia these taxa have persisted in natural habitats through self-sown seeds. These wild species are an asset for sustaining future pigeonpea breeding programmes since they contain certain traits (genes) that are necessary for encountering various breeding challenges related to crop improvement and adaptation. In this review we identify the key traits from wild Cajanus species, and discuss various physical and genetic constraints encountered in their utilization in introgression breeding. Some noteworthy achievements recorded from inter-specific breeding programmes in pigeonpea are also discussed. These include the development of (1) high protein (>?28%) genotypes (2) cytoplasmic nuclear male sterility systems (3) highly (>?95%) self-pollinating genotypes, and (4) resistance sources to sterility mosaic disease, nematodes, salinity, photo-insensitivity, pod borers, podfly, bruchids, and Phytophthora blight. To help pigeonpea breeders engaged in inter-specific breeding programmes, we suggest the division of the secondary gene pool germplasm into two sub-group/tiers on the basis of ease in hybridization.  相似文献   

13.
Summary Cajanus platycarpus a wild species of pigeonpea incompatible with the cultigen has many desirable characters important for the improvement of cultivated pigeonpea. In the present study, barriers to hybridization were studied and were identified as post-zygotic. Efficient embryo rescue techniques were developed. As a result, hybrids were produced. Morphological and cytological studies as well as esterase isozyme band pattern confirmed the hybrid nature of the plants. The F1 hybrids were completely pollen sterile. Meiotic studies were carried out to check for the cause of pollen sterility.Abbreviations MS Murashige & Skoog's (1962) medium - BAP 6-Benzylaminopurine - IBA Indole-3-butyric Acid - NAA Naphthaleneacetic Acid  相似文献   

14.
Total DNA from three putative cytoplasmic male sterile (CMS) progenies derived from crosses between the wild species Cajanus sericeus and the cultivated species Cajanus cajan, five C. cajan, one accession of C. sericeus and two genetic male sterile lines of pigeonpea were compared for their RFLP patterns using maize mitochondrial DNA (mtDNA) specific probes. Three putative cytoplasmic male sterile (CMS) progenies from the multiple cross genome transfer of pigeonpea lines (CMS 7–1, CMS 12–3, and CMS 33–1) showed hybridization patterns identical to that of C. sericeus when DNA was digested with EcoRI and HindIII and probed with maize mtDNA clones. The results suggested that these putative CMS progenies have the mitochondria of the female wild species parent. The hybridization patterns of the three male parental lines used in the development of the CMS progenies were similar in all the restriction enzyme-probe combinations except HindIII-atp6. The genetic male sterile lines, MS Prabhat and QMS 1 differed from each other in their hybridization pattern. The genomic DNA hybridization pattern of HindIII digested DNA from ICPL 87 differed from the other pigeonpea lines when probed with the maize mtDNA clones. The cluster analysis of the hybridization data suggested the occurrence of variation in the mitochondrial genome even among the cultivated species. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Insect-aided natural out-crossing in pigeonpea [Cajanus cajan (L.) Millsp.] is a common event. It is considered to be a prime constraint in maintaining genetic purity of cultivars and genetic stocks. On the contrary, the out-crossing has also been exploited to select high-yielding varieties from landraces. This paper, for the first time, reports natural out-crossing in four wild relatives of pigeonpea. The highest (17.1%) natural out-crossing was recorded in C. lineatus and it was comparable to the control cultivar Asha (22.2%). C. albicans and C. scarabaeoides exhibited 10.0 and 8.3% out-crossing, respectively. C. sericeus was found to have lowest (2.3%) natural out-crossing. A process of breeding a new cytoplasmic-nuclear male-sterility (CMS) system arising from a natural hybrid of C. lineatus has also been described. Once stabilized, this CMS will be used in breeding programs aimed to develop high-yielding pigeonpea hybrids.  相似文献   

16.
Twenty-eight species belonging to five genera of the sub tribe Cajaninae; viz., Cajanus(15 species), Rhynchosia (10 species), Dunbaria, Flemingia and Paracalyx were analysed for variations in four chloroplast generegions, rbcL, trnS-psbC, 16S and trnL-UAA. The four chloroplast gene regions were amplified with specific primers and subsequently digested with 15 restriction enzymes. Rhynchosia did not show any inter-specific differences in the four gene regions for any of the enzymes used. In Cajanus, the inter-specific PCR-RFLP profile of the four gene regions for all the enzymes were similar except for the Pst I digests of trnS-psbC gene region. At inter-generic level, rbcL gene region did not show polymorphism with any of the enzymes used; while in trnS-psbC gene region polymorphism was observed only with Pst I and Hae III digestions. Inter-generic PCR-RFLP of 16S did not reveal any variation. The trnL-UAA gene region had restriction site only forEcoR I in which Cajanus and Rhynchosia showed similar profiles while Dunbaria showed a different profile. The trnL-UAA gene region in Paracalyx and Flemingia did not have restriction site for this enzyme. Despite the analyses of four gene regions using 15 restriction enzymes, differentiation at genus level could not be obtained. These observations indicated limited divergence of the chloroplast genome among the four genera of the sub-tribe Cajaninae suggesting close relationships of the taxa. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Four A-genome species of the genus Arachis (A. cardenasii, A. correntina, A. duranensis, A. kempff-mercadoi), three B genomes species (A. batizocoi, A. ipaënsis and A. magna),the AABB allotetraploid A. hypogaea (cultivated peanut) and introgression lines resulting from a cross between A. hypogaea and A. cardenasii were analyzed by RFLP. The A genome species (cytologically characterized by the presence of a small chromosome pair ‘A’) were closely similar to each other and shared a large number of restriction fragments. In contrast, the B genome species differed more from one another and shared few fragments. The results of this study indicate that the absence of the small chromosome pair is not a good criterion for grouping species of section Arachis as B genome species, since their genome might be quite distinct from the B genome of A. hypogaea.The lowest genetic variation was detected within accessions of A. duranensis (17 accessions), followed by A. batizocoi (4 accessions) and A. cardenasii (9 plants of accession GKP 10017).The high level of genetic variation found in A. cardenasii might indicate that not all accessions of wild species of Arachis are autogamous, as reported for A. hypogaea.  相似文献   

18.
Spodoptera litura (Fabr.), the tobacco caterpillar, is a major defoliator on sunflower in the tropics. Genetic variability for resistance to S. litura is limited in the cultivar germplasm of sunflower. In the present investigation, 43 accessions of 17 wild Helianthus species of the annual and perennial habit groups were evaluated along with cultivated sunflower under field and no-choice conditions in the laboratory for resistance to this pest. Under field conditions, H. occidentalis and H. argophyllus were found to be immune with no leaf damage and few accessions of the species belonging to section Divaricati were found to be resistant. Laboratory bioassays against neonate, two and 4-day-old larvae confirmed resistance both in terms of high larval mortality and low larval weight gain in eight species viz., H. occidentalis, H. argophyllus, H. tuberosus, H. maximiliani, H. mollis, H. simulans, H. divaricatus and H. hirsutus. Intra-accessional variability was observed and accessions of few species showed varied reaction (resistant, partially resistant to susceptible) to the target pest. Field evaluation of 224 backcross derived inbred lines from five cross combinations involving diploid species under high natural pest incidence revealed low damage in plants derived from crosses involving H. argophyllus and H. petiolaris.  相似文献   

19.
Summary DNA restriction fragment length polymorphism (RFLP) analysis was performed on 50 wild and old cultivated sugarcane accessions. Ninety-four maize low copy nuclear DNA sequences of known chromosomal position were screened for hybridization to digested sugarcane genomic DNA blots. Seventy-five (80%) gave very strong hybridization signals and usually yielded many bands and detected profuse polymorphism. Twenty-nine probes and 36 probe/enzyme combinations were selected on the basis of the scorability of the banding profiles. A total of 1110 fragments were separately identified among the 50 genotypes. Multivariate analyses of the data allowed the separation of the three basic species, Saccharum spontaneum, S. robustum and S. officinarum, showed that S. spontaneum had structure which could be related to the geographic origin of the clones and supported current hypotheses on the origin of secondary species S. barberi and S. sinense. The use of more probes did not improve the resolution between the various species examined but identified a few key polymorphisms which were not accounted for by current phylogenetic hypotheses and can guide future analyses. RFLPs in sugarcane will be useful essentially for depicting the genomic constitution of modern varieties of interspecific origin.  相似文献   

20.
Summary The genetic variation among 23 accessions of 5 species in the subgenus Ceratotropis, genus Vigna, were investigated by random amplified polymorphic DNA (RAPD) analysis. A total of 404 fragments amplified with 24 primers were scored and analyzed by cluster analysis. The accessions used were separated into two main groups with an average of 70% differences. Within the main groups, five subgroups were recognized, which are in complete agreement with taxonomic species. Wild forms were always grouped with their most closely related cultivated forms and they showed variation in each species. The largest intraspecific variation was found in V. radiata (mungbean), in which wild forms (V. radiata var. sublobata) were highly different from each other and from cultivated forms. V. angularis (adzuki bean) showed the least variation and thus, was probably differentiated in relatively recent times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号