首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crown architecture and size influence leaf area distribution within tree crowns and have large effects on the light environment in forest canopies. The use of selected genotypes in combination with silvicultural treatments that optimize site conditions in forest plantations provide both a challenge and an opportunity to study the biological and environmental determinants of forest growth. We investigated tree growth, crown development and leaf traits of two elite families of loblolly pine (Pinus taeda L.) and one family of slash pine (P. elliottii Mill.) at canopy closure. Two contrasting silvicultural treatments -- repeated fertilization and control of competing vegetation (MI treatment), and a single fertilization and control of competing vegetation treatment (C treatment) -- were applied at two experimental sites in the West Gulf Coastal Plain in Texas and Louisiana. At a common tree size (diameter at breast height), loblolly pine trees had longer and wider crowns, and at the plot-level, intercepted a greater fraction of photosynthetic photon flux than slash pine trees. Leaf-level, light-saturated assimilation rates (A(max)) and both mass- and area-based leaf nitrogen (N) decreased, and specific leaf area (SLA) increased with increasing canopy depth. Leaf-trait gradients were steeper in crowns of loblolly pine trees than of slash pine trees for SLA and leaf N, but not for A(max). There were no species differences in A(max), except in mass-based photosynthesis in upper crowns, but the effect of silvicultural treatment on A(max) differed between sites. Across all crown positions, A(max) was correlated with leaf N, but the relationship differed between sites and treatments. Observed patterns of variation in leaf properties within crowns reflected acclimation to developing light gradients in stands with closing canopies. Tree growth was not directly related to A(max), but there was a strong correlation between tree growth and plot-level light interception in both species. Growth efficiency was unaffected by silvicultural treatment. Thus, when coupled with leaf area and light interception at the crown and canopy levels, A(max) provides insight into family and silvicultural effects on tree growth.  相似文献   

2.
This study aimed to build urban green space with environmental functions (e.g., canopy interception of rainfall) and adjust hydrographic balance to some extent for forecasting the potential canopy rainfall interception capacity of landscape trees and the effects on rainfall distribution. The effects of urban green space on interception and runoff reduction have been conceptualized, but not quantified. Therefore, the leaf area index and the water storage abilities of 17 kinds of landscape trees in common use were measured, at Shanghai, and canopy rainfall interception capacity was calculated using the interception formula. The predicted rainfall interception capacity models were established choosing tree morphological characteristics (diameter at the breast height, height, and crown width) as variables. The model test showed that the errors of 12 models were less than 5% between the predicted and the measured data and the errors of four models were within 5 and 10%, with the error for only one model being between 10 and 11%. Also, the study indicated that conifer trees were able to hold more rainfall compared with broad-leaved trees per unit area (k). The results showed that these models could effectively predict the potential capacity of canopy rainfall interception for landscape trees in Shanghai area and were beneficial for species selection in constructing plant communities, aiming to improve the rainfall interception capacity of urban green space.  相似文献   

3.
The effect of two training systems (Central Leader with branch pruning versus Centrifugal Training with minimal pruning, i.e., removal of fruiting laterals only) on canopy structure and light interception was analyzed in three architecturally contrasting apple (Malus domestica Borkh.) cultivars: 'Scarletspur Delicious' (Type II); 'Golden Delicious' (Type III); and 'Granny Smith' (Type IV). Trees were 3D-digitized at the shoot scale at the 2004 and 2005 harvests. Shoots were separated according to length (short versus long) and type (fruiting versus vegetative). Leaf area density (LAD) and its relative variance (xi), total leaf area (TLA) and crown volume (V) varied consistently with cultivar. 'Scarletspur Delicious' had higher LAD and xi and lower TLA and V compared with the other cultivars with more open canopies. At the whole-tree scale, training had no effect on structure and light interception parameters (silhouette to total area ratio, STAR; projected leaf area, PLA). At the shoot scale, Centrifugal Training increased STAR values compared with Central Leader. In both training systems, vegetative shoots had higher STAR values than fruiting shoots. However, vegetative and fruiting shoots had similar TLA and PLA in Centrifugal Trained trees, whereas vegetative shoots had higher TLA and PLA than fruiting shoots in Central Leader trees. This unbalanced distribution of leaf area and light interception between shoot types in Central Leader trees partly resulted from the high proportion of long vegetative shoots that developed from latent buds. These shoots developed in the interior shaded zone of the canopy and therefore had low STAR and PLA. In conclusion, training may greatly affect the development and spatial positioning of shoots, which in turn significantly affects light interception by fruiting shoots.  相似文献   

4.
Daily and seasonal net photosynthesis (Anet), transpiration (E), absorbed photosynthetically active radiation (Qa) and light-use efficiency (epsilonc) in a red maple container nursery were simulated with MAESTRA, a three-dimensional canopy model. Effects of canopy heterogeneity were simulated by imposing changes in crown spacing. The light transfer sub-model, a distribution model of incident, direct, diffuse and scattered radiation within MAESTRA, was validated against field measurements of light interception on an intra-crown scale. In the container nursery, we found that a fiber-optic-based method of integrating photosynthetically active radiation (Q) was more suitable for crown-layer light transfer measurements and adjustments than either orthogonal line or individual quantum sensor measurements. The model underestimated intercepted Q by 9.3, 18 and 11.1% for crown layers 1, 2 and 3, respectively; however, there were linear relationships between model estimates and observations made with each of the three measurement methods. We used the validated and parameterized light transfer model to assess intra-crown and intra-canopy light transfer on a layer, crown and canopy basis, and investigated effects of tree size ratio and tree spacing interactions on Anet, E, Qa and epsilonc in the container nursery. Heterogeneous crown and canopy photosynthesis were predicted to exceed values for a uniform canopy under space-limiting conditions. Tree size ratio had large effects on Anet, E, Qa and epsilonc when light to lower-canopy layers was limited by inadequate space between crowns. Increasing Qa at lower-crown layers had the largest impact on whole-crown and whole-canopy Anet, E, Qa and epsilonc. Increases in canopy productivity led to increased water use. Simulations of heterogeneous stands with adequate soil water indicated that light absorption is maximized under space-limiting conditions as a canopy crown moves toward heterogeneity. Nursery and plantation productivity per unit land area was optimized by tactical placement of trees of several sizes, but this was accompanied by increased canopy water use.  相似文献   

5.
Modification of foliage exposition and morphology by seasonal average integrated quantum flux density (Qint) was investigated in the canopies of the shade-tolerant late-successional deciduous tree species Fagus orientalis Lipsky and Fagus sylvatica L. Because the leaves were not entirely flat anywhere in the canopy, the leaf lamina was considered to be three-dimensional and characterized by the cross-sectional angle between the leaf halves (theta). Both branch and lamina inclination angles with respect to the horizontal scaled positively with irradiance in the canopy, allowing light to penetrate to deeper canopy horizons. Lamina cross-sectional angle varied from 170 degrees in the most shaded leaves to 90-100 degrees in leaves in the top of the canopy. Thus, the degree of leaf rolling increased with increasing Qint, further reducing the light-interception efficiency of the upper-canopy leaves. Simulations of the dependence of foliage light-interception efficiency on theta demonstrated that decreases in theta primarily reduce the interception efficiency of direct irradiance, but that diffuse irradiance was equally efficiently intercepted over the entire range of theta values in our study. Despite strong alteration in foliage light-harvesting capacity within the canopy and greater transmittance of the upper crown compared with the lower canopy, mean incident irradiances varied more than 20-fold within the canopy, indicating inherent limitations in light partitioning within the canopy. This extensive canopy light gradient was paralleled by plastic changes in foliar structure and chemistry. Leaf dry mass per unit area varied 3-4-fold between the canopy top and bottom, providing an important means of scaling foliage nitrogen contents and photosynthetic capacity per unit area with Qint. Although leaf structure versus light relationships were qualitatively similar in all cases, there were important tree-to-tree and species-to-species variations, as well as evidence of differences in investments in structural compounds within the leaf lamina, possibly in response to contrasting leaf water availability in different trees.  相似文献   

6.
A long-established theoretical result states that, for a given total canopy nitrogen (N) content, canopy photosynthesis is maximized when the within-canopy gradient in leaf N per unit area (N(a)) is equal to the light gradient. However, it is widely observed that N(a) declines less rapidly than light in real plant canopies. Here we show that this general observation can be explained by optimal leaf acclimation to light subject to a lower-bound constraint on the leaf mass per area (m(a)). Using a simple model of the carbon-nitrogen (C-N) balance of trees with a steady-state canopy, we implement this constraint within the framework of the MAXX optimization hypothesis that maximizes net canopy C export. Virtually all canopy traits predicted by MAXX (leaf N gradient, leaf N concentration, leaf photosynthetic capacity, canopy N content, leaf-area index) are in close agreement with the values observed in a mature stand of Norway spruce trees (Picea abies L. Karst.). An alternative upper-bound constraint on leaf photosynthetic capacity (A(sat)) does not reproduce the canopy traits of this stand. MAXX subject to a lower bound on m(a) is also qualitatively consistent with co-variations in leaf N gradient, m(a) and A(sat) observed across a range of temperate and tropical tree species. Our study highlights the key role of constraints in optimization models of plant function.  相似文献   

7.
We have developed a spatially inexplicit model of canopy photosynthesis for balsam fir (Abies balsamea (L.) Mill.) that accounts for key processes of light-shoot interaction including irradiance interception by the shoot, spatial aggregation of shoots into branches and crowns, the differential propagation of diffuse and direct light within the canopy, and an ideal representation of penumbra. Also accounted for in the model are the effects of the average radiative climate and shoot age on needle retention, light interception, and photosynthetic capacity. We used reduced versions of this model to quantify the effects of simplifying canopy representation on modeled canopy net photosynthesis. Simplifications explored were the omission of direct beam transformation into penumbral light and the use of different constant shoot properties throughout the canopy. The model was parameterized for a relatively dense balsam fir stand (leaf area index of 5.8) north of Québec City, Canada, and run using hourly meteorological data obtained at the site. The overall performance of the complete model was satisfactory, with maximum values of canopy net photosynthesis of 23 micromol (m(2) ground)(-1) s(-1) (83 mmol m(-2) h(-1)), and a near-saturation of the canopy at a photosynthetically active radiation photon flux density of about 750 micromol m(-2) s(-1) (2.7 mol m(-2) h(-1)). The omission of penumbral effects through the use of unattenuated direct (beam) radiation at all layers of the canopy, as used for broad-leaved species, reduced canopy net photosynthesis by 3.7%. Analysis of the results show that the small impact of penumbra on canopy net photosynthesis stems from the high proportion of diffuse radiation (73%) estimated from our meteorological data set; single-hour results under clear sky conditions approach theoretical bias values of about 30%. Use of mean shoot photosynthetic, light capture and light transmission properties throughout the canopy biased canopy net photosynthesis by less than 3%. However, simulations carried out based on properties of 1-year-old shoots throughout the canopy overestimated canopy net photosynthesis by 9%. Use of the shoot as our smallest functional unit was a potential source of bias because the differential absorption of direct and diffuse radiation within the shoot could not be factored into the model. Other sources of potential bias are discussed.  相似文献   

8.
To quantify the effects of crown thinning on the water balance and growth of the stand and to analyze the ecophysiological modifications induced by canopy opening on individual tree water relations, we conducted a thinning experiment in a 43-year-old Quercus petraea stand by removing trees from the upper canopy level. Soil water content, rainfall interception, sap flow, leaf water potential and stomatal conductance were monitored for two seasons following thinning. Seasonal time courses of leaf area index (LAI) and girth increment were also measured. Predawn leaf water potential was significantly higher in trees in the thinned stand than in the closed stand, as a consequence of higher relative extractable water in the soil. The improvement in water availability in the thinned stand resulted from decreases in both interception and transpiration. From Year 1 to Year 2, an increase in transpiration was observed in the thinned stand without any modification in LAI, whereas changes in transpiration in the closed stand were accompanied by variations in LAI. The different behaviors of the closed and open canopies were interpreted in terms of coupling to the atmosphere. Thinning increased inter-tree variability in sap flow density, which was closely related to a leaf area competition index. Stomatal conductance varied little inside the crown and differences in stomatal conductance between the treatments appeared only during a water shortage and affected mainly the closed stand. Thinning enhanced tree growth as a result of a longer growing period due to the absence of summer drought and higher rates of growth. Suppressed and dominant trees benefited more from thinning than trees in the codominant classes.  相似文献   

9.
目的]比较日本落叶松不同冠层和方位光合生理参数的差异,探讨冠层及方位变化对光合生理参数的影响,为构建冠层生产力模型及估算冠层生产力提供理论参考。[方法]以7年生和19年生日本落叶松单木为研究对象,将树冠分为上、中、下3层,东、西、南、北4个方位,测定冠层每一部位的光响应曲线、CO_2响应曲线和光合色素含量,并分析不同冠层及方位的光合生理特性。[结果]表明:垂直方向上,2种林龄样木冠层对大多数光合生理参数影响显著;最大净光合速率(A_(max))、光饱和点(LSP)、光补偿点(LCP)和暗呼吸速率(R_d)随冠层的升高而增大;最大羧化速率(V_(max))、最大电子传递速率(J_(max))、磷酸丙糖利用率(TPU)和羧化效率(CE)均为下冠层最小,而CO_2补偿点(CCP)均为冠层下部最大;不同冠层针叶光合色素含量差异显著,且叶绿素a(Chla)、叶绿素b(Chlb)和类胡萝卜素(Car)均随冠层的升高而降低。水平方向上,方位对2种林龄树木光合生理参数均影响不显著,南向和东向光合参数均值分别反映了7年生和19年生样木全冠层的光合特性。光合生理参数在林龄间无显著差异。[结论]日本落叶松冠层光合生理参数具有空间异质性,冠层对树木多数光合生理参数的影响显著,而方位和林龄对以上参数影响不显著。  相似文献   

10.
Plant canopy optimization models predict that leaf nitrogen (N) distribution in the canopy will parallel the vertical light gradient, and numerous studies with many species have confirmed this prediction. Further, it is predicted that for a given canopy leaf area, a low vertical light extinction coefficient will promote rapid growth. Therefore, the ideal canopy of fast-growing plants should combine high leaf area index with a low light extinction coefficient; the latter being reflected in a flat vertical leaf N gradient throughout the canopy. Based on data from an experimental Salix stand (six varieties) grown on agricultural land in central Sweden, we tested the hypothesis that shoot growth is correlated with vertical leaf N gradient in canopies of hybrid willows bred for biomass production, which could have implications for Salix breeding. Tree improvement research requires screening of growth-related traits in large numbers of plants, but assessment of canopy leaf N gradients by chemical analysis is expensive, time-consuming and destructive. An alternative to analytical methods is to estimate leaf N gradients nondestructively with an optical chlorophyll meter (SPAD method). Here we provide a specific calibration for interpreting SPAD data measured in hybrid willows grown in biomass plantations on fertile agricultural land. Based on SPAD measurements, a significant and inverse relationship (r(2) = 0.88) was found between shoot biomass growth and vertical leaf N gradient across canopies of six Salix varieties.  相似文献   

11.
Stand age is an important structural determinant of canopy transpiration (E(c)) and carbon gain. Another more functional parameter of forest structure is the leaf area/sapwood area relationship, A(L)/A(S), which changes with site conditions and has been used to estimate leaf area index of forest canopies. The interpretation of age-related changes in A(L)/A(S) and the question of how A(L)/A(S) is related to forest functions are of current interest because they may help to explain forest canopy fluxes and growth. We conducted studies in mature stands of Picea abies (L.) Karst. varying in age from 40 to 140 years, in tree density from 1680 to 320 trees ha(-1), and in tree height from 15 to 30 m. Structural parameters were measured by biomass harvests of individual trees and stand biometry. We estimated E(c) from scaled-up xylem sap flux of trees, and canopy-level fluxes were predicted by a three-dimensional microclimate and gas exchange model (STANDFLUX). In contrast to pine species, A(L)/A(S) of P. abies increased with stand age from 0.26 to 0.48 m(2) cm(-2). Agreement between E(c) derived from scaled-up sap flux and modeled canopy transpiration was obtained with the same parameterization of needle physiology independent of stand age. Reduced light interception per leaf area and, as a consequence, reductions in net canopy photosynthesis (A(c)), canopy conductance (g(c)) and E(c) were predicted by the model in the older stands. Seasonal water-use efficiency (WUE = A(c)/E(c)), derived from scaled-up sap flux and stem growth as well as from model simulation, declined with increasing A(L)/A(S) and stand age. Based on the different behavior of age-related A(L)/A(S) in Norway spruce stands compared with other tree species, we conclude that WUE rather than A(L)/A(S) could represent a common age-related property of all species. We also conclude that, in addition to hydraulic limitations reducing carbon gain in old stands, a functional change in A(L)/A(S) that is related to reduced light interception per leaf area provides another potential explanation for reduced carbon gain in old stands of P. abies, even when hydraulic constraints increase in response to changes in canopy architecture and aging.  相似文献   

12.
Distribution of leaf nitrogen with respect to leaf mass per unit area (M(a)), nitrogen per unit mass (N(m)) and nitrogen per unit area (N(a)) within peach (Prunus persica L.) tree canopies was studied in two field experiments. In one experiment, leaf light exposure and M(a) were measured on leaves from different canopy positions of peach trees subjected to five nitrogen (N) fertilization treatments. Leaf light exposure and M(a) were linearly related and the relationship was independent of N fertilization. In a subsequent experiment, N fertilizer was applied to previously unfertilized trees in midsummer, after shoot growth had terminated. Application of N fertilizer did not affect mean canopy M(a). Fertilization increased N(m) of all leaves throughout the canopy compared with non-fertilized trees. No significant relationship between N(m) and M(a) was found in either fertilized or control trees. There was a linear relationship between N(a) and M(a) and the slope of the relationship was increased by N fertilizer application. We conclude that distribution of N(a) in peach tree canopies is primarily a function of M(a) partitioning with light and N(m), which is related to soil N availability.  相似文献   

13.
Physiological parameters were measured under natural light conditions and needle orientation from towers and walkways erected in the canopy of a loblolly pine (Pinus taeda L.) plantation. Four silvicultural treatments were randomly assigned to the twelve plots in the fall of 1988. Plots were thinned to a density of 731 trees per hectare or left unthinned, at a density of 2990 trees per hectare. The plots were left unfertilized or fertilized with 744 kg/ha of diammonium triple superphosphate was applied. During the fifth growing season (1993) following thinning and fertilization, needle level physiology was not different with respect to the thinning treatment for fertilized or unfertilized plots. In contrast, upper crown levels within the fertilized and unfertilized plots had significantly higher light levels and photosynthetic rates than lower crown foliage. Light levels were greater in the thinned, fertilized plots than in the unthinned, fertilized plots. In contrast, no effect of thinning on canopy light levels was found in the unfertilized plots. Within crown variation in photosynthesis was strongly dependent on canopy light levels. A strong interaction of canopy level with thinning was apparent for net photosynthesis. Loblolly pine, being a shade intolerant species, showed only small physiological differences between needles from different parts of the crown. Because of the variability found in this study, more extensive sampling is needed to correctly describe the physiology of a forest canopy with adequate precision.  相似文献   

14.
Calder IR 《Tree physiology》1996,16(8):727-732
This paper reviews the development of the stochastic interception model from the original, single-layer, drop-size-dependent model to the two-layer model that recognizes that vegetation canopies are wetted through both the primary impact of raindrops to the top layer of the canopy and secondary impacts from drops falling from the vegetation to lower layers of the canopy. It is shown that drop volumes of primary raindrops can be calculated from the Marshall-Palmer distribution and drop volumes of secondary drops can be estimated from disdrometer measurements of the characteristic volume appropriate to the particular vegetation species. It is recognized that, in addition to the volume-dependent stochastic wetting effect, there is also another drop-size-dependent wetting effect that is related to the kinetic energy of the raindrops, which reduces the maximum storage that can be achieved on the canopy. The predicted wetting functions for canopies of different density are described and compared with observations made with the use of a rainfall simulator. It is also shown that the species-dependent model parameters can be determined from measurements made with the rainfall simulator. The improved performance of the model compared with conventional interception models is demonstrated for a tropical forest in Sri Lanka. Application of the two-layer model may explain why interception losses from coniferous, fine-leaved forests in the temperate, low-intensity rainfall climate of the uplands of the U.K. are among the highest in the world, whereas interception losses from tropical broad leaved forest in high-intensity rainfall climates of the tropics are among the lowest.  相似文献   

15.
The extent to which seedling recruitment is limited by summer drought in Mediterranean-type ecosystems depends on the light microsite, yet the relationship between light availability and water status, functional performance, and survival of seedlings in these systems is still unclear. Over a 3-year period, we studied the pattern of survival and functional performance of seedlings of Quercus petraea (Matt.) Liebl. and Quercus pyrenaica Willd. in a montane forest in central Spain, which is the southern edge of the natural range of Q. petraea. After a mast year of the two species, 72 plots were established in six microhabitats spanning a range of overstorey canopy closure: closed, partial and open canopies dominated by either Q. petraea or Q. pyrenaica adult trees. Seedlings of each species naturally emerged beneath the conspecific-dominated canopies. The second and third years of study were extremely dry. Three years after emergence, the greatest seedling survival occurred beneath the partial canopy of Q. pyrenaica trees (8%) and the lowest (0%) beneath the closed canopies of Q. pyrenaica and Q. petraea. Survival for Q. pyrenaica increased linearly with understorey light across the range of 10–35% Global Site Factor. Plant water deficit (estimated by leaf water potential) was high across microhabitats, and increased with light availability for Q. pyrenaica. Potential for photosynthesis (estimated by the electron transport rate of photosystem II) decreased with canopy closure; and potential for light harvesting (e.g. specific leaf area (SLA) and chlorophyll concentration) increased with closure. Extreme water deficit could be the main contributor to seedling death in the more open microhabitats, whereas light level was insufficient to maintain carbon balance under the water-stressful conditions existing beneath the closed tree canopies. Seedling establishment appears to be a limiting factor for the recruitment of both oaks within this forest in a wide range of microhabitats, especially for the more drought-sensitive Q. petraea. Moderate reductions of tree canopy cover can improve seedling establishment, but extreme summer droughts can prevent the success of any silvicultural practice made.  相似文献   

16.
Ecosystem process models are often used to predict carbon flux on a landscape or on a global scale. Such models must be aggregate and canopies are often treated as a uniform unit of foliage. Parameters that are known to vary within the canopy, e.g., nitrogen content and leaf mass per area, are often estimated by a mean value for the canopy. Estimating appropriate means is complicated, especially in mixed-species stands and in complex terrain. We analyzed sources of variation in specific parameters with the goal of testing various simplifying assumptions. The measurements came from mixed-species forests in the northern Rocky Mountains. We found that, for three important parameters (nitrogen concentration and content, and leaf mass per area), a sample taken near the vertical center of the crown provided a good estimate of the mean values for the crown. Altitude (700-1700 m), solar insolation (4200-5400 MJ m(-2) year(-1)) and leaf area index (1-11) had negligible effects on the parameters; only species differences were consistently detected. The correlation between mass-based photosynthetic rates and mass-based nitrogen concentrations was much weaker than the correlation between area-based photosynthetic rates and area-based nitrogen concentration. Comparison of photosynthesis-nitrogen relationships for a wide variety of conifer species and sites revealed a broad general trend that can be used in models. These results suggest important potential simplifications in model parameterization, most notably that canopy means can be estimated with ease, that complex terrain is a minor source of variation in these parameters and that use of one photosynthesis-nitrogen relationship for conifer species does not result in large errors. Species-to-species variation, however, was large and needs to be accounted for when parameterizing process models.  相似文献   

17.
Leaf properties vary significantly within plant canopies, due to the strong gradient in light availability through the canopy, and the need for plants to use resources efficiently. At high light, photosynthesis is maximized when leaves have a high nitrogen content and water supply, whereas at low light leaves have a lower requirement for both nitrogen and water. Studies of the distribution of leaf nitrogen (N) within canopies have shown that, if water supply is ignored, the optimal distribution is that where N is proportional to light, but that the gradient of N in real canopies is shallower than the optimal distribution. We extend this work by considering the optimal co-allocation of nitrogen and water supply within plant canopies. We developed a simple 'toy' two-leaf canopy model and optimized the distribution of N and hydraulic conductance (K) between the two leaves. We asked whether hydraulic constraints to water supply can explain shallow N gradients in canopies. We found that the optimal N distribution within plant canopies is proportional to the light distribution only if hydraulic conductance, K, is also optimally distributed. The optimal distribution of K is that where K and N are both proportional to incident light, such that optimal K is highest to the upper canopy. If the plant is constrained in its ability to construct higher K to sun-exposed leaves, the optimal N distribution does not follow the gradient in light within canopies, but instead follows a shallower gradient. We therefore hypothesize that measured deviations from the predicted optimal distribution of N could be explained by constraints on the distribution of K within canopies. Further empirical research is required on the extent to which plants can construct optimal K distributions, and whether shallow within-canopy N distributions can be explained by sub-optimal K distributions.  相似文献   

18.
Relationships between CO(2) assimilation at light saturation (A(max)), nitrogen (N) content and weight per unit area (W(A)) were studied in leaves grown with contrasting irradiances (outer canopy versus inner canopy) and N supply rates in field-grown nectarine trees Prunus persica L. Batsch. cv. Fantasia. Both A(max) and N content per unit leaf area (N(A)) were linearly correlated to W(A), but leaves in the high-N treatment had higher N(A) and A(max) for the same value of W(A) than leaves in the low-N treatment. The curvilinear relationship between photosynthesis and total leaf N was independent of treatments, both when expressed per unit leaf area A(maxA) and N(A)) and per unit leaf weight (A(maxW) and N(W)), but the relationship was stronger when data were expressed on a leaf area basis. Both A(maxA) and N(A) were higher for outer canopy leaves than for inner canopy leaves and A(maxW) and N(W) were higher for leaves in the high-N treatment than for leaves in the low-N treatment. The relationship between A(max) and N resulted in a similar photosynthetic nitrogen-use efficiency at light saturation (A(max)NUE) for both N and light treatments. Photosynthetic nitrogen-use efficiency was similar among treatments throughout the whole light response curve of photosynthesis. Leaves developed in shade conditions did not show higher N-use efficiency at low irradiance. At any intercellular CO(2) partial pressure (C(i)), photosynthetic CO(2) response curves were higher for outer canopy leaves and, within each light treatment, were higher for the high-N treatments than for the low-N treatments. Consequently, most of the differences among treatments disappeared when photosynthesis was expressed per unit N. However, slightly higher assimilation rates per unit N were found for outer canopy leaves compared with inner canopy leaves, in both N treatments. Because higher daily irradiance within the canopies of the low-N trees more than compensated for the lower photosynthetic performances of these leaves compared to the leaves of high-N trees, daily carbon gain (and N-use efficiency on a daily assimilation basis) per leaf was higher for the low-N treatment than for the high-N treatment in both outer and inner canopy leaves.  相似文献   

19.
20.
We analyzed the effect of simplifying assumptions in canopy representation of radiation transfer models, comparing modeled diffuse non-interceptance and photosynthetic photon flux density with measurements at different layers of complex pine-broadleaved canopy with large seasonal variation of leaf area index. The most detailed model included clumping of trees (i.e.,?stand density) and a vertical specification of leaf angle distribution and shoot clumping. A less detailed model replaced the vertically specified variables with their means. The most parsimonious model accounted for neither shoot clumping nor stand density. The vertical specification of shoot clumping and leaf angle distribution only slightly improved vertical and seasonal openness and light estimates over using mean values. Further simplification had little effect on total absorbed light but was more risky for estimates of the vertical distributions of openness and light absorbed by the canopy, which will affect photosynthesis estimates due to the non-linearity of photosynthetic light response. Including woody surfaces in winter, when leaf area was low, was essential for reproducing the measurements correctly. A sensitivity analysis showed that ignoring (i)?shoot clumping could result in a substantial overestimation of total absorbed light with errors increasing with decreasing leaf area and (ii) stand density in sparse stands could lead to substantial overestimation of total absorbed light, and the effect is largely independent of leaf area. Also, (iii) the effect of changing leaf angle distribution increased with decreasing leaf area, and was larger and more persistent along the leaf area range with increasing shoot clumping. Overall, accounting for the effect of tree clumping on absorbed light is most important in stands composed of species where leaves are not very clumped (e.g., broadleaved). However, even in forests with highly clumped shoots (i.e., coniferous), an accurate estimation of absorbed light distribution in stands requires incorporation of stand density in the model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号