首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
OBJECTIVE: To evaluate the effects of three anaesthetic combinations in adult European badgers (Meles meles). STUDY DESIGN: Prospective, randomized, blinded, experimental trial. ANIMALS: Sixteen captive adult badgers. METHODS: The badgers were each anaesthetized by intramuscular injection using the three techniques assigned in random order: romifidine 0.18 mg kg(-1), ketamine 10 mg kg(-1) and butorphanol 0.1 mg kg(-1) (RKB); medetomidine 0.1 mg kg(-1), ketamine 9 mg kg(-1) and butorphanol 0.1 mg kg(-1) (MKB); and medetomidine 0.1 mg kg(-1) and ketamine 10 mg kg(-1) (MK). Initial drug doses were calculated based on a body mass of 10 kg. Additional anaesthetic requirements, time to drug effect, duration of action and recovery from anaesthesia were recorded. Heart rate and rhythm, respiratory rate and rhythm, rectal and subcutaneous microchip temperature and oxygen saturation were recorded every 5 minutes. Depth of anaesthesia was assessed using: muscle tone; palpebral and pedal reflexes; and tongue relaxation at these time points. Blood samples and a tracheal aspirate were obtained under anaesthesia. Atipamezole was administered if the badger had not recovered within 60 minutes Parametric data were analysed using anova for repeated measures, and nonparametric data using Friedman's, and Cochran's Q tests: p < 0.05 was considered significant. RESULTS: All combinations produced good or excellent muscle relaxation throughout the anaesthetic period. RKB had the shortest duration of anaesthesia (16.8 minutes compared with MKB 25.9 minutes and MK 25.5 minutes) and antagonism was not required. RKB depressed respiratory rate less than MK and MKB. There was no significant difference between techniques for heart rate and rhythm. CONCLUSIONS AND CLINICAL RELEVANCE: All combinations provided anaesthetic conditions suitable for sampling and identification procedures in adult badgers. The RKB protocol provided a significantly shorter period of anaesthesia when compared with the combinations containing medetomidine.  相似文献   

2.
We studied four different drug regimes for anaesthetic management in chinchillas and evaluated and compared their cardiovascular and respiratory effects. In this randomized, cross-over experimental study, seven adult chinchillas, five females, two males [515 +/- 70 (SD) g] were randomly assigned to one of the following groups: group 1 [midazolam, medetomidine and fentanyl (MMF), flumazenil, atipamezole and naloxone (FAN); MMF-FAN] received 1.0 mg/kg midazolam, 0.05 mg/kg medetomidine and 0.02 mg/kg fentanyl i.m., and for reversal 0.1 mg/kg flumazenil, 0.5 mg/kg atipamezole and 0.05 mg/kg naloxone s.c. after 45 min; group 2 (MMF) 1.0 mg/kg midazolam, 0.05 mg/kg medetomidine and 0.02 mg/kg fentanyl i.m.; group 3 [xylazine/ketamine (X/K)] 2.0 mg/kg xylazine and 40.0 mg/kg ketamine i.m.; and group 4 [medetomidine/ketamine (M/K)] 0.06 mg/kg medetomidine and 5.0 mg/kg ketamine i.m. Reflexes were judged to determine anaesthetic stages and planes. Anaesthesia with X/K and M/K was associated with a prolonged surgical tolerance and recovery period. By reversing MMF, recovery period was significantly shortened (5 +/- 1.3 min versus 40 +/- 10.3 min in MMF without FAN, 73 +/- 15.0 min in X/K, and 31 +/- 8.5 min in M/K). Without reversal, MMF produced anaesthesia lasting 109 +/- 16.3 min. All combinations decreased respiratory and heart rate but compared with X/K and M/K, respiratory and cardiovascular complications were less in the MMF groups. Focussing on the clinical relevance of the tested combinations, completely reversible anaesthesia showed two major advantages: anaesthesia can be antagonized in case of emergency and routinely shortens recovery. In small animals particularly these advantages lead to less complications and discomfort and thus often can be lifesaving. As all analgesic components (medetomidine and fentanyl) are reversed, postoperative analgesia should be provided before reversal of anaesthesia.  相似文献   

3.
33 ferrets (Mustela putorius furo, 11 females, 22 males, ASA I-II) were neutered in a combination anaesthesia with medetomidine, midazolam and ketamine. The animals were randomized into 3 groups. All animals received 20 microg/kg BW medetomidine and 0.5 mg/kg BW midazolam. The three groups differed regarding dosis and way of application of ketamine (IM10 = 10 mg/kg BW intramuscularly; IM07 = 7 mg/kg BW intramuscularly; SC10 = 10 mg/kg BW subcutaneously). After 30 minutes anaesthesia was partially antagonised with 100 microg/kg BW atipamezole i.m.. Sedation, muscle relaxation, analgesia, and overall anaesthetic impression were compared by a scoring protocol. Reactions to painful stimuli of clamping the spermatic cord or the ovarial ligament including the A. ovarica were judged, too. All animals lost their righting reflex and could be placed in dorsal recumbency. Induction and recovery time were significantly the shortest in study group IM10 with 1.73 +/- 0.3 and 9.73 +/- 4.6 min respectively. Recovery was significantly prolonged in group SC10 with 30.27 +/- 15.6 min. The MMK-anaesthesia with 10 mg/kg ketamine i.m. is very useful for neutering ferrets. Respiratory depression and bradycardia typically for medetomidine were seen in all three combinations, but quickly reversed after partial antagonisation. Induction and intubation, followed by inhalation anaesthesia, were possible with all three regimes.  相似文献   

4.
OBJECTIVE: To identify factors associated with sudden early recovery (SER) from anaesthesia in badgers (Meles meles). STUDY DESIGN: Experimental trial. ANIMALS: Ninety-three adult wild badgers. METHODS: Animals were randomly assigned to receive one of four anaesthetics based on medetomidine (M) ketamine (K) and butorphanol (B) combined in different ratios: (i) MKB 20:40:80 microg kg(-1); (ii) MKB 20:40:60 microg kg(-1); (iii) MKB 20:60:40 microg kg(-1); and (iv) ketamine alone 0.2 mg kg(-1). For each animal, induction time was measured and physiological variables (heart rate, respiratory rate and rectal temperature) were recorded at 5-minute intervals during anaesthesia. Cases of SER were recorded and binary logistic regression applied to identify predictive factors. RESULTS: Fourteen animals (15%) exhibited SER. Rectal temperature was the only variable that was a significant predictor of SER. Animals showing SER had significantly higher rectal temperatures which, in contrast to other cases, did not fall during the first 10 minutes of anaesthesia, which was when most SERs occurred. CONCLUSION AND CLINICAL RELEVANCE: We recommend that (i) rectal temperature is closely monitored during wild badger anaesthesia and (ii) that animals with higher than expected temperatures are treated with additional caution.  相似文献   

5.
The efficacies and ease of administration of four oral preanesthetic sedation protocols were compared in 18 adult, male rhesus macaques (Macaca mulatta) to achieve heavy sedation and alleviate anxiety, agitation, and potential trauma associated with remote anesthesia induction. The macaques, with average age and weight of 10 yr and 12.5 kg, respectively, were randomly assigned to one of four groups. Group 1 was given 10 mg/kg tiletaminezolazepam and 0.05 mg/kg medetomidine p.o., group 2 was given 1 mg/kg midazolam and 20 mg/kg ketamine p.o., group 3 was given 20 mg/kg ketamine and 0.05 mg/kg medetomidine p.o., and group 4 was given 3 mg/kg midazolam p.o. All protocols produced effects ranging from mild sedation to no response to noxious stimuli, depending on the success of administration. The mean interval to peak effect was 27-43 min in all groups. Ketamine and medetomidine provided significantly better sedation than midazolam alone; there were no other statistically significant differences among the four protocols. Oral tiletamine-zolazepam and medetomidine provided smooth, mild to moderate sedation with few side effects. The midazolam and ketamine combination resulted in severe ataxia. Orally administered ketamine and medetomidine provided smooth, easily reversible, heavy sedation leading to no response to noxious stimuli. Midazolam alone provided only mild sedation. No statistically significant differences in palatability of the four protocols were identified. Orally administered ketamine and medetomidine (group 3) provided the most consistently heavy sedation. A compounding pharmacy may be able to increase the palatability and level of acceptance of these combinations. Alternatively, oral midazolam syrup is well accepted by some animals and provides a mild sedative and calming effect, which may decrease stress associated with the induction of anesthesia via darting, pole syringes, etc.  相似文献   

6.
OBJECTIVE: To determine sedative and cardiorespiratory effects of i.m. administration of medetomidine alone and in combination with butorphanol or ketamine in dogs. DESIGN: Randomized, crossover study. ANIMALS: 6 healthy adult dogs. PROCEDURES: Dogs were given medetomidine alone (30 micrograms/kg [13.6 micrograms/lb] of body weight, i.m.), a combination of medetomidine (30 micrograms/kg, i.m.) and butorphanol (0.2 mg/kg [0.09 mg/lb], i.m.), or a combination of medetomidine (30 micrograms/kg, i.m.) and ketamine (3 mg/kg [1.36 mg/lb], i.m.). Treatments were administered in random order with a minimum of 1 week between treatments. Glycopyrrolate was given at the same time. Atipamezole (150 micrograms/kg [68 micrograms/lb], i.m.) was given 40 minutes after administration of medetomidine. RESULTS: All but 1 dog (given medetomidine alone) assumed lateral recumbency within 6 minutes after drug administration. Endotracheal intubation was significantly more difficult when dogs were given medetomidine alone than when given medetomidine and butorphanol. At all evaluation times, percentages of dogs with positive responses to tail clamping or to needle pricks in the cervical region, shoulder region, abdominal region, or hindquarters were not significantly different among drug treatments. The Paco2 was significantly higher and the arterial pH and Pao2 were significantly lower when dogs were given medetomidine and butorphanol or medetomidine and ketamine than when they were given medetomidine alone. Recovery quality following atipamezole administration was unsatisfactory in 1 dog when given medetomidine and ketamine. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggested that a combination of medetomidine with butorphanol or ketamine resulted in more reliable and uniform sedation in dogs than did medetomidine alone.  相似文献   

7.
ObjectiveTo evaluate the cardiorespiratory effects and plasma concentrations of medetomidine-midazolam-ketamine (MMK) combinations administered by intramuscular (IM) or subcutaneous (SC) injection in sable ferrets (Mustela putorius furo).Study designProspective randomized experimental study.AnimalsEighteen adult ferrets: weight median 1.19 (range 0.81–1.60) kg.MethodsAnimals were allocated to one of three groups: group IM07 received 20 μg kg?1 medetomidine, 0.5 mg kg?1 midazolam and 7 mg kg?1 ketamine IM; group IM10 20 μg kg?1 medetomidine, 0.5 mg kg?1 midazolam and 10 mg kg?1 ketamine IM; and group SC10 20 μg kg?1 medetomidine, 0.5 mg kg?1 midazolam and 10 mg kg?1 ketamine SC. Following instrumentation, cardiorespiratory parameters and plasma drug concentrations were measured every 5 minutes (T5–T30) for 30 minutes Ferrets were then euthanased. Data were analysed using anova for repeated measures. p < 0.05 was considered significant.ResultsResults are mean ± SD. Induction of anaesthesia (minutes) in IM07 and IM10 [2 (1)] was significantly faster than in SC10 [5 (2)]. All groups demonstrated the following: results given as groups IM07, IM10 and SC10 respectively. Mean arterial blood pressures (mmHg) were initially high [186 (13); 174 (33) and 174 (9) at T5] but decreased steadily. Pulse rates were initially 202 (20), 213 (17) and 207 (33) beats minute?1, decreasing with time. PaO2 (mmHg) was low [54.0 (8), 47.7 (10) and 38.5 (1)] at T5, although in groups IM07 and IM10 it increased over time. Plasma concentrations of all drugs were highest at T5 (36, 794 and 8264 nmol L?1 for medetomidine, midazolam and ketamine, respectively) and decreased thereafter: for both midazolam and ketamine, concentrations in IM07 and IM10 were higher than SC10.Conclusions and clinical relevanceMMK combinations containing either 7 or 10 mg kg?1 ketamine and given IM are suitable combinations for anaesthetising ferrets, although the observed degree of hypoxaemia indicates that oxygen administration is vital.  相似文献   

8.
OBJECTIVE: To examine stress-related neurohormonal and metabolic effects of butorphanol, fentanyl, and ketamine administration alone and in combination with medetomidine in dogs. ANIMALS: 10 Beagles. PROCEDURE: 5 dogs received either butorphanol (0.1 mg/kg), fentanyl (0.01 mg/kg), or ketamine (10 mg/kg) IM in a crossover design. Another 5 dogs received either medetomidine (0.02 mg/kg) and butorphanol (0.1 mg/kg), medetomidine and fentanyl (0.01 mg/kg), medetomidine and ketamine (10 mg/kg), or medetomidine and saline (0.9% NaCI) solution (0.1 mL/kg) in a similar design. Blood samples were obtained for 6 hours following the treatments. Norepinephrine, epinephrine, cortisol, glucose, insulin, and nonesterified fatty acid concentrations were determined in plasma. RESULTS: Administration of butorphanol, fentanyl, and ketamine caused neurohormonal and metabolic changes similar to stress, including increased plasma epinephrine, cortisol, and glucose concentrations. The hyperglycemic effect of butorphanol was not significant. Ketamine caused increased norepinephrine concentration. Epinephrine concentration was correlated with glucose concentration in the butorphanol and fentanyl groups but not in the ketamine groups, suggesting an important difference between the mechanisms of the hyperglycemic effects of these drugs. Medetomidine prevented most of these effects except for hyperglycemia. Plasma glucose concentrations were lower in the combined sedation groups than in the medetomidine-saline solution group. CONCLUSIONS AND CLINICAL RELEVANCE: Opioids or ketamine used alone may cause changes in stress-related biochemical variables in plasma. Medetomidine prevented or blunted these changes. Combined sedation provided better hormonal and metabolic stability than either component alone. We recommend using medetomidine-butorphanol or medetomidine-ketamine combinations for sedation or anesthesia of systemically healthy dogs.  相似文献   

9.
OBJECTIVE: To evaluate the effectiveness of four ketamine-based anaesthetics in badgers using a quantitative anaesthesia assessment technique. STUDY DESIGN: Prospective randomized 'blinded' experimental trial. METHODS: The quality of induction, of anaesthesia (at 5-minute intervals) and of recovery were assessed in 93 badgers, given either one of three ketamine (K)-medetomidine (M)-butorphanol (B) combinations: group A - M K B at 20/40/80 microg kg(-1); group B - M K B at 20/40/60 microg kg(-1); and group C - M K B at 20/60/40 microg kg(-1), or ketamine (K) alone at 2 mg kg(-1) (group D). The assessor was ignorant of the combination administered. Physiological variables (heart and respiratory rates and rectal temperature) were measured at 5-minute intervals during anaesthesia. Gingival mucus membrane colour was also recorded. RESULTS: Induction to anaesthesia was most rapid with ketamine (2 mg kg(-1)) although induction quality did not differ between techniques. Ketamine used alone gave the poorest score for anaesthesia quality. Heart rate (HR) and scores for gingival mucus membrane colour were higher in animals anaesthetized with ketamine alone. Rectal temperature did not differ significantly between the techniques at any time during anaesthesia. Ketamine used alone produced the poorest quality of recovery. CONCLUSION AND CLINICAL RELEVANCE: The M-K-B combinations investigated overcame several side effects associated with ketamine anaesthesia, but at the expense of more variable induction times, lower HRs, and poorer mucus membrane coloration.  相似文献   

10.
OBJECTIVE: To compare the effects of two balanced anaesthetic protocols on end-tidal isoflurane (Fe'ISO), cardiopulmonary performance and quality of recovery in horses. DESIGN: Prospective blinded randomized clinical study. ANIMALS: Sixty-nine client-owned horses, American Society of Anesthesiologists category I and II, undergoing elective surgery. METHODS: The horses were premedicated with acepromazine (0.03 mg kg(-1)) IM 30-60 minutes before induction of anaesthesia and were randomly assigned to one of two treatments: in group L (37 horses) xylazine (1 mg kg(-1)) and in group M (31 horses) medetomidine (7 microg kg(-1)) was administered IV for sedation. Anaesthesia was induced 5 minutes later with ketamine (2.2 mg kg(-1)) and diazepam (0.02 mg kg(-1)) IV and maintained with isoflurane in oxygen/air (initial FIO2 0.40-0.50) and a constant rate infusion (CRI) of either lidocaine (2 mg kg(-1)/15 minutes loading dose followed by 50 microg kg(-1) minute(-1)) (group L) or medetomidine (3.5 microg kg(-1) hour(-1)) (group M). If horses showed movement or nystagmus, additional thiopental or ketamine was administered. Heart rate, mean arterial pressure (MAP), Fe'ISO and arterial blood gases were measured. Cardiac output was measured with the lithium dilution method in 10 (group L) and 11 (group M) horses every 45 minutes. Recovery was scored. RESULTS: Heart rate and the cardiac index (CI) were significantly higher in group L with changes over time. In group M, MAP was significantly higher during the first 50 minutes. Group L needed more additional ketamine and thiopental to maintain a surgical plane of anaesthesia and Fe'ISO was significantly higher from 70 minutes. Recovery was longer in group M and of better quality. The significance level was set at p < 0.05. CONCLUSIONS AND CLINICAL RELEVANCE: In group M, maintenance of stable anaesthetic depth was easier and lower Fe'ISO was required to maintain a surgical plane of anaesthesia. Recoveries were longer but of better quality. The CI was higher in group L but cardiovascular function was generally well maintained in both groups.  相似文献   

11.
OBJECTIVE: To study the effects of ketamine and two doses of medetomidine administered by two routes of injection in a genetically diverse population of rabbits. STUDY DESIGN: Prospective, randomized, clinical trial. ANIMALS: One hundred and five domestic rabbits of mixed breed, sex and age. MATERIALS AND METHODS: Rabbits undergoing orchiectomy or ovariohysterectomy received ketamine (15 mg kg(-1)) combined with medetomidine at 0.25 or 0.5 mg kg(-1), by subcutaneous (SC) or intramuscular (IM) injection. Anaesthesia was supplemented with 1.5-2% isoflurane when signs of regular jaw movements and/or slight limb twitching indicated inadequate anaesthesia. Heart and respiratory rate, blood oxygen saturation, end-tidal carbon dioxide concentration and rectal temperature were monitored at several time points. Duration of surgical anaesthesia and anaesthesia time were measured. At completion of surgery, atipamezole (1.0 or 0.5 mg kg(-1), IM or SC) was administered. STATISTICAL ANALYSES: MANOVA was used to compare variables over time between males and females, anaesthetic doses and routes of drug administration. RESULTS: All reflexes were lost significantly more rapidly after IM drug administration (p < 0.05). The times (in minutes) from drug injection to loss of reflexes for the respective groups were: righting reflex: 6.3 (15.0 + 0.25, SC), 5.5 (15.0 + 0.5, SC), 2.9 (15.0 + 0.25, IM) and 2.3 (15.0 + 0.5, IM); ear pinch: 9.2, 8.5, 4.8, 3.6; pedal withdrawal: 12.8, 10.4, 6.6, 5.2. Heart and respiratory rates during surgery did not differ between groups, however the highest end-tidal CO(2) concentration during surgery was significantly affected by dose, with the highest concentration occurring in group 15.0 + 0.5 IM. The number of animals requiring isoflurane tended to decrease with increasing dose of anaesthetic and significantly more females required supplementation than males (p < 0.05). Recovery from anaesthesia (return of righting reflex) was not significantly different between dose groups (p > 0.1) but was more rapid in animals given IM atipamezole (13.6 +/- 13 versus 21 +/- 17, p = 0.037). No anaesthetic-related mortality occurred and all but three animals recovered uneventfully. Five animals were killed whilst under anaesthesia because of unrelated disease. CONCLUSION AND CLINICAL RELEVANCE: Ketamine-medetomidine combinations reliably produced surgical anaesthesia in domestic rabbits that could easily be deepened for brief periods with low concentrations of isoflurane. Subcutaneous administration was better tolerated, but the speed of induction was slower compared with IM injection. Atipamezole was an effective antagonist and produced most rapid effects when administered IM.  相似文献   

12.
OBJECTIVE: To determine anesthetic effects of ketamine and medetomidine in bonitos and mackerels and whether anesthesia could be reversed with atipamezole. DESIGN: Clinical trial. ANIMALS: 43 bonitos (Sarda chiliensis) and 47 Pacific mackerels (Scomber japonica). PROCEDURE: 28 bonitos were given doses of ketamine ranging from 1 to 8 mg/kg (0.5 to 3.6 mg/lb), i.m., and doses of medetomidine ranging from 0.2 to 1.6 mg/kg (0.1 to 0.7 mg/lb), i.m. (ratio of ketamine to medetomidine, 2.5:1 to 20:1). Doses of atipamezole equal to 1 or 5 times the dose of medetomidine were used. The remaining 15 bonitos were used to determine the anesthetic effects of ketamine at a dose of 4 mg/kg (1.8 mg/lb) and medetomidine at a dose of 0.4 mg/kg (0.2 mg/lb). The mackerels were given ketamine at doses ranging from 11 to 533 mg/kg (5 to 242 mg/lb) and medetomidine at doses ranging from 0.3 to 9.1 mg/kg (0.1 to 4.1 mg/lb; ratio of ketamine to medetomidine, 3:1 to 800:1). Doses of atipamezole equal to 5 times the dose of medetomidine were used. RESULTS: I.m. administration of ketamine at a dose of 4 mg/kg and medetomidine at a dose of 0.4 mg/kg in bonitos and ketamine at a dose of 53 to 228 mg/kg (24 to 104 mg/lb) and medetomidine at a dose of 0.6 to 4.2 mg/kg (0.3 to 1.9 mg/lb) in mackerels was safe and effective. For both species, administration of atipamezole at a dose 5 times the dose of medetomidine reversed the anesthetic effects. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that a combination of ketamine and medetomidine can safely be used for anesthesia of bonitos and mackerels and that anesthetic effects can be reversed with atipamezole.  相似文献   

13.
The refinement of anaesthetic regimes is central to improving the welfare of captured wildlife. The Eurasian badger (Meles meles) has been the subject of an intensive long-term ecological and epidemiological study at Woodchester Park, Gloucestershire, England. During routine trapping operations (June 21st, 2000-January 23rd, 2001) an experimental trial was conducted on 89 badgers to compare the physiological effects of anaesthesia using ketamine hydrochloride alone, and in conjunction with medetomidine hydrochloride and butorphanol tartrate. The mixture induced a significantly longer period of anaesthesia, and either substantially reduced or eliminated the adverse effects associated with ketamine anaesthesia (e.g., excessive salivation, bouts of sneezing, rough recoveries, and muscle rigidity). In a sub-sample of badgers given the mixture, anaesthesia was reversed using atipamezole hydrochloride. Under ketamine anaesthesia, heart rates were initially significantly higher and respiration rates were consistently higher, than in badgers given the mixture. In all badgers heart rates declined and respiration rates increased during anaesthesia, but the rate of change was greatest in animals given only ketamine. Overall, the mixture provided a more balanced anaesthesia characterised by muscle relaxation and complete unconsciousness.  相似文献   

14.
To develop an alternative anaesthetic regimen for cats with cardiomyopathy, the cardiopulmonary effects of three different premedication-induction protocols, followed by one hour maintenance with isoflurane in oxygen: air were evaluated in six cats. Group I: acepromazine (10 microg/kg) + buprenorphine (10 microg/kg) IM, etomidate (1-2 mg/kg) IV induction. Group II: midazolam (1 mg/kg) + ketamine (10 mg/kg) IM induction. Group III: medetomidine (1.5 mg/m2 body surface) IM, propofol (1-2 mg/kg) IV induction. Heart rate, arterial blood pressure, arterial blood gases, respiration rate, and temperature were recorded for the duration of the experiment. In group I the sedative effect after premedication was limited. In the other groups the level of sedation was sufficient. In all groups premedication resulted in a reduced blood pressure which decreased further immediately following induction. The reduction in mean arterial pressure (MAP) reached statistical significance in group I (142+/-22 to 81+/-14 mmHg) and group II (153+/-28 to 98+/-20 mmHg) but not in group III (165+/-24 to 134+/-29 mmHg). Despite the decrease in blood pressure, MAP was judged to have remained within an acceptable range in all groups. During maintenance of anaesthesia, heart rate decreased significantly in group III (from 165+/-24 to 125+/-10 b.p.m. at t=80 min). During anaesthesia the PCO2 and PO2 values increased significantly in all groups. On the basis of the results, the combination acepromazine-buprenorphine is preferred because heart rate, MAP, and respiration are acceptable, it has a limited sedative effect but recovery is smooth.  相似文献   

15.
The anaesthetic and physiological effects of a combination of 40 micrograms medetomidine with 2.5 ketamine, 5.0 or 7.5 mg/kg administered intramuscularly were compared with the effects of a combination of 1 mg/kg xylazine and 15 mg/kg ketamine. All the combinations rapidly induced an anaesthetic state that permitted endotracheal intubation, with the absence of the pedal reflex and with good muscle relaxation, and induced bradycardia that was less pronounced as the dose of ketamine was increased. All the combinations produced a decrease in respiratory rate. Increasing the dose of ketamine combined with medetomidine resulted in a very significant prolongation of the duration of anaesthesia, the duration of muscle relaxation and the arousal time. The duration of the anaesthetic effects of 40 micrograms/kg medetomidine with 5 mg/kg ketamine was comparable to that provided by the recommended xylazine/ketamine combination but the period of muscle relaxation was significantly longer. The recovery from medetomidine/ketamine took longer than recovery from xylazine/ketamine but there were fewer side effects.  相似文献   

16.
A low dose of midazolam-medetomidine-ketamine (MMK) combination was evaluated in three increasing dosages. Each of the 18 cats was randomly allocated for several times to one of four groups. Five minutes after premedication with intramuscular (IM) 0.04 mg/kg atropine, group A (n = 43), B (n = 40) and C (n = 28) all were anaesthetized with 0.5 mg/kg midazolam, combined with 10, 20 or 30 microg/kg medetomidine, and 1.0, 2.0 or 3.0 mg/kg ketamine, respectively, IM in one syringe. Group D (n = 11) received the established combination of 50 microg/kg medetomidine and 10.0 mg/kg ketamine for comparison. Because this study was in cooperation with a project on dental prophylaxis, cats had to be immobilized for approximately 1 h. Therefore, anaesthesia was prolonged with propofol to effect, if necessary. Duration of MMK anaesthesia was between 30 +/- 15, 45 +/- 19 and 68 +/- 28 min in groups A, B and C respectively. A significant decrease of respiratory rate was observed with increasing dosage, but venous carbon dioxide (pCO(2)) and pH values in combination with arterial oxygen saturation (SpO(2)) values were not alarming. The diastolic blood pressure particularly showed an increase. MMK combination A showed the best cardiovascular results, but it cannot be recommended due to disadvantages like a long induction time sometimes accompanied by excitations and the short duration of surgical immobilization. Dosage C in contrast had fewer side effects but less favourable cardiovascular results and a longer recovery period. However, either dosage B or C was suitable as a repeatable IM immobilization method for non-invasive procedures in healthy cats.  相似文献   

17.
ObjectiveTo evaluate the anaesthetic and cardiorespiratory effects of four anaesthetic protocols in red foxes (Vulpes vulpes).Study designProspective, blinded and randomized complete block design.AnimalsTen adult captive red foxes.MethodsFoxes were anaesthetized by intramuscular (IM) injection using four protocols in random order: medetomidine 40 μg kg?1, midazolam 0.3 mg kg?1 and butorphanol 0.1 mg kg?1 (MMiB), medetomidine 40 μg kg?1 and ketamine 4 mg kg?1 (MK40/4), medetomidine 60 μg kg?1 and ketamine 4 mg kg?1 (MK60/4), medetomidine 40 μg kg?1 and tiletamine/zolazepam 2 mg kg?1 (MTZ). Time to lateral recumbency, induction time and time to recovery following IM administration of atipamezole 0.2 mg kg?1 were recorded. Heart rate (HR), respiratory rate (fR) and rhythm, blood pressure, rectal temperature, end-tidal CO2 tension (Pe′Co2), functional oxygen saturation and presence/absence of interdigital, palpebral and ear reflexes were recorded every 10 minutes, and following administration of atipamezole. Data were analysed using two-way repeated-measures anova with Bonferroni post tests; p < 0.05 was considered significant.ResultsAll protocols produced profound sedation with good muscle relaxation. Only the MMiB protocol diverged significantly from the others. Induction of anaesthesia and recovery time following atipamezole were significantly longer, and fR and initial HR significantly lower with MMiB than with the other protocols. With all protocols, mean arterial blood pressure (MAP) was initially relatively high (140–156 mmHg), and decreased significantly over time. With all protocols, the administration of atipamezole resulted in a rapid, significant decrease in MAP and an increase in HR.Conclusions and clinical relevanceAll four protocols provided anaesthetic conditions suitable for minor procedures and allowed endotracheal intubation. The cyclohexanone protocols provided quicker and more reliable inductions and recoveries than the MMiB protocol.  相似文献   

18.
An effective anaesthesia protocol was developed for adult free-ranging gemsbok (Oryx gazella) using a combination of A3080, medetomidine and ketamine. A short induction time; good muscle relaxation, adequate oxygenation and stable heart rate and respiration rate characterised this anaesthetic regime. Equal doses of A3080 and medetomidine (22-45 microg/kg) plus 200 mg of ketamine were administered to each animal. The anaesthesia was rapidly and completely reversed by intramuscular naltrexone at a dose of X = 0.9 +/- 0.2 mg/kg and atipamezole at a dose X +/- 90 +/- 20 microg/kg. No mortality or morbidity occurred with this protocol.  相似文献   

19.
Medetomidine, an α2-adrenoceptor agonist, was used to balance ketamine anaesthesia in birds. Twenty zebra doves weighing 40 to 60 g were equally divided into 2 groups. Group 1 was used to evaluate the effects of 100 mg/kg of 5% ketamine and of 0.1 mg/kg of 0.005% medetomidine in combination with 100 mg/kg of 5% ketamine. Group 2 was used to study the effects of 200 mg/kg of 5% ketamine and of 30 mg/kg of 1% pentobarbital. All injections were made intramuscularly. Medetomidine-ketamine combination provided better analgesia, deeper anaesthesia, and smoother recovery with less wing flapping than with ketamine alone. The anaesthetic effect of the combination was comparable to that of pentobarbital but recovery was smoother. The selection of preanesthetic and anaesthetic medications is one of the problems associated with avian surgery. Medetomidine is a new sedative compound whose effect is mediated via the stimulation of the central α2-adrenoceptors. It provides analgesic and sedative or anaesthetic effects in dogs and cats (Vähä, 1989) and sedative effect in zebra doves (Cherdchanpipat et al., 1989). This study was designed to evaluate the effect of medetomidine in combination with ketamine, the anaesthetic of choice for a number of avian species. The combination effect was compared with the effect of ketamine given alone, and with the effect of pentobarbital, the anaesthetic used successfully for decades by a number of practitioners.  相似文献   

20.
A dose of supplementary ketamine was used to evaluate the anaesthetic sparing effect of adding local anaesthesia to general anaesthesia in cats undergoing ovariectomy. Fifty-six healthy cats were randomly assigned to receive lidocaine 2% (group L) as skin infiltration (1 mg kg(-1)), topical application (splash block) on both the ovaries (2 mg kg(-1), each) and on abdominal muscular layers (1 mg kg(-1)), or an equal volume of NaCl 0.9% at the same sites (group S). Anaesthesia was induced with a mixture of 20 microg kg(-1) medetomidine and 5 mg kg(-1) ketamine administered intramuscularly. Rectal temperature, ECG, heart rate and respiratory rate were measured continuously. Ketamine supplemental boli (1 mg kg(-1), intravenously) were administered in response to movements during surgery. Local lidocaine significantly reduced the need for supplementary ketamine. All animals were returned to their owners without complications. With this protocol, local anaesthetics reduced the need for injectable anaesthetic during feline ovariectomy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号