首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A collection of 63 bread wheats (Triticum aestivum L.) and 21 durum wheats (Triticum durum Desf.) commonly grown in Portugal since 1982 were characterized for the composition of wheat storage proteins (WSP), high molecular weight glutenin subunits (HMW-GS), low molecular weight glutenin subunits (LMW-GS) and ω-gliadins. The composition of HMW-GS, LMW-GS and &-gliadins, encoded at loci Glu-1, Glu-3 and Gli-1, respectively, was revealed by sodium dodecyl sulphate polyacrylamide gel electrophoresis. WSP allelic compositions of bread and durum wheat patterns were given. In the bread wheats, a total of 24, 24 and 18 patterns were observed for HMW-GS, LMW-GS and ω-gliadins, respectively. Forty-two different alleles were identified for the nine loci studied, Glu-A1 (3), Glu-B1 (7), Glu-D1 (4), Glu-A3 (5), Glu-B1 (7), Glu-D3 (2), Gli-A1 (2), Gli-B1 (8) and Gli-D1 (4). In the case of durum wheats, 19 alleles were identified: one allele at Glu-A1, two at Glu-B3, Glu-B2 and Gli-A1, three at Glu-B1, four at Glu-A3 and five at Gli-B1. For HMW-GS, LMW-GS and ω-gliadins, three, six and six different patterns were revealed, respectively. This study represents the first attempt to discriminate the bread and durum wheat varieties commonly grown in Portugal by the allelic variation of storage proteins. The database is useful for varietal identification and for plant breeders who seek to devise effective programmes aimed at improving wheat quality.  相似文献   

2.
Summary Variation for high molecular weight (HMW) glutenin subunits is reported in Afghan hexaploid wheat landraces from different locations in the country ranging in altitude from 395 to 3170 metres. The variation appeared to be independent of the altitude and geographical location of the landraces. Studies of a number of samples from each of five sites revealed that at some sites there was allelic variation at theGlu-A1 andGlu-B1 loci coding from HMW glutenin subunits, but there was no variation at theGlu-D1 locus within and between sites.  相似文献   

3.
低分子量谷蛋白亚基是小麦谷蛋白亚基的重要组成部分,黄淮麦区小麦低分子量谷蛋白亚基组成对品质的效应尚缺乏系统的研究。本研究采用SDS-PAGE方法,鉴定了黄淮麦区42个小麦品种的Glu-A3位点和Glu-B3位点低分子量谷蛋白亚基组成,分析了低分子量谷蛋白亚基对小麦面筋强度和烘烤品质的影响。结果表明,在Glu-A3位点,对面筋强度和面包烘焙品质正向效应为:d,b>a,e;在Glu-B3位点,对面筋强度正效应为:h,d>f>g,b,j,对面包烘焙品质正向效应为:h>f,d>g,b,j。Glu-A3d/Glu-B3h亚基组合具有较好的面筋强度和烘焙品质。就低分子量谷蛋白亚基单个变异位点对品质综合效应而言,Glu-B3位点对品质作用比较大,与Glu-B1位点相近,同时,高低分子量谷蛋白亚基之间存在着互作效应,以Glu-B1/Glu-A3和Glu-D1/Glu-B3位点的互作效应比较显著。Glu-A3和Glu-B3位点及其所编码的不同亚基种类对品质的效应差异显著,并且与高分子量谷蛋白亚基位点存在互作,对不同位点优质亚基的聚合将有助于小麦品质的遗传改良。  相似文献   

4.
HMW-GS和LMW-GS组成及1BL/1RS易位对春小麦品质性状的影响   总被引:19,自引:2,他引:17  
分析了221份春小麦品种(系)的HMW-GS、LMW-GS组成和1BL/1RS易位状况,并用其中104份品种(系)研究了HMW-GS和LMW-GS等位变异及1BL/1RS易位对品质性状的影响。结果表明,1、7+9、5+10、GluA3a和GluB3j分布较广,频率分别为57.5%、45.2%、63.8%、29.0%和42.5%。1BL/1RS易位系相当普遍,西北春麦区和东北春麦区频率分别为44.3  相似文献   

5.
Allelic variations at the Glu-1 and Glu-3 loci play an important role in determining dough properties and bread-making quality. Two hundred and fifty-one cultivars and advanced lines from four major Chinese wheat-producing zones in the autumn-sown wheat regions were used to investigate the high-molecular-weight glutenin subunits (HMW GS) and low-molecular-weight glutenin subunit (LMW GS) composition controlled by the Glu-1 and Glu-3 loci, respectively, as well as the presence of the 1B.1R translocation, and to determine the association of storage protein composition with protein content, SDS sedimentation value, and dough-mixing properties measured by mixograph. Three, nine, and four allelic variations were present at Glu-A1, Glu-B1, and Glu-D1, respectively. Subunits 1, N, 7+8, 7+9, and 2+12 are the dominant HMW GS, with frequencies of 51.3, 39.4, 38.2, 45.0, and 59.8%, respectively. Five and eight allelic variations were present at the Glu-A3 and Glu-B3 loci (data of Glu-D3 were not available), Glu-A3a, Glu-A3d, Glu-B3j (presence of the 1B.1R translocation), and Glu-B3d are the dominant LMW GS, with frequencies of 37.1, 31.7, 44.6, and 20.3%, respectively. The frequencies of allelic variation at Glu-1 and Glu-3 differ greatly in different regions. The effects of HMW GS and LMW GS on SDS sedimentation value, mixing time, and mixing tolerance were significant at P = 0.01, with Glu-D1 and Glu-B3 showing the largest contributions to mixing time and mixing tolerance. Averaged data from two locations showed that the quality effects of glutenin loci could be ranked as Glu-B3 > Glu-B1 > Glu-A1 > Glu-D1 > Glu-A3 for SDS sedimentation value, Glu-D1 > Glu-B3 > Glu-A1 = Glu-B1 = Glu-A3 for mixing time, and Glu-D1 > Glu-B3 = Glu-B1 > Glu-A3 > Glu-A1 for mixing tolerance, respectively. The significant and negative effect of the 1B.1R translocation on dough properties was confirmed. It was concluded that the high frequency of undesirable HMW GS and LMW GS and the presence of the 1B.1R translocation are responsible for the weak gluten property of Chinese germplasm; hence, reducing the frequency of the 1B.1R translocation and integration of desirable subunits at Glu-1 and Glu-3 such as 1, 7+8, 14+15, 5+10, Glu-A3d, and Glu-B3d, could lead to the improvement of gluten quality in Chinese wheats.  相似文献   

6.
Summary The relation has been studied between the high molecular weight glutenin (HMWg) subunit alleles and the bread-making quality of 226 lines of winter wheat (T. aestivum L.), grown in The Netherlands. The lines represented a wide range of genetic backgrounds, and had not been selected for quality, in contrast to the established varieties used by other authors.The variation in HMWg subunit genotypes accounted for about 20% of the total variation in loaf volume among the lines. Most important was the allelic variation at the Glu-D1 locus. The Glu-D1 allele encoding the subunits 5+10 was superior to its allelic counterpart, encoding 2+12. The difference in average of loaf volume between groups of lines containing 5+10 or 2+12 was negatively related with protein content of the flours. When protein content was below 9.2%, no effect of allelic variation at the Glu-D1 locus was present. Epistatic effects between the Glu-I loci also contributed to the variation in loaf volume of the lines: i.e. the effect of allelic variation at Glu-A1 and Glu-B1 depended on the allele present at the Glu-D1. The contribution of the epistatic effects was about half the contribution of the additive effects, and should therefore be included in predictive models for bread-making quality.  相似文献   

7.
Summary High and low molecular weight glutenin subunit (HMW-GS and LMW-GS) compositions of 270 European spelts, 15 Iranian spelts and 25 bread wheat cultivars were analyzed by one- and two-dimensional gel electrophoresis. The results revealed a total of 22 HMW-GS alleles (4 at Glu-A1, 11 at Glu-B1 and 7 at Glu-D1) and 32 allele combinations among the three Glu-1 loci. Two major genotypes of HMW-GS: 1, 13+16, 2+12 and 1, 6.1+22.1, 2+12 were found to occur in Central European spelt wheat cultivars and landraces at higher frequencies of 35 and 28%, respectively. The Glu-B1 locus displayed the greatest variation and genetic diversity index (H) was 0.69 whereas Glu-A1 and Glu-D1 showed H index values of 0.26 and 0.19, respectively. The dendrogram constructed by HMW and LMW glutenin subunit bands revealed that European spelts form a separated cluster from common wheat suggesting that spelt and common wheat form distinct groups. In addition, all 15 Iranian spelt land variety accessions differed from European spelts and possessed similar HMW-GS alleles to common wheat. Because of a wider polymorphism Central European spelt wheats are an important genetic reserviour for improving common wheat quality. Both authors contributed equally to this work  相似文献   

8.
HMW-GS和LMW-GS组成对小麦加工品质的影响   总被引:11,自引:0,他引:11  
高分子量麦谷蛋白亚基(HMW-GS)和低分子量麦谷蛋白亚基(LMW-GS)是决定小麦加工品质的重要因素。以小麦品种PH82-2(亚基组成1, 14+15, 2+12和Glu-A3d, Glu-B3d, Glu-D3c)和内乡188(亚基组成1, 7+9, 5+10和 Glu-A3a, Glu-B3j, Glu-D3b)的242份F3和F4株系(试验I)和91份产量比较试验材料(试验II)研究了贮藏蛋白组成对小麦加工品质的影响。结果表明,HMW-GS和LMW-GS等位变异对籽粒蛋白质含量的影响不大,但对加工品质均有极显著影响(P<1%)。就位点的效应而言,Glu-D1位点对加工品质的效应较大,而Glu-D3位点的效应较小。就单个亚基而言,在Glu-B1位点,14+15<7+9;在Glu-D3位点,Glu-D3c>Glu-D3b。1B/1R易位系的部分品质性状,如和面时间、曲线下降斜度和峰积分好于非1B/1R易位系。  相似文献   

9.
甲单向一步SDS-PAGE方法分析表明亲本品种Suneca和Cook在麦谷蛋白亚基的5个位点(Glu-B1,Glu-D1,Glu-A3,Glu-B3和Glu-D3)均含不同等位基因。本研究重点对Suneca×Cook的F_4代群体中在麦谷蛋白亚基位点均为纯合基因的60个系的出粉率(FY),面粉蛋白质含量(FP)及和面时间(PTM)进行了分析,以研究麦谷蛋白各亚基位点等位基因变异及位点间互作对小麦品质特性的影响。结果表明,不同基因型间出粉率无显著差异,Glu-D1位点等位基因d和a对FP的效应存在显著差异,Glu-Dld基因(编码5 10亚基)的正效应显著高于Glu-Dla基因(编码2 12亚基);Glu-D1、Glu-A3和Glu-B3位点上基因的等位变异对PTM有显著和极显著影响,含Glu-Dld、Glu-A3b和Glu-B3b基因的系分别比含Glu-Dla,Glu-A3d和Glu-B3h基因的系有较长的和面时间;Glu-B1位点上等位变异i和u以及Glu-D3位点等位基因b和e分别对PTM无明显影响。在这种遗传背景下,麦谷蛋白亚基位点对PTM的效应大小依次排列为Glu-D1>Glu-B3>Glu-A3>GIu-B1=Glu-D3。Glu-1位点和Glu-3位点间对和面特性的影响存在累加效应和互作效应。  相似文献   

10.
Allelic variation at the storage protein loci of 55 US-grown white wheats   总被引:1,自引:0,他引:1  
Fifty soft white and hard white wheat cultivars (Triticum aestivum L.), and five club wheat cultivars (T. compactum L.) were partially characterized in terms of their storage protein compositions, i.e. gliadins, and high molecular weight and low molecular weight glutenin subunits (HMW-GS and LMW-GS, respectively). At the Glu-1 loci, HMW-GS composition 1,7 + 9,2+ 12 was found to be predominant, being expressed in 11 cultivars out of 55. The most common alleles at the loci coding for gliadins and LMW-GS were found to be Gli-A1/Glu-A3a (43.6%), Gli-B1/Glu-B3b (36.4%), Gli-D1a/Glu-D3a (38.1%) and Gli-Dli/Glu-D3a (21.8%). Two-dimensional fractionation (acid-poly-acrylamide gel electrophoresis (A-PAGE) × sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE)) of reduced and alkylated glutenins revealed that the number and the relative mobility of LMW-GS polypeptides were different from those reported for the corresponding Glu-3 alleles of hard-bread wheat cultivars. This result could account for the different technological properties of soft white wheats compared with hard-bread wheat cultivars, owing to the major impact of LMW-GS on dough quality.  相似文献   

11.
Multiplex-PCR typing of high molecular weight glutenin alleles in wheat   总被引:26,自引:0,他引:26  
W. Ma  W. Zhang  K.R. Gale 《Euphytica》2003,134(1):51-60
In Australian commercial cultivars, each high molecular weight glutenin (Glu-1) homoeologous locus consists of one of two predominant alleles: Glu-A1a (subunit Ax1) or Glu-A1b (subunit Ax2*) at the GluA1 locus, Glu-B1b (Bx7 and By8 subunits) or Glu-B1i (Bx17 and By18 subunits) at the Glu-B1 locus, and Glu-D1d (Dx5 and Dy10 subunits) or Glu-D1a (Dx2 and Dy12 subunits) at the Glu-D1 locus. PCR-based assays have been developed in this study to discriminate between these common alleles at each locus. Primers specific for the Glu-A1 Ax2* gene give a single fragment of 1319 bp only in the presence of this gene. Primers targeting the Glu-B1 locus resulted in a co-dominant marker for which the Bx7 genotype produced two fragments (630 bp and 766 bp) and the Bx17 genotype a single fragment (669 bp). The third pair of primers was specific for the Dx5 gene and resulted in a single band of 478 bp. A multiplexed PCR assay was established which permitted the discrimination of the major HMW glutenins in a single PCR reaction and agarose gel assay. As the HMW glutenin composition of a wheat line is extremely important in determining the functional properties of wheat gluten, these markers are useful for the purposes of marker-assisted breeding. These markers may also be useful for the purpose of DNA-based identification of wheat varieties. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Two alleles, Glu-A1r encoding high-molecular-weight (HMW) glutenin subunits 39+40 and Glu-A1s encoding HMW glutenin subunits 41+42, were introgressed to bread wheat (Triticum aestivum L.) cv. Sicco from two accessions of T. boeoticum Boiss. ssp. thaoudar (A genome species, 2n=2x=14). Alleles at Glu-A1 in current commercial bread wheats encode zero or one subunit, and alleles at the homoeoloci Glu-B1 and Glu-D1 encode a maximum of two subunits; hence the maximum number of subunits found in commercial wheats is five, whereas the lines incorporating Glu-A1r and Glu-A1s carry six. Using near-isogenic lines, the current results demonstrated that the introduction of Glu-A1r resulted in diminished dough stickiness and improved stability during mixing compared with Glu-A1a encoding subunit 1, and a small improvement in gluten strength as shown by the SDS- sedimentation test. The introduction of Glu-A1a also resulted in a small improvement in gluten strength predicted by the SDS-sedimentation test. Thus the alleles are of potential value in breeding programmes designed to improve bread-making quality.  相似文献   

13.
A collection of 14 triticale (X Triticosecale Wittmack) varieties commonly grown in Portugal were analysed using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) to describe allelic diversity in the storage proteins encoded at the Glu-1 (Glu-A1, Glu-B1 and Glu-R1), Gli-1 (Gli-A1 and Gli-B1), Glu-3 (Glu-A3 and Glu-B3), Glu-B2 and Gli-R2 loci. Several alleles were identified: 10 at the loci encoding for high molecular weight(HMW)subunits (seven for glutenin and three for secalins), eight for low molecular weight glutenin subunits, four for γ-gliadins and three for 75K γ-secalins. These results showed that triticale varieties grown in Portugal exhibit great genetic diversity. Knowledge of the diversity of these storage proteins, which are the major gluten components, will greatly increase our understanding of the quality differences that might exist between triticale varieties.  相似文献   

14.
Summary One hundred and twenty-eight wheat varieties bred in the Soviet Union were screened for the composition of high-molecular-weight (HMW) subunits of glutenin. In general, variability was low compared to that seen in varieties from other countries. However, varieties from different regions showed distinctive patterns, in some cases clearly due to the use of particular parents in certain breeding programmes, but in others possibly due to the adaptive value of particular alleles to the environmental conditions under which the varieties were bred. For example, among spring varieties, the Glu-D1 allele encoding subunits 2+12 was more common in varieties from areas with limited rainfall than was the allele encoding subunits 5+10.The pattern of HMW glutenin subunits amongst varieties with superior bread-making quality showed few differences from that amongst bread-making varieties of lower quality.Abbreviations BMQ bread-making quality - HMW high-molecular-weight - LMW low-molecular-weight - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis  相似文献   

15.
We investigated the relationships of three allelic variations in Glu-B3 (ab, g, and h) with dough properties and bread-making quality-related characteristics using near-isogenic lines (NILs) of ‘Yumechikara’ that commonly carry Glu-A1a, Glu-B1b, Glu-D1d, Glu-A3f, Glu-B3ab and Glu-D3a. Measurement of peak time (PT) in a 2-g mixograph indicated that Glu-B3g was the most effective for a strong dough property, followed by Glu-B3ab, with Glu-B3h being the least effective. The results of measurement of mixing time during bread-making were similar to those for PTs, i.e., the lines carrying Glu-B3g showed the longest mixing time, followed by those of Glu-B3ab, and those of Glu-B3h showed the shortest mixing time. Since two parameters of bread-making quality, loaf volume (LV) and specific loaf volume (SLV), were affected by flour protein contents in all groups of the Glu-B3 genotype, we compared the effects of the three Glu-B3 alleles on those parameters using analysis of covariance (ANCOVA) to remove the effect of protein content. The results indicated that the Glu-B3h group showed the largest SLV, followed by the Glu-B3ab group, and the Glu-B3g group showed the smallest SLV. These results suggest that the introduction of Glu-B3h into ‘Yumechikara’ makes it possible to breed varieties with good bread-making quality-related characteristics.  相似文献   

16.
The high molecular weight glutenin subunit (HMW-GS) composition of acollection of 107 Argentinean bread wheat cultivars was analysed bysodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE).Allelic variation at the Glu-1 loci was identified and its frequencycalculated. Eleven alleles were detected, three encoded at the Glu-A1locus, six at the Glu-B1 locus and two at the Glu-D1 locus. Alow frequency of the null allele at the Glu-A1 locus and a highfrequency of subunits 5+10 at the Glu-D1 locus were observed.Reversed phase-high performance liquid chromatography (RP-HPLC)analysis was used to further characterise HMW-GS. Two different types ofBx subunit 8 (named subunits 8 and 8) were detected, the latterhaving shorter elution time. Subunit 8 was not identifiable bySDS-PAGE. According to quantification by RP-HPLC analysis, two groupsof subunit 7 were observed. One group, with a relatively high proportionof subunit 7 (approximately 39% of the total amount of HMW-GS)appeared in cultivars with allele 7+8 at the Glu-B1 locus; asecond group of subunit 7 (around 24% of the total amount ofHMW-GS), was found in alleles 7+8, 7+8 and 7+9. Restrictionfragment length polymorphisms (RFLP) analyses of HMW-GS genes werealso carried out after digestion of genomic DNA with HindIII andTaqI restriction enzymes. The relationship between DNA fragment sizeand glutenin subunits, as estimated by electrophoretic mobility inSDS-PAGE, was also examined. The restriction enzyme TaqIdemonstrated to be a useful tool to detect homozygous plants in selectionprograms against the Glu-A1 null allele.  相似文献   

17.
High-molecular-weight (HMW) glutenin subunits in wheat Triticumaestivum L., allelic variation for which affects bread-making quality, areencoded by Glu-1 homoeoloci located on the homoeologous group1 chromosomes. Many alleles at Glu-B1 and Glu-D1 producetwo subunits, an x-type of low electrophoretic mobility in polyacrylamidegels, and a y-type of high mobility. In the current study, a combination ofnear isogenic lines of cultivar `Sicco' has been used to characterise theeffect upon quality of the absence of individual subunits 7 (Glu-B1x-type), 12 (Glu-D1 y-type) and, assuming an additive model ofsubunit action, 2 (Glu-D1 x-type). Absence of subunit 7 gave amoderate reduction in SDS-sedimentation volume, indicating its associationwith lower gluten strength (confirmed by Farinogram and Extensogramstudies), yet, from a full mixing input bake, a moderate increase in loafvolume and a considerable improvement in loaf score (an overall evaluationof loaf quality). Absence of subunit 12 gave a slightly larger reduction inSDS-volume, yet no change in loaf volume or score. Absence of bothsubunits 2+12 gave a larger reduction again in SDS-volume, a moderatereduction in loaf volume and a large reduction in loaf score. Absence ofsubunit 2 alone is therefore predicted to reduce SDS-volume, loaf volumeand score such that loss of this x-type subunit would lead to larger changesin quality parameters than loss of y-type subunit 12. A general conclusionof the study is that, while deficiency for HMW glutenin subunits generallyleads to reduced gluten strength and viscoelasticity, the resultantintermediate gluten strength may on occasions lead to improvements in loafperformance in situations where the base gluten strength is high. Theremay, then, be contexts in breeding programmes where selection fordeficiency would be a possible strategy for improving bread-making quality,adding to the flexibility available to the breeder. Somewhat unexpectedly,additional analysis found that, in the genetic background of cultivar `Sicco'used in this study, subunits 7+8 at Glu-B1 were indistinguishablefrom their allelic counterparts subunits 7+9 for virtually all characters, andthat subunits 2+12 at Glu-D1, while inferior in performance formixing properties compared to subunits 5+10, were associated with goodloaf characteristics.  相似文献   

18.
Seed storage proteins of 131 Japanese Norin wheat (Triticum aestivum) varieties were fractionated by sodium dodecyl sulfate polyacrylamide gel electrophoresis to determine allelic make-up in varieties at each of three loci that control high-molecular-weight (HMW) glutenin subunits. Three alleles were identified at the Glu-A1 locus, six at the Glu-B1 locus and five at the Glu-D1 locus. Twenty-four different, major glutenin HMW subunits were identified and each contained three to five subunits and seventeen different glutenin subunit patterns were observed for 19 subunits in the 131 Japanese Norin varieties. Fourteen alleles were identified by comparison of subunit mobility with that previously found in hexaploid wheat. Japanese Norin varieties showed a specific pattern of allelic variation in glutenin HMW subunits, different from that of Chinese and other country common wheats in allelic frequency at Glu-1 loci. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Genetic gains in quality traits were assessed in grain samples from 4 field experiments involving 16 bread wheat varieties representative of those most widely cultivated in Spain during the 20th century. The allelic composition at three glutenin loci (Glu-A1, Glu-B1, and Glu-D1) was obtained by PCR-based DNA markers and published references. From 1930 to 2000 grain protein content decreased by −0.030% y−1, or in relative terms by −0.21% y−1, but the protein produced per hectare increased by 0.39% y−1. Alveographic tests revealed significant changes in dough rheological properties. Dough strength (W) and tenacity (P) increased at relative rates of 1.38% y−1 and 0.99% y−1, respectively, while dough extensibility (L) decreased by −0.46% y−1, resulting in an increase of 1.45% y−1in dough equilibrium (P/L). The rise in protein quality could be related to the replacement of the null allele by subunits 1 or 2* at Glu-A1 and the prevalence of subunits 7 + 8 and 5 + 10 at Glu-B1 and Glu-D1 loci, respectively, in the most recent varieties. Dough extensibility was affected by water input during the crop cycle, this relationship being partially explained by the presence of the 5 + 10 HMW glutenin subunit. Fermentation tolerance was improved in the most modern varieties. Collapse during fermentation was avoided only in doughs with a W  159 J × 10−4 and a P/L  0.56 mm H2O mm−1, levels achieved by most of the modern varieties. The over-strong and unbalanced rheological properties of some modern varieties resulted in highly porous doughs, and no clear advances in dough maximum height during fermentation were attained.  相似文献   

20.
Forty-two winter wheat varieties and 193 F2 and BC1F2 seeds were screened for Glu-D1d allele encoding the HMW glutenin subunits 5 + 10 using polymerase chain reaction (PCR). The segregating populations originated from crosses involving wheat parents with good and poor bread-making quality. A clear PCR product of 450 bp, representing 1Dx5 of the Glu-D1d allele was identified in 24 varieties and 111 hybrid seeds. Four different Glu-D1 alleles: a (2 + 12), b (3 + 12), c (4 + 12) and d (5 + 10) were detected using sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Only genotypes possessing Glu-D1d gave a positive PCR signal, hexaploid triticale and 4 × wheat lacking Glu-D1 locus gave a negative signal. The efficiency of PCR selection for bread-making quality in early generations using half seed is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号