首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A study was conducted to demonstrate the comparative efficiency of acid phosphatase generated by plants or fungi towards the hydrolysis of different organic P compounds present in soil. The results revealed that acid phosphatases were most efficient in the hydrolysis of glycerophosphate followed by lecithin and phytin. The P release increased with increase in enzyme concentration. Acid phosphatase generated from fungal sources showed three times greater efficiency in the hydrolysis of phytin, two times greater efficiency in hydrolysis of lecithin than plant phosphatase. Both sources were at par in hydrolyzing glycerophosphate. The results suggest that acid phosphatase generated from plant and fungal sources is different and microbial acid phosphatase to be more efficient than that from plant sources.  相似文献   

2.
Summary The distribution of phosphatase activity and of phosphate fractions of the soil in the proximity of roots was studied in order to evaluate the significance of phosphatases in P nutrition of various plants (Brassica oleracea, Allium cepa, Triticum aestivum, Trifolium alexandrinum). A considerable increase in both acid and alkaline phosphatase activity in all the four soil-root interfaces was observed. Maximum distances from the root surface at which activity increases were observed ranged from 2.0 mm to 3.1 mm for acid phosphatase and from 1.2 mm to 1.6 mm for alkaline phosphatase. The increase in phosphatase activity depended upon plant age, plant species and soil type. A significant correlation was noticed between the depletion of organic P and phosphatase activity in the rhizosphere soil of wheat (r = 0.99**) and clover (r = 0.97**). The maximum organic P depletion was 65% in clover and 86% in wheat, which was observed within a distance from the root of 0.8 mm in clover and 1.5 mm in wheat. Both the phosphatases in combination appear to be responsible for the depletion of organic P.  相似文献   

3.
Three cereals (wheat, pearl millet, sorghum), three legumes (mung bean, moth bean, clusterbean) and three oil seed crop species (groundnut, sesame, mustard) were grown in solution culture under conditions of P deficiency and with additions of inorganic P or organic P (phytin, lecithin, glycerophosphates). The plants started secreting acid phosphatase as soon as their roots emerged (24-96 h). The activities of the secreted acid phosphatases increased with plant age and were at a maximum under P-deficient conditions. Phytin increased acid phosphatase secretion to a greater extent than lecithin and glycerophosphate. The increased activities of acid phosphatase secreted under P-deficient conditions when compared with those under P-sufficient (inorganic P) conditions ranged from 2.7 times (glycerophosphate) to 5 times (negligible P, phytin) higher. Legumes secreted the maximum amount of acid phosphatase within 2 weeks after germination, then activity decreased gradually. Acid phosphatase secretion by oilseeds started at a low level and increased with the age of the plants. Only a small increase in acid phosphatase secretion by cereals was observed during the first 3 weeks of growth. The amount of acid phosphatase secreted by legumes was 22% higher than by oilseeds and 72% higher than by cereals. The results showed that an organic P concentration of 250 mg L-1 and above, and an inorganic P concentration <50 mg L-1 provide the most suitable conditions for plants to secrete a maximum amount of acid phosphatase.  相似文献   

4.
Seven most efficient phytase and phosphatases producing fungi were isolated from the soils of arid and semi-arid regions of India and tested for their efficiency on hydrolysis of two important organic P compounds: phytin and glycerophosphate. The native soil organic P may be exploited after using these organisms as seed inoculants, to help attain higher P nutrition of plants. The identified organisms belong to the three genera: Aspergillus, Emmericella and Penicillium. Penicillium rubrum released the most acid into the medium during growth. Aspergillus niger isolates were found to accumulate biomass the fastest. A significant negative correlation (r=−0.593,n=21, p<0.01) was observed between the development of fungal mat and pH of the media. The extracellular (E) phosphatases released by different fungi were less than their intracellular (I) counterpart, but the trend was reversed in case of phytase production. The E:I ratio of different fungi ranged from 0.39 to 0.86 for acid phosphatase, 0.29 to 0.41 for alkaline phosphatases and 9.4 to 19.9 for phytase. The efficiency of hydrolysis of different organic P compounds of different fungi varied from 2.12-4.85 μg min−1 g−1 for glycerophosphate to 0.92-2.10 μg min−1 g−1 for phytin. The trend of efficiency was as follows: Aspergillus sp.>Emmericella sp.>Penicillium sp. The results indicated that the identified fungi have enough potential to exploit native organic phosphorus to benefit plant nutrition.  相似文献   

5.
Rhizobium leguminosarum biovarviceae strain TAL 1236 growing on different organic P compounds as sources of phosphate exhibited phosphatase activities. The strain was able to produce both acid and alkaline phosphatase. However, its ability to produce alkaline phosphatase was much higher. When cellular phosphate fell to 0.115% of cell protein, cellular and extracellular phosphatase activities were enhanced. Mg2+, Co2+, and Ca2+ stimulated the activity of alkaline phosphatase more than acid phosphatase. However, Mn2+ and Fe2+ activated acid phosphatase rather than alkaline phosphatase. It may be concluded thatR. leguminosarum contributes significantly to the release of P from organic compounds through the action of phosphatase which can be activated by a range of cations.  相似文献   

6.
Bacillus coagulans, a phosphatase- and phytase-producing bacterium was isolated and tested under greenhouse conditions and in the field in a loamy sand soil. Bacterial population build-up and efficiency was compared under sterilized and non-sterilized soil conditions. Exploitation of plant unavailable (poorly soluble) P was higher in sterilized soil, mainly due to an increased bacteria population. A gradual increase in microbial build-up of up to 21 times the inoculated population was observed over a 4-week period under the sterilized soil condition. Clusterbean influenced acid phosphatase and phytase activity. The depletion of organic P was much higher than the depletion of mineral and phytin P. The microbial contribution to the hydrolysis of the different P fractions was significantly higher than the plant contribution. The maximum effect of inoculation on different enzyme activities (acid phosphatase, alkaline phosphatase, phytase and dehydrogenase) was observed in pants between 5 and 8 weeks of age. A significant improvement in plant biomass (25%), root length (28%), plant P concentration (22%), seed (19%) and straw yield (28%) resulted from inoculation. The results suggested that B. coagulans produces phosphatases and phytase, which mobilized P from unavailable native P sources and enhanced the production of clusterbean.  相似文献   

7.
《Applied soil ecology》2003,22(2):139-148
A glasshouse pot experiment investigated the uptake by arbuscular mycorrhizal (AM) fungi associated with red clover of three organic sources of P added to a sterilized calcareous soil of low P availability. Each pot was separated into a central compartment for plant growth and two outer compartments for external mycelium using 30-μm nylon mesh to restrict the roots but allow hyphal penetration. Plants in the central compartments were inoculated with the AM fungus Glomus versiforme and uninoculated controls were included. Plants were harvested on three occasions: 5, 7 and 10 weeks after sowing. Application of each of the three organic P sources (lecithin, RNA and sodium phytate) or inorganic P (KH2PO4) at 50 mg P kg−1 to the outer compartments of mycorrhizal and uninoculated pots increased the yield, P concentration and total P uptake of red clover compared with pots to which no P was applied, with no differences among P sources in non-mycorrhizal plants but differences observed in mycorrhizal plants both 7 and 10 weeks after sowing suggesting differences in availability of the four P sources to AM mycelium. The contribution of external mycelium to plant uptake of applied P increased with time. The three organic P sources made smaller contributions to plant P nutrition than KH2PO4 at the first and second harvests. At the third harvest, the contribution from KH2PO4 was 23%, while those from lecithin, RNA and sodium phytate were 23, 17 and 31%, respectively. This suggests that with the mediation of AM fungi, soil organic P sources can make a contribution to host plant P nutrition comparable to that of soluble orthophosphate.  相似文献   

8.
Phosphorus (P) deficiency is a major limitation to agricultural production in many parts of the world. It is therefore desirable to identify plants with enhanced abilities to utilize P more efficiently. Exudation of phosphatase from roots may improve P availability, yet there is little direct evidence for this. Here we report the dynamics of organic P in the rhizosphere of plants that have enhanced rhizosphere phosphatase activity. Agroforestry species and transgenic subterranean clover (engineered to produce phytase) were compared with crop and wild‐type plant controls, respectively. Depletion of organic P was measured in pools defined by chemical extraction, solution 31P NMR spectroscopy, and microbial immobilization of radio‐isotopic P. Plants that had greater extracellular phosphatase activity depleted more organic P from P‐deficient Oxisols than control plants. Depleted organic P forms were primarily phosphate monoesters. Plants with enhanced extracellular phosphatase activity also had access to a pool of soil P that was less isotopically exchangeable. Transgenic subterranean clover that expresses a microbial phytase gene appeared to have greater access to recently immobilized P, whereas plants expressing endogenous phosphatases utilized the unlabelled portion of soil organic P to a greater extent. Collectively, these results indicate that the enhancement of phosphatase activity in the rhizosphere of plants is implicated in the depletion of organic P forms from soils, most notably orthophosphate monoesters, whilst also suggesting that there is some exclusivity to the pools of organic P utilized by plants and microorganisms.  相似文献   

9.
红三叶草丛枝菌根对有机磷的吸收   总被引:3,自引:1,他引:3  
The capacities of two arbuscular mycorrhizal (AM) fungi, Glomus mosseae and Glomus versderme, tomineralize added organic P were studied in a sterilized calcareous soil. Mycorrhizal (inoculated with either of the AM fungi) and non-mycorrhizal red clover (Trghlium pmtense L.) plants were grown for eight weeksin pots with upper root, central hyphal and lower soil compartments. The hyphal and soil compartmentsreceived either organic P (as Na-phytate) or inorganic P (as KH2PO4) at tbe rate of 50 mg P kg-1. No P wasadded to the root compartments. Control pots received no added P. Yields were higher in mycorrhizal than innon-mycorrhizal clover. Mycorrhizal inoculation doubled shoot P concentration and more than doubled total P uptake of plaflts in P-amended soil, irrespective of the form of applied P. The mycorrhizal contributionto inorganic P uptake was 80% or 76% in plants inoculated with G. mosseae or G. verefforme, respectively. Corresponding values were 74% and 82% when Na-phytate was applied. In the root compartments of the mycorrhizal treatments, the proportion of root length infected, hyphal length density and phosphatase activity were all higher when organic P was applied than when inorganic P was added.  相似文献   

10.
丛枝菌根真菌对红三叶草利用不同有机磷源的研究   总被引:5,自引:3,他引:5  
以红三叶草为材料 ,利用三室隔网培养方法 ,施用不同有机磷源 :植酸钠 (Na -Phytate)、核糖核酸 (RNA)和卵磷脂 (Lecithin) ,研究接种菌根真菌Glmous versiforme对土壤及外加有机磷源的利用效率 ,另设无机磷及不施磷作为对照。结果表明 ,接种菌根真菌能明显增加植株干物重、含磷量和吸磷总量。与各有机磷处理相比 ,无机磷处理前期的生长效应较好 ,施用有机磷各处理在不同生长时期均明显促进了植株生长 ,但不同有机磷源之间没有显著差异。在植株吸磷量上 ,植株生长 7周以前 ,磷酸二氢钾处理高于其它处理 ,而植株生长 10周时 ,植酸钠处理高于磷酸二氢钾处理。接种菌根处理由于丛枝菌根活化了土壤有机磷 ,到植株生长 10周时其吸收有机磷的量已占吸磷总量的 76 .7%。  相似文献   

11.
Many soil microorganisms are able to transform insoluble forms of phosphorus to an accessible soluble form, contributing to plant nutrition as plant growth-promoting microorganisms (PGPM). The objective of this work was to isolate, screen and evaluate the phosphate solubilization activity of microorganisms in maize rhizosphere soil to manage soil microbial communities and to select potential microbial inoculants. Forty-five of the best isolates from 371 colonies were isolated from rhizosphere soil of maize grown in an oxisol of the Cerrado Biome with P deficiency. These microorganisms were selected based on the solubilization efficiency of inorganic and organic phosphate sources in a modified Pikovskaya's liquid medium culture containing sodium phytate (phytic acid), soybean lecithin, aluminum phosphate (AlPO4), and tricalcium phosphate (Ca3(PO4)2). The isolates were identified based on nucleotide sequence data from the 16S ribosomal DNA (rDNA) for bacteria and actinobacteria and internal transcribed spacer (ITS) rDNA for fungi. Bacteria produced the greatest solubilization in medium containing tricalcium phosphate. Strains B17 and B5, identified as Bacillus sp. and Burkholderia sp., respectively, were the most effective, mobilizing 67% and 58.5% of the total P (Ca3(PO4)2) after 10 days, and were isolated from the rhizosphere of the P efficient L3 maize genotype, under P stress. The fungal population was the most effective in solubilizing P sources of aluminum, phytate, and lecithin. A greater diversity of P-solubilizing microorganisms was observed in the rhizosphere of the P efficient maize genotypes suggesting that the P efficiency in these cultivars may be related to the potential to enhance microbial interactions of P-solubilizing microorganisms.  相似文献   

12.
The interactions between soil P availability and mycorrhizal fungi could potentially impact the activity of soil microorganisms and enzymes involved in nutrient turnover and cycling, and subsequent plant growth. However, much remains to be known of the possible interactions among phosphorus availability and mycorrhizal fungi in the rhizosphere of berseem clover (Trifolium alexandrinum L.) grown in calcareous soils deficient in available P. The primary purpose of this study was to look at the interaction between P availability and an arbuscular mycorrhizal (AM) fungus (Glomus intraradices) on the growth of berseem clover and on soil microbial activity associated with plant growth. Berseem clover was grown in P unfertilized soil (−P) and P fertilized soil (+P), inoculated (+M) and non-inoculated (−M) with the mycorrhizal fungus for 70 days under greenhouse conditions. We found an increased biomass production of shoot and root for AM fungus-inoculated berseem relative to uninoculated berseem grown at low P levels. AM fungus inoculation led to an improvement of P and N uptake. Soil respiration (SR) responded positively to P addition, but negatively to AM fungus inoculation, suggesting that P limitation may be responsible for stimulating effects on microbial activity by P fertilization. Results showed decreases in microbial respiration and biomass C in mycorrhizal treatments, implying that reduced availability of C may account for the suppressive effects of AM fungus inoculation on microbial activity. However, both AM fungus inoculation and P fertilization affected neither substrate-induced respiration (SIR) nor microbial metabolic quotients (qCO2). So, both P and C availability may concurrently limit the microbial activity in these calcareous P-fixing soils. On the contrary, the activities of alkaline phosphatase (ALP) and acid phosphatase (ACP) enzymes responded negatively to P addition, but positively to AM fungus inoculation, indicating that AM fungus may only contribute to plant P nutrition without a significant contribution from the total microbial activity in the rhizosphere. Therefore, the contrasting effects of P and AM fungus on the soil microbial activity and biomass C and enzymes may have a positive or negative feedback to C dynamics and decomposition, and subsequently to nutrient cycling in these calcareous soils. In conclusion, soil microbial activity depended on the addition of P and/or the presence of AM fungus, which could affect either P or C availability.  相似文献   

13.
The chloroform fumigation technique has been successfully employed to quantify intracellular and extracellular urease and arylsulfatase activities in soil. In this study, the same approach was evaluated for its ability to differentiate between various pools of phosphomonoesterase activities in soils and reference proteins purified from plant and microbial sources. The activities of acid and alkaline phosphatases were assayed in 10 surface soils and reference proteins at their optimal pH values before and after chloroform fumigation and in the presence and absence of toluene. Chloroform fumigation decreased the activities of acid and alkaline phosphatases in soils, on average, by 6 and 8%, respectively. Similarly, the activities of two purified reference enzyme proteins were decreased after fumigation, with acid and alkaline phosphatase activities exhibiting a reduction of 17 and 8%, respectively. Toluene treatment caused an increase in the activities of acid and alkaline phosphatases by 8 to 18% in nonfumigated soils, but showed no effect in the fumigated soils. Average enzyme protein concentrations, calculated for the 10 soils based on the activity values of the soils and the specific activity of the purified enzymes (i.e., activity values per mg protein), were 22.5 and 2.1 mg protein (kg soil)—1 for acid and alkaline phosphatase, respectively. The decrease in enzyme activity by the fumigant was either by direct denaturing of the periplasmic and extracellular portion of the particular protein after lysis of the microbial cell membrane, by absorption and/or inhibition of the released phosphomonoesterases by organic and inorganic constituents or by degradation of the protein by soil proteases. The ratios of acid phosphatase protein concentrations relative to organic C in six soils were significantly, but negatively correlated with soil organic C, suggesting differences in organic C quality. Comparison of the activity values of soil phosphatases with those of the protein concentrations present in soils indicated that alkaline phosphatase has greater catalytic efficiency than does acid phosphatase.  相似文献   

14.
In a pot experiment, the P‐efficient wheat (Triticum aestivum L.) cultivar Goldmark was grown in ten soils from South Australia covering a wide range of pH (four acidic, two neutral, and four alkaline soils) with low to moderate P availability. Phosphorus (100 mg P kg–1) was supplied as FePO4 to acidic soils, CaHPO4 to alkaline, and 1:1 mixture of FePO4 and CaHPO4 to neutral soils. Phosphorus uptake was correlated with P availability measured by anion‐exchange resin and microbial biomass P in the rhizosphere. Growth and P uptake were best in the neutral soils, lower in the acidic, and poorest in the alkaline soils. The good growth in the neutral soils could be explained by a combination of extensive soil exploitation by the roots and high phosphatase activity in the rhizosphere, indicating microbial facilitation of organic‐P mineralization. The plant effect (soil exploitation by roots) appeared to dominate in the acidic soils. Alkaline phosphatase and diesterase activities in acidic soils were lower than in neutral soils, but strongly increased in the rhizosphere compared with the bulk soil, suggesting that microorganisms contribute to P uptake in these acidic soils. Shoot and root growth and P uptake per unit root length were lowest in the alkaline soils. Despite high alkaline phosphatase and diesterase activities in the alkaline soils, microbial biomass P was low, suggesting that the enzymes could not mineralize sufficient organic P to meet the demands of plants and microorganisms. Microbial‐community composition, assessed by fatty acid methylester (FAME) analysis, was strongly dependent on soil pH, whereas other soil properties (organic‐C or CaCO3 content) were less important or not important at all (soil texture).  相似文献   

15.
A comparison of intra‐ and extracellular acid phosphatase, alkaline phosphatase and phytase activity in six fungi is reported. A strong linear relationship between intra versus extracellular fungal acid phosphatase (R2 = 0.94), alkaline phosphatase (R2 = 0.96), and phytase (R2 = 0.97) is observed. Three‐fourth of acid phosphatase were generally present inside the fungal cells and only 25 % were released extracellularly after a three weeks period. Phytase shows the reverse trend where thirty nine times higher extracellular phytase activity was noticed than present inside the fungal cells. The extracellular enzymes are found 60 % more efficient in the hydrolysis of phytin than their intracellular counterpart but they are at par in the hydrolysis of glycerophosphate. The results clearly demonstrated that phytase types of phosphatases mostly occur outside the fungal cells whereas most of the acid phosphatase and alkaline phosphatase are located inside the cells.<?show $6#>  相似文献   

16.
Summary Red clover was grown in soil previously treated with P at various rates, and growth, nutrient uptake, nutrient uptake in relation to phosphorus values, and levels of vesicular-arbuscular mycorrhizal (VAM) infection were determined. The soil was a silty clay loam and Glomus lacteum was the only fungus colonizing the plant roots. An examination of the effects of various rates of P application and of VAM colonization on nutrient (P, K, Ca, Mg, Mn, Fe, and Zn) uptake showed that the Mg : P ratio significantly increased and the Mn : P ratio significantly decreased with increasing VAM infection. It is concluded that in the Trifolium pratense-Glomus lacteum symbiosis, mycorrhizae improve Mg uptake and depress Mn uptake.  相似文献   

17.
Summary Inorganic and organic phosphates (P) were measured in bulk soil, rhizosphere soil and mycorrhizal rhizoplane soil of Norway spruce. Various methods of P extraction and estimation were compared. In addition, acid phosphatase activity and mycelial hyphae length were determined. In soil solutions from various locations, about 50% (range 35%–65%) of the total P was present as organic P. Compared to the bulk soil, the concentrations of readily hydrolysable organic P were lower in the rhizosphere soil and in the rhizoplane soil; this difference was particularly marked in the humus layer. In contrast, the concentrations of inorganic P either remained unaffected or increased. A 2- to 2.5-fold increase was found in the activity of acid phosphatase in the rhizoplane soil in comparison to the bulk soil. There was a positive correlation (r = 0.83***) between phosphatase activity and the length of mycelial hyphae. The results stress the role of organic P and of acid phosphatase in the rhizosphere in the P uptake by mycorrhizal roots of spruce trees grown on acid soils.  相似文献   

18.
磷是植物生长和发育中最重要的必须元素之一。尽管土壤中磷资源很丰富,但大部分磷是以植物不能吸收利用的固定态和有机态存在,特别是以酸性土壤为主的南方稻田,水稻缺磷现象非常严重。理解和掌握水稻对低磷的适应机制有助于利用分子手段培育磷高效利用水稻品种。为阐明蔗糖提高水稻耐低磷的机制,本研究对水稻幼苗进行不同磷、糖处理,分析水稻幼苗在不同磷糖配比培养基中的根系结构、无机磷、酸性磷酸酶活性的变化,并利用定量RT-PCR技术分析水稻磷酸转运蛋白基因(OsPT)和酸性磷酸酶基因(OsSAP1)的表达。试验设2个磷浓度:无磷和85 mg·L?1KH2PO4,2个蔗糖浓度:无糖和3%蔗糖,正交设计。结果表明,在低磷胁迫时添加蔗糖,能使水稻幼苗的根总长度、总根数、根冠比显著增加,根分泌的酸性磷酸酶活性降低,但水稻体内的磷酸转运酶活性提高。11个与磷具有高度亲和力的磷酸转运酶的表达发生了改变,其中根优势表达的4个基因OsPT2、OsPT3、OsPT4、OsPT6对磷、糖的影响最为敏感,暗示了蔗糖是通过调节磷转运蛋白维持磷的吸收和平衡。增加根系的蔗糖分配能够提高水稻幼苗对磷胁迫的耐受性。  相似文献   

19.
Seeds from two varieties of spring barley (Prisma and Camorgue) were grown axenically in water. After 14 days, the culture solutions contained organic P substances (about 4 g P per plant) derived from root exudation, representing about 3% of the total P found in the seed. Gel filtration, separated the organic P into two well defined peaks, one with a high molecular weight (>45000 daltons) and the other with a low molecular weight (<500 daltons). The bioavailability of the soluble organic P released was assessed enzymatically and chemically. At the optimum pH of 5.0, phytase and acid phosphatase hydrolysed about 80% and 65%, respectively of the organic P in the exudate after 24 h whereas at the optimum pH of 9.8, alkaline phosphatase hydrolysed up to 40% P after the same length of time. In a pH 5.0 buffer, up to 10% of the organic P was hydrolysed compared with up to 45% in a pH 9.8 buffer. The high molecular weight organic P fraction recovered from the G-75 Sephadex behaved similarly.  相似文献   

20.
Exudation of organic acids by the roots of three rice cultivars grown in three soils of different phosphorus (P) statuses, and their impacts on the rhizospheric P dynamics and P uptake by the rice plants, were investigated. Quantum root exudates from all the rice cultivars were significantly greater at 21 days after transplantation than at panicle initiation or flowering stages. Malic acid was the most predominant organic acid present in the rice root exudates (10.3 to 89.5 μmol plant?1 d?1), followed by tartaric, citric, and acetic acids. Greater exudation of organic acids from rice grown in P-deficient soil by all the rice cultivars suggested response of rice plant to P stress. Results indicate that the release of organic acids in the root exudates of rice plants can extract P from strongly adsorbed soil P fraction, thereby increasing native soil P utilization efficiency and ensuring adequate P nutrition for the growing rice plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号