首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
西部黄土丘陵区不同草地土壤侵蚀对侵蚀性降雨的响应   总被引:1,自引:1,他引:0  
[目的]研究西部黄土丘陵区人工和天然草地对不同类型侵蚀性降雨的响应,为该区植被建设和水土流失防治提供指导。[方法]利用甘肃省定西市安家沟径流场2007—2015年的观测数据,分析侵蚀性降雨因素对坡度为20°的人工草地和天然草地土壤侵蚀的影响。[结果]西部黄土丘陵区的侵蚀性降雨分布在5—9月,其中7—8月的侵蚀性雨量较大,其侵蚀量占年均侵蚀的70%以上。两种不同类型的草地侵蚀量均与PI10相关性最好。该区域侵蚀性降雨主要是中雨和大雨,造成的草地侵蚀量占年均侵蚀的86%。中、高雨强型降雨的侵蚀量分别占人工、天然草地总量的90.8%和91.2%,其侵蚀量与PI10,PI30呈较好的幂函数关系。大于300 MJ·mm/(hm2·h)的高侵蚀力型降雨引起的侵蚀量最大,分别占人工、天然草地总侵蚀量的32.3%和33.4%;50~100MJ·mm/(hm2·h)的中侵蚀力型降雨次数最多,而引起人工、天然草地的侵蚀占相应总量的26.0%和29.1%。[结论]人工草地(盖度75%~82%)和天然草地(盖度80%)的侵蚀性降雨量标准分别为11.3和11.9mm,最大I10标准分别为10.4和11.7mm/h。天然草地比人工草地具有更好的水土保持效果。  相似文献   

2.
利用协同克里金空间内插法和半月降雨侵蚀力估算模型,结合2005—2021年日降雨量资料研究分析全省年均降雨侵蚀力时空分布特征。结果表明:(1)全省降雨侵蚀力平均值1 542.68 MJ·mm/(hm2·h·a),其变化范围为651.02~2 716.45 MJ·mm/(hm2·h·a)。(2)在时间变化上,年内降雨侵蚀力表现出先增大后减小的变化特征,其中6~9月降雨侵蚀力占全年80%以上;从空间分布上,自东南向西北降雨侵蚀力程递减的变化规律,即东南部>南部>中部>北部。(3)年侵蚀性降雨量、年降雨量与降雨侵蚀力之间具有极显著相关性,可以利用幂函数做简易估算,为区域土壤侵蚀治理、预报、评估和监测等提供决策依据。  相似文献   

3.
三峡库区香溪河流域降雨侵蚀力的时空分布特征   总被引:2,自引:0,他引:2  
为研究流域降雨侵蚀力变化规律,利用三峡库区香溪河流域内10个雨量站1971—2010年的日降雨资料,采用降雨侵蚀力日降雨简易模型,分析该流域降雨侵蚀力的年内分配和年际变化规律。在Arc GIS软件支持下,采用克里格插值研究流域降雨和降雨侵蚀力时空变化特征。结果表明:香溪河流域降雨侵蚀力多年变化范围为2 465.26~7 419.29 MJ·mm/(hm2·h),多年平均均值为4 535.63 MJ·mm/(hm2·h),降雨侵蚀力R值的年际分配差异明显,最大年R值为最小年R值的3倍;流域侵蚀力空间变化趋势为从西向东逐渐递减;流域近40多年的降雨和降雨侵蚀力系列比较平稳,经Mann-kendall检验无显著的变化趋势。流域降雨量、侵蚀性降雨量和降雨侵蚀力年内分布较集中,汛期降雨量、汛期侵蚀性降雨量、汛期降雨侵蚀力占全年的比例分别为85.4%、92.4%和94.0%。  相似文献   

4.
为掌握山东省日照市降雨侵蚀力时空分布特征,提高日照市水土保持规划与决策的科学性,利用日照市水利局雨量遥测系统61个雨量站点2005-2014年日降雨资料计算降雨侵蚀力,并运用Excel 2013、ArcGIS 10等工具分析日照市降雨侵蚀力的时空分布特征.结果表明:1)从年度变化来看,日照市站均年度降雨侵蚀力最大值(2008年)是最小值(2014年)的2.90倍,站均汛期降雨侵蚀力最大值(2007年)是最小值(2014年)的3.74倍.从月度变化来看,降雨侵蚀力主要集中在5-9月,尤其集中在7-8月.2)从空间分布来看,各站点年均降雨侵蚀力、汛期降雨侵蚀力呈现东南沿海地区较高、内陆地区较低、中部地区最低的特征,变化范围分别在2 942.07 ~4 921.45、2 694.36~3 921.78 MJ· mm/(hm2·h·a)之间,分区县看,岚山区最高,东港区次之,莒县和五莲县较低;各月的降雨侵蚀力重点也不尽相同.3)从时间变异来看,站均年度降雨侵蚀力变化范围在1 831.55 ~5 306.12 MJ·mm/(hm2·h·a)之间,均值、中值分别为3 826.01、4 053.62 MJ·mm/(hm2·h·a),标准差1 089.46MJ·mm/(hm2·h·a),变异系数28.48%;站均月度降雨侵蚀力变化范围在1.23 ~1 171.93 MJ·mm/(hm2·h·a)之间,均值、中值分别为318.83、61.51 MJ·mm/(hm2·h·a),标准差397.99 MJ· mm/(hm2·h·a),变异系数124.83%.4)从空间变异来看,各站年均降雨侵蚀力变化范围在2 755.23 ~5 061.15 MJ·mm/(hm2·h·a)之间,均值、中值分别为3 826.01、3 730.97 MJ·mm/(hm2·h·a),标准差512.81 MJ·mm/(hm2·h·a),变异系数13.40%.本研究结果可为日照市水土保持规划与决策、土壤侵蚀预报等提供参考.  相似文献   

5.
为分析白洋淀流域降雨侵蚀力的时空分布特征,利用白洋淀流域及周边64个气象站点2003—2018年的日雨量资料,采用日雨量模型、线性逐步回归、倾向率、Mann-Kendall突变检验以及克里金插值等方法进行了研究。结果表明:(1)白洋淀流域年均降雨侵蚀力为2 284.54 (MJ·mm)/(hm2·h),西南阜平县和东北霞云岭降雨侵蚀力较大,在东南—西北方向上呈先增后降趋势。(2)气象站点降雨侵蚀力与经纬度、海拔的关系为:降雨侵蚀力=-0.115×纬度+0.414×经度-0.235×海拔,降雨侵蚀力与纬度、海拔呈负相关,与经度呈正相关。(3)降雨侵蚀力年内分布中,夏季较大,平均1 826.75 (MJ·mm)/(hm2·h),冬季较小,平均1.77 (MJ·mm)/(hm2·h);降雨侵蚀力年际分布中,2011—2014年较大,平均2 584.82 (MJ·mm)/(hm2·h);2003—2006年较小,平均2 053.79 (MJ·mm)/(hm2·h)。(4)降雨侵蚀力时间...  相似文献   

6.
重庆涪陵区降雨侵蚀力时间分布特征   总被引:20,自引:5,他引:15  
降雨侵蚀力反映降雨引起土壤侵蚀的潜在能力.利用涪陵区49 a气象资料,对该地区降雨侵蚀力的年内分布和年际变化特征进行研究.结果表明: (1)涪陵区多年平均降雨侵蚀力为3571.07 MJ·mm·hm-2·h-1·a-1,最大年为4039.07MJ·mm·hm-2·h-1·a-1,最小年为1193.76 MJ·mm·hm-2·h·a-1,年际差异非常显著且明显大于降雨量和侵蚀性降雨量的年际变化.(2)该区降雨侵蚀力季节分布为单峰型,可分为高值期、中值期、低值期和无侵蚀期4个不同的时期;4~10月的降雨侵蚀力可占全年年降雨侵蚀力(尺)值的94.06%,6月最大为670.94 MJ·mm·hm-2·h-1·a-1,其次7月为664-26MJ·mm·hm-2·h-1·a-1,最小月为0;降雨侵蚀力的季节变化与降雨量和侵蚀性降雨总体变化趋势一致. (3)降雨侵蚀力时间变化与地表状况的配合可对实际土壤侵蚀的发生产生较大影响,在该地区5、6、7月降雨量在147.4 mm和176.0 mm范围内变化,4月、8、9、10月降雨量在101.9ranl和115.7mm范围变化,年降雨量大于1090.6mm的年份,是当地水土流失极易发生的侵蚀敏感期.(4)该地区小流域综合治理中应充分重视每年5、6、7三个月内坡耕地覆盖情况,开发建设活动不仅应避开这3个月,同时在雨季开始前应注意裸露开挖面及弃土弃渣堆放地的水土保持措施布置和完善,以最大程度地减少人为水土流失.  相似文献   

7.
沂蒙山区降雨侵蚀力空间分布推算方法   总被引:1,自引:0,他引:1  
以沂蒙山区88个雨量站点1980—2010年日降水数据为基础,采用普通克里格法和回归克里格法对多年平均降雨侵蚀力进行空间插值预测,分析评价不同空间插值方法预测结果的精度及差异性,掌握沂蒙山区降雨侵蚀力及空间分布特征。结果表明:1)2种方法降雨侵蚀力插值结果空间分布规律一致,但回归克里格法对局部变异性描述更为精确;回归克里格法降雨侵蚀力预测值与实算值接近,降雨侵蚀力预测相对精度较普通克里格法提高53.64%。2)沂蒙山区降雨侵蚀力最大值为5 438.22 MJ·mm/(hm2·h·a),最小值3 033.23 MJ·mm/(hm2·h·a),均值4 133.92 MJ·mm/(hm2·h·a);半方差函数分析显示,年均汛期降雨量和年均侵蚀性降雨量是影响降雨侵蚀力空间变异的主要因素。3)沂蒙山区降雨侵蚀力空间分布上遵循从南向西北和东北2个方向逐渐递减的特征,降雨侵蚀力在沂蒙山区空间分布上属中等变异,但在县域尺度空间分布上呈弱变异(邹城除外)。  相似文献   

8.
1980-2009年闽东南地区降雨侵蚀力的时空分布特征   总被引:2,自引:1,他引:2  
[目的]揭示闽东南地区降雨侵蚀力的时空变异特征,为区域水土流失防治及水土保持规划提供依据。[方法]基于闽东南地区1980—2009年26个雨量站的逐日降雨数据,运用福建省降雨侵蚀力简易算法。[结果]闽东南地区降雨侵蚀力年内分布集中于5—8月,呈现双峰式分布;降雨侵蚀力年际间变化幅度较大。1982年年降雨侵蚀力(R值)低至253.82(MJ·mm)/(hm2·h),2006年R值高达725.39(MJ·mm)/(hm2·h),极值比为2.86;30a内的闽东南地区的降雨侵蚀力并未出现明显的突变现象。[结论]研究区内降雨侵蚀力R值空间分布不均匀,总体上呈现沿海向内陆增加,西南高东北低的趋势。  相似文献   

9.
长江上游水蚀区降雨侵蚀力的时空分布特征   总被引:4,自引:1,他引:3  
降雨侵蚀力的时空分布特征对于分析和认识土壤侵蚀规律十分重要.根据长江上游7个省市的704个站点1981-2010年30 a的逐日降雨量资料计算了多年平均降雨侵蚀力R值,多年平均半月降雨侵蚀力及其占年降雨侵蚀力的比例,并分析了长江上游水蚀区降雨侵蚀力的空间分布规律.结果表明,长江上游水蚀区的降雨侵蚀力R值范围为273~11 394MJ·mm/(hm2·h· a);受地形的影响R值的空间分布有3个高值区,位于四川省峨眉山市、贵州省毕节地区和湖北省宜昌市附近;建立了多年平均降雨量和降雨侵蚀力R值的关系,相关系数R2达到0.80;研究区降雨侵蚀力的年内分布集中度较大,均值为69%,主要集中在5-10月.  相似文献   

10.
受土壤侵蚀影响大凌河流域水土流失较为严重,为科学评估与防治流域水土流失风险,依据大凌河流域1960—2020年典型气象站点日降水数据,应用R/S分析、小波分析和ArcGIS空间差值等方法分析降雨量及降雨侵蚀力时空变化规律。结果表明:大凌河流域降雨侵蚀力与降雨量之间的正相关关系达到显著水平,并且年内分布不均,其中7、8月降雨量占全年的31.03%和22.69%,降雨侵蚀力占全年的49.93%和26.74%;年均降雨侵蚀力为1 081.53(MJ·mm)/(hm2·h),侵蚀性降雨量494.1 mm,年际降雨侵蚀力整体表现出波动上升趋势,未来也将持续增大,降雨侵蚀力与降雨量的第一主周期为18 a和28 a;从空间上,自西北向东南大凌河流域降雨侵蚀力和降雨量均呈递增趋势。  相似文献   

11.
用日雨量和雨强计算降雨侵蚀力   总被引:33,自引:9,他引:33  
利用全国 8个气象站次降雨和日降雨资料 ,分析了次、日降雨关系。结果表明 ,用次降雨资料计算的降雨侵蚀力与用日降雨资料计算的降雨侵蚀力 ,二者之间不仅高度线性相关 ,而且是通过原点、斜率接近 1的直线 ,方程的平均决定系数达到 0 .95 0 ,表明可以用日降雨资料计算降雨侵蚀力。由于各地区方程的系数差异不显著 ,可以在不同气候区采用同一个公式。该方法不仅简化了降雨侵蚀力计算 ,有助于其推广应用 ,而且大大促进了气象水文资料在土壤侵蚀定量研究中的应用。  相似文献   

12.
用日雨量和雨强计算降雨侵蚀力   总被引:1,自引:0,他引:1       下载免费PDF全文
利用全国8个气象站次降雨和日降雨资料,分析了次、日降雨关系。结果表明,用次降雨资料计算的降雨侵蚀力与用日降雨资料计算的降雨侵蚀力,二者之间不仅高度线性相关,而且是通过原点、斜率接近1的直线,方程的平均决定系数达到0.950,表明可以用日降雨资料计算降雨侵蚀力。由于各地区方程的系数差异不显著,可以在不同气候区采用同一个公式。该方法不仅简化了降雨侵蚀力计算,有助于其推广应用,而且大大促进了气象水文资料在土壤侵蚀定量研究中的应用。  相似文献   

13.
山东省药乡小流域侵蚀性降雨分布特征   总被引:6,自引:0,他引:6  
为探究山东省药乡小流域侵蚀性降雨分布特征,本研究选择裸地坡面径流小区为研究对象,利用小区观测法得到的降雨、径流以及泥沙等资料,通过频率分析法拟定研究区侵蚀性降雨标准,并运用数理统计方法从时间、降雨强度、降雨侵蚀力角度分析侵蚀性降雨分布特征.结果表明:1)该研究区侵蚀性降雨标准为降雨量17.3 mm;2)7月份侵蚀性降雨场次、降雨量、径流量和产沙量占侵蚀性降雨比例为42.31%、45.71%、85.78%和97.97%,其他月份侵蚀性降雨分布较少;3)大雨、暴雨以上侵蚀性降雨,高降雨强度型降雨场次分别占相应雨量等级比例为60%和100%,其产沙量所占比例分别为75.07%、100%;4)降雨侵蚀力>1000MJ·mm/(h·hm2)侵蚀性降雨产沙量占侵蚀性降雨比例为95.26%,其径流深是≤1 000 MJ·mm/(h·hm2)侵蚀性降雨3倍以上.以上研究表明,研究区侵蚀性降雨标准为17.3 mm,其主要分布在中雨以上雨量等级,造成严重土壤侵蚀的侵蚀性降雨多为高降雨强度型降雨或降雨侵蚀力>1 000 MJ·mm/(h.hm2)的降雨,且其多分布于7月份.本文结果有助于研究区小流域侵蚀性降雨规律分析以及土壤侵蚀规律研究.  相似文献   

14.
人工模拟降雨的能量相似及其实现   总被引:3,自引:0,他引:3       下载免费PDF全文
 能量相似是降雨模拟的基本原则。通过对雨滴粒径、雨滴击溅速度、降雨均匀度等能量相似要素的分析和探讨,提出实现降雨模拟能量相似的重要手段,即在降雨高度、雨滴发生器等条件不变的情况下,通过调节雨强来实现降雨能量的相似;通过加大供水压力等手段可提高降雨动能,所以在降雨模拟实践中,降雨高度不一定需要达到使所有粒径的雨滴均达到终速所需的高度。  相似文献   

15.
降雨能够改变土壤水分状况进而促进林木蒸腾,然而场降雨量及其持续时间对林木树干液流及其环境控制机制的影响尚不明确。为此,在华北半干旱半湿润区的北京市顺义区共青林场,选取位于河岸生态系统不受土壤水分胁迫的欧美杨(Populus×euramericana)人工林为研究对象,在2019年和2021年生长季,使用TDP热扩散法测量树干液流,同步监测气象及土壤含水量等环境因子。根据对该区长期(2016—2017年、2019年和2021年)降雨数据统计分析结果,将2次降雨脉冲间隔超22.5 h的事件划分2场独立的降雨事件。按照降雨事件雨量及历时,将其中位数±1.5倍标准误的事件定义为常见事件,而将累积概率大于90%的事件定义为极端事件。结果表明:(1)太阳辐射是唯一显著控制该杨树人工林生长季树干液流的环境因子(偏相关系数rp=0.539),饱和水汽压差、风速和土壤含水量均与树干液流不相关(p>0.533),降雨事件发生前后这一环境控制特征没有发生变化;(2)雨后树干液流随着场降雨量的增加而降低(R2=0.78,p=0.004),但与降雨事件历时无显著相关关系;(3)树干液流在常见降雨事件和极端事件后,在半小时尺度上随时间变化无显著差异(p≥0.264),但4类降雨事件后主导的环境控制因子却不完全相同,太阳辐射和饱和水汽压差总能显著促进半小时尺度的树干液流(rp≥0.374),而土壤含水量仅在常见和极端的强降雨历时事件后,显著促进雨后半小时尺度液流(rp≥0.215)。风速显著抑制常见场降雨量事件后半小时尺度的树干液流(rp=-0.258),却能显著促进常见和极端场降雨历时事件后半小时尺度的树干液流(rp≥0.183)。研究成果为进一步深入揭示降雨特征对树干液流及其生物物理控制机制的影响,以及改进气候变化下生态水文过程的模拟与评估提供参考。  相似文献   

16.
在全球变暖的背景下,为探讨高原水系水资源的重分配利用,选取怒江流域作为研究对象,研究怒江流域的降雨时空变化。基于怒江流域13个雨量站点中6个站点的50 a降雨数据,采用反距离权重插值法、Kendall非参数检验、线性回归法对流域内年际降雨特征、年内强度特征和极端降雨事件进行了分析。结果表明:怒江流域上游(青藏高原东南区)降雨量小,年内降雨集中性总体趋势减弱;流域中游(青藏高原与云贵高原过渡区)降雨量较为丰富,年内降雨强度趋势上升;流域下游(云南泸水县六库以南区)降雨量最为丰沛,降雨集中性趋势平稳;流域内3片区极端降雨事件均呈上升趋势。综上所述,西藏地区应当注意保水、节水,西藏云南交界过渡区注意预防水土流失与水土综合治理,流域内云南剩余地区应当注意防洪与泥石流治理。  相似文献   

17.
人工模拟降雨试验降雨特性及问题分析   总被引:3,自引:0,他引:3  
由于试验的需要和人工模拟降雨的优点,越来越多的研究者采用人工模拟降雨。但在大量的试验中,人工模拟降雨试验的降雨特性与天然降雨特性之间联系不够紧密,对应特性之间存在差异。除了人工模拟降雨特性与天然降雨特性的不统一性外,人工模拟降雨试验中还存在一些自然与非自然因素导致的问题,在关注并逐一克服这些问题的同时,将人工模拟降雨和高科技技术,如GPRS等结合起来,应用于更广阔的领域。  相似文献   

18.
由于人工模拟降雨可以解决天然降雨耗时长、成本高以及难以取得精准控制数据等问题,越来越多的学者使用该方法进行科学研究。通过降雨量测量和计算分析方法,测定了Veejet80150喷头降雨特征参数,评价了改进后槽式下喷模拟降雨机的降雨均匀性。结果表明:Veejet80150喷头降雨面积为矩形,且随喷头高度增加而增加,中心点降雨强度随高度增加而减小,并从中心点向外呈规律性减小,便于多喷头组合,获得空间均匀降雨。多喷头组合降雨时,2.5 m高度下的降雨均匀系数在0.88~0.90范围内;4 m高度下的降雨均匀系数在0.94~0.95范围内,该降雨机均匀性好,喷头高度大于2.5 m时可满足试验要求。  相似文献   

19.
确定日降雨的侵蚀性雨量标准是提高基于日降雨数据的降雨侵蚀力模型计算精度的重要前提。利用鄱阳湖流域降雨数据,采用最小偏差法,确定该流域日降雨的侵蚀力雨量标准。结果表明:(1)鄱阳湖流域次降雨的侵蚀性雨量标准为14.0 mm,降雨侵蚀力偏差系数为1.8%,土壤侵蚀损失率2.8%,降雨场次错选度为14.9%。(2)流域内各站点的逐月降雨量均表现为6月达到峰值的倒"V"形规律;侵蚀性次降雨中,降雨时间跨越2日或以上的类型最多,占总次数的54.2%。(3)流域日降雨的侵蚀性雨量标准为10.0 mm,该标准下年均次、日降雨侵蚀力偏差值为0.11%。  相似文献   

20.
A. R. VAEZI 《土壤圈》2014,24(5):595-604
Transformation of rainfall into runoff over an area is a very complex process which exhibits both temporal and spatial variability;runoff in a defined area can be affected by factors such as topography, vegetation, rainfall characteristics and soil properties. This study was conducted to develop an empirical model using the rainfall characteristics and soil properties for predicting runoff from dry-farming lands in a semi-arid agricultural area in Hashtroud, Northwest Iran. Runoff plots(1.83 m × 22.1 m) in triplicate were installed in thirty-six sloped dry-farming lands in the study area. Runoff under natural rainfalls was measured in each plot during a2-year period. The results showed that runoff for 41 runoff-producing rainstorm events with duration longer than 30 min was largely associated with a rainfall index obtained by multiplying the positive square root of rainfall depth(h0.5) by the logarithm of the maximum 30-minute intensity(LogI30)(R2= 0.81). Runoff significantly varied among the plots(P 0.001), which was considerably related to the effective soil properties(R2= 0.74), i.e., soil permeability(Per) and aggregate stability(AS). A multiple linear regression model was developed between runoff and the rainfall index(h0.5logI30) and the effective soil properties(AS and Per). Evaluation of the model using 34 runoff-producing rainstorm events that occurred during the next two years resulted in high values of the efficiency coefficient and R2(0.88 and 0.91, respectively), which revealed that the model developed in this study could be used in predicting runoff from the dry-farming lands in the semi-arid regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号