首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Majdi H 《Tree physiology》2001,21(14):1057-1061
Effects of irrigation and liquid fertilization on fine root (< 1 mm) production and longevity, and fine root (< 0.5-2 mm) biomass were studied in a Norway spruce (Picea abies (L.) Karst.) stand in northern Sweden. Fine root length production and longevity were measured by the minirhizotron technique at 0-10 cm depth in the following treatments: irrigation (I), liquid fertilization (IL) and control (C). Standing root biomass and root length density (RLD) were studied in the litter-fermented humus (LFH) layer and at depths of 0-10, 10-20 and 20-30 cm using soil cores in solid fertilized (F) and C plots. Minirhizotrons were installed in October 1994 and measurements recorded monthly from July to September 1995 and during the growing season in 1996. Soil cores were sampled in 1996. Fine root production increased significantly in IL plots compared with C plots, but the I treatment did not increase root production. Root mortality increased significantly in IL plots compared with C plots. Fine root longevity in IL plots was significantly lower compared with C and I plots. No significant difference was found between longevity of fine roots in I and C plots. Compared with C, F treatment increased fine root biomass in the LFH and mineral soil layers, and increased the amount of fine roots in mineral soil layers relative to the LFH layer. Furthermore, F increased RLD and the number of mycorrhizal root tips significantly.  相似文献   

2.
We used minirhizotrons to determine the vertical distribution of fine roots in a holm oak (Quercus ilex L.) forest in a typical Mediterranean area over a 3-year period (June 1994-March 1997). We measured fine root density (number of roots per unit area), fine root length density (length of roots per unit area), fine root area index (area of roots per unit area) and fine root mean diameter. Variables were pooled for each 10-cm depth interval to a depth of 60 cm. Fine roots tended to decrease with increasing depth except between 0 and 10 cm, where the values of all fine root variables were less than in the 10-cm stratum below. Fine root vertical distribution was compared with soil water content and soil temperature at different depths in the soil profile.  相似文献   

3.
4.
Fine roots play a key role in carbon and nutrient dynamics in forested ecosystems. Fine-root dynamics can be significantly affected by forest management practices such as thinning, but research on this topic is limited. This study examined dynamics of fine roots <1 mm in diameter in a 10-year-old stand of hinoki cypress (Chamaecyparis obtusa) for 3 years following thinning (65% in basal area). Fine-root production and mortality rates were estimated using a minirhizotron technique in combination with soil coring. In both thinned and un-thinned control plots, fine-root elongation occurred from early spring to winter (March to December) and fluctuated seasonally. In the thinned and the control plots, the annual fine-root production rates were estimated to be 101 and 120 g m−2 year−1, respectively, whereas the estimated annual fine-root mortality rates were 77 and 69 g m−2 year−1, respectively. At 3 years after thinning, live fine-root biomass was significantly smaller in the thinned plot (143 g m−2) than in the control plot (218 g m−2), whereas dead fine-root biomass was not (147 and 103 g m−2, respectively). Morphological and physiological indices of fine roots such as diameter, specific root length, and root tissue density of the live fine roots was similar in both plots. These results suggested that thinning tended to decrease biomass and production of fine roots, but the effects on characteristics of fine roots would be less evident.  相似文献   

5.
We assessed above- and belowground biomass and net primary production (NPP) of a mature Larix gmelinii (Rupr.) Rupr. forest (240-280 years old) established on permafrost soils in central Siberia. Specifically, we investigated annual carbon budgets in roots in relation to root system development and availability of soil resources. Total stand biomass estimated by allometry was about 39 Mg per ha. Root biomass (17 Mg per ha) comprised about 43% of total biomass. Coarse root (>/= 5 mm in diameter) biomass was about twice that of fine roots (< 5 mm). The aboveground biomass/root biomass ratio (T/R) of the larch stand was about unity, which is much less than that of other boreal and subalpine conifer forests. The proportion of fine roots in total root biomass (35%) was relatively high compared with other cold-climate evergreen conifer forests. Total NPP, defined as the sum of annual biomass increment of woody parts and needle biomass, was estimated to be 1.8 Mg per ha per year. Allocation of total NPP to needle production was 56%. The proportion of total NPP in belowground production (27%) was less than for evergreen taiga forests. However, belowground NPP was probably under-estimated because root mortality was excluded. We conclude that L. gmelinii trees invested annual carbon gains largely into needle production or roots, or both, at the expense of growth of aboveground woody parts. This carbon allocation pattern, which resulted in the construction of exploitative root networks, appeared to be a positive growth response to the nutrient-poor permafrost soil of central Siberia.  相似文献   

6.
ABSTRACT

A natural holm oak forest was selectively thinned to test thinning as a tool to reduce tree mortality, increase productivity, and reverse the recent regression of the dominant species (Quercus ilex) induced by climate change. Thinning increased aboveground productivity and reduced stem mortality in this Mediterranean forest during four years just after thinning, contributing to the maintenance of forest functioning under changing climatic conditions. Q. ilex was the only species positively affected by the thinning: stem growth increased for all stem sizes, and mortality was significantly lower in thinned plots. On the contrary, mortality rates of Phillyrea latifolia and Arbutus unedo were not significantly lower. Stem growth increased for P. latifolia only in the smallest stem-size class. Our results highlight the suitability of selective thinning for improving the forest productivity and ensuring the conservation of Mediterranean coppices. Other benefits of selective thinning, such as a decrease in the risk of fire dispersion and an increase in the water supply for human populations, are also discussed.  相似文献   

7.
Forest soils are important components of the global carbon cycle because they both store and release carbon. Carbon dioxide is released from soil to the atmosphere as a result of plant root and microbial respiration. Additionally, soils in dry forests are often sinks of methane from the atmosphere. Both carbon dioxide and methane are greenhouse gases whose increasing concentration in the atmosphere contributes to climate warming. Thinning treatments are being implemented in ponderosa pine forests across the southwestern United States to restore historic forest structure and reduce the risk of severe wildfire. This study addresses how thinning alters fluxes of carbon dioxide and methane in ponderosa pine forest soils within one year of management and examines mechanisms of change. Carbon dioxide and methane fluxes, soil temperature, soil water content, forest floor mass, root mass, understory plant biomass, and soil microbial biomass carbon were measured before and after the implementation of a thinning and in an unthinned forest. Carbon dioxide efflux from soil decreased as a result of thinning in two of three summer months. Average summer carbon dioxide efflux declined by an average of 34 mg C m−2 hr−1 in the first year after thinning. Methane oxidation did not change in response to thinning. Thinning had no significant short-term effect on total forest floor mass, total root biomass, or microbial biomass carbon in the mineral soil. Understory plant biomass increased after thinning. Thinning increased carbon available for decomposition by killing tree roots, but our results suggest that thinning reduced carbon dioxide emissions from the soil because the reduction in belowground autotrophic respiration was larger than the stimulation of heterotrophic respiration. Methane oxidation was probably not affected by thinning because thinning did not alter the forest floor mass enough to affect methane diffusion from the atmosphere into the soil.  相似文献   

8.
长白山阔叶红松林群落的细根现存量及养分内循环   总被引:3,自引:0,他引:3  
细根(直径≤2mm)是植物吸收水分和养分的重要器官,细根通过呼吸作用和周转过程向土壤输送有机质(Jackson et al.,1997;王政权等,2008)。细根生物量虽然仅占植物体总生物量的5%左右,但由于细根生长和周转迅速,其生长量可占森林初级生产力的50%~75%(Nadelhoffer et al.,1992),每  相似文献   

9.
Examining the responses of root standing crop (biomass and necromass) and chemistry to soil warming is crucial for understanding root dynamics and functioning in the face of global climate change. We assessed the standing crop, total nitrogen (N) and carbon (C) compounds in tree roots and soil net N mineralization over the growing season after 6 years of experimental soil warming in a temperate deciduous forest in 2008. Roots were sorted into four different categories: live and dead fine roots (≤1mm in diameter) and live and dead coarse roots (1-4 mm in diameter). Total root standing crop (live plus dead) in the top 10 cm of soil in the warmed area was 42.5% (378.4 vs. 658.5 g m(-2)) lower than in the control area, while live root standing crop in the warmed area was 62% lower than in the control area. Soil net N mineralization over the growing season increased by 79.4% in the warmed relative to the control area. Soil warming did not significantly change the concentrations of C and C compounds (sugar, starch, hemicellulose, cellulose and lignin) in the four root categories. However, total N concentration in the live fine roots in the warmed area was 10.5% (13.7 vs. 12.4 mg g(-1)) higher and C:N ratio was 8.6% (38.5 vs. 42.1) lower than in the control area. The increase in N concentration in the live fine roots could be attributed to the increase in soil N availability due to soil warming. Net N mineralization was negatively correlated with both live and dead fine roots in the mineral soil that is home to the majority of roots, suggesting that soil warming increases N mineralization, decreases fine root biomass and thus decreases C allocation belowground.  相似文献   

10.
Biomass and carbon pools of disturbed riparian forests   总被引:4,自引:0,他引:4  
Quantification of carbon pools as affected by forest age/development can facilitate riparian restoration and increase awareness of the potential for forests to sequester global carbon. Riparian forest biomass and carbon pools were quantified for four riparian forests representing different seral stages in the South Carolina Upper Coastal Plain. Three of the riparian forests were recovering from disturbance (thermal pollution), whereas the fourth represents a mature, relatively undisturbed riparian forest. Above and belowground carbon pools were determined from linear transects established perpendicular to the main stream channels and spanning the width of the riparian area. The objective of this study was to quantify the biomass and carbon pools in severely disturbed, early successional bottomland hardwood riparian forests and to compare these values to those of a less disturbed, mature riparian forest.

Aboveground biomass in all four riparian forests increased during the 2.5-year investigation period. The total carbon pool in these South Carolina Coastal Plain riparian forests increased with forest age/development due to greater tree and soil carbon pools. The mature riparian forest stored approximately four times more carbon than the younger stands. The importance of the herbaceous biomass layer and carbon pool declined relative to total aboveground biomass with increasing forest age. As stands grew older fine root biomass increased, but an inverse relationship existed between percentages of fine root biomass to total biomass. The root carbon pool increased with forest age/development due to a combination of greater fine root biomass and higher root percent carbon.

Aboveground net primary production (NPP) in young riparian forests rapidly approached and exceeded NPP of the more mature riparian forest. As a woody overstory became established (after 8–10 years) annual litterfall rate as a function of NPP was independent of forest age and litterfall amount in the young riparian forests was comparable to mature riparian forests. Biomass in the riparian forest floor and carbon pool declined with increasing riparian forest development. Woody debris in these riparian forests comprised a relatively small carbon pool. An understanding of bottomland hardwood riparian forest carbon pools at different stages of succession allows us to assess how time since disturbance influences these pools, leading to a better understanding of the recovery processes.  相似文献   


11.
Fine root turnover plays a key role in carbon(C) budgets and nutrients cycles in forest ecosystems.However,the difference between branch-order-based and diameter-based approaches in estimating fine root turnover is still unclear.We studied root biomass turnover based on multiplying root standing biomass by turnover rate(inverse of median root longevity) in two Chinese temperate tree species,Fraxinus mandshurica Rupr.and Larix gmelinii Rupr.The minirhizotron(MR) technique was used to estimate longevities for first and second order roots,and total roots(R total) apparent on the MR tube surface.The corresponding biomass for each root group was estimated by soil monolith.The difference in biomass turnover between R total and the sum of the first and second order roots was used to represent the discrepancy between diameter-and order-based approaches.First order roots had shorter life spans and higher biomass turnover rates than the second order roots in both species.Biomass turnover estimated by the order-based method for F.mandshurica and L.gmelinii were 155.4 g m-2 a-1 and 158.9 g m-2 a-1,respectively,in comparison with 99.5 g m-2 a-1 and 117.7 g m-2 a-1 estimated by the diameter-based method,indicating that the diameter-based approach underestimated biomass turnover.The most probable reason was that the order-based method enhanced separation of the heterogeneous root population into relatively homogenous root groups with varying turnover rates.We conclude that separating fine root pool into different branch orders can improve the accuracy of estimates for fine root turnover,as well as the understanding of the belowground C allocation and nutrient cycling at ecosystem level.  相似文献   

12.
【目的】随着森林的发育过程,林木个体的生长和生物量分配,以及林分水平的结构和功能均发生了明显的变化。然而,细根生物量与林分年龄的联系,目前仍然了解有限。本研究以黑龙江省帽儿山地区兴安落叶松人工林为研究对象,比较了同一林分在19年和32年生时林分水平(单位面积)和单株水平细根生物量的垂直分布和季节动态,分析了影响细根生物量变化的林分与土壤因子,旨在明确林分年龄对细根生物量的影响和潜在的机制。【方法】在生长季内的5月、7月和9月,采用土钻法获取土壤0~30 cm深度细根并测定生物量,同时测定林分特征和土壤养分和水分含量。【结果】随林龄增加,落叶松人工林单位面积细根生物量显著下降,而单株细根生物量变化不显著;与19年生林分相比,32年生林分土壤表层(0~10 cm)细根生物量占总细根生物量的比例明显下降,土壤亚表层(10~20 cm)和底层(20~30 cm)细根生物量所占比例增加,呈现出细根向深层土壤增生的趋势。土壤表层(0~10cm)单位面积细根生物量随林分年龄的变化趋势与林分密度和胸高断面积、土壤铵态氮浓度变化有关,但是单株细根生物量受林分和土壤因子的影响均不显著。【结论】林分发育过程中,落叶松细根生物量降低,细根的资源吸收策略发生了明显的改变。  相似文献   

13.
2002年5-10月,采用连续钻取土芯法对帽儿山实验林场的水曲柳人工林细根(直径<1 mm)生物量、比根长(SRL)和根长密度(RLD)的季节动态,以及它们与土壤N的有效性、土壤10 cm深处月均温度和含水量的关系进行研究.结果表明:水曲柳细根生物量在春季和秋季分别具有1个明显的高峰,但比根长和根长密度只有1个高峰.在春季和夏季,比根长和根长密度较高,显示细根直径较小,而秋季,这2个参数显著下降,表明细根直径次生增厚或组织密度增加.细根的季节变化与土壤N的有效性、土壤温度和土壤含水量有重要关系.其中细根生物量与土壤铵态氮含量显著相关;硝态氮含量、10 cm深处土壤的温度和土壤含水量与细根的生物量、比根长和根长密度的季节变化正相关,但均不显著(P>0.05).4种因子的综合作用对水曲柳细根各参数的影响均达到了显著水平.不同季节细根生物量、比根长和根长密度的变化,显示出细根在生长季不同时期具有不同的生理生态功能.  相似文献   

14.
The effects of silvicultural treatments on carbon sequestration are poorly understood, particularly in areas like the Mediterranean where soil fertility is low and climatic conditions can be harsh. In order to improve our understanding of these effects, a long-term thinning experiment in a stand of Mediterranean maritime pine (Pinus pinaster Ait.) was studied to identify the effects of thinning on soil carbon (forest floor and mineral soil), above and belowground biomass and fine and coarse woody debris. The study site was a 59-year-old pinewood, where three thinnings of differing intensities were applied: unthinned (control), moderate thinning and heavy thinning. The three thinning interventions (for the managed plots) involved whole-tree harvesting. The results revealed no differences between the different thinning treatments as regards the total soil carbon pool (forest floor + mineral soil). However, differences were detected in the case of living aboveground biomass and total dead wood debris between unthinned and thinned plots; the former containing larger amounts of carbon. The total carbon present in the unthinned plots was 317 Mg ha?1; in the moderately thinned plots, it was 256 Mg ha?1 and in the case of heavily thinned plots, 234 Mg ha?1. Quantification of these carbon compartments can be used as an indicator of total carbon stocks under different forest management regimes and thus identify the most appropriate to mitigate the effects of global change. Our results indicated that thinning do not alter the total soil carbon content at medium term, suggesting the sustainability of these silvicultural treatments.  相似文献   

15.
环境因子对树木细根生物量、生产与周转的影响   总被引:40,自引:4,他引:40       下载免费PDF全文
细根在森林生态系统C平衡和养分循环中的重要作用已为大量研究所证实,树木有赖于细根吸收水分和养分,而细根对环境胁迫比较敏感,因此细根动态可指示环境变化,还可反映树木的健康状态,影响树木细根生产和周转的因子很多,本文在收集大量研究文献基础上,讨论了文献基础上,讨论了土壤养分,水分、pH值,温度等环境因子以及大气CO2增长对树木细根分布,生物量,生产和周转的影响,以期为我国开展细根生态学研究提供参考。  相似文献   

16.
The fine root dynamics of Populus euphratica forests in the upper section (Yingsu) and lower section (Alagan) habitats of the lower reaches of the Tarim River, southern Xinjiang, China, were investigated and compared by a sequential soil coring method during the growing season of 2008. Soil organic carbon, total nitrogen, soil water content, fine root biomass, necromass, and production were significantly higher in Yingsu than in Alagan, suggesting better nutrient conditions for fine root growth in Yingsu than in Alagan. Fine root biomass, necromass, and production significantly increased from April until it peaked in August, and then it decreased. Fine root biomass, necromass, and production differed significantly among the soil layers, and their largest values appeared in the soil layer 40–80?cm deep. Mean turnover rates in the 0–120?cm soil layer were 1.60 and 1.52?year?1 in Yingsu and Alagan, respectively, and the fine root turnover rate did not differ significantly between the two habitats or among the soil layers. These results show that habitat change can significantly affect fine root biomass and the production of P. euphratica forests, leading to changes in plant primary production, nutrient cycling, and carbon sequestration in forest ecosystems in the lower reaches of the Tarim River.  相似文献   

17.
细根是植物根系最重要的组成部分,作为衡量植物生产力的重要因素,对森林生态系统生产力具有重要影响。前人研究表明,细根的生产与周转对细根的寿命、分解和生物量估算具有重要意义,并且会影响森林生态系统碳、养分和水循环过程。文中系统阐述了细根生产和周转的研究进展,介绍了细根的3种主要研究方法(根钻法、内生长法和微根管法),进一步分析细根生产和周转的影响因素,即除了受植物内在因子(细根构型、根序和化学组成)的制约外,细根生产和周转还受到纬度、海拔、气候、土壤条件、土层深度等环境因子及生物因子的影响;探讨了在植物细根研究中存在的问题,并对今后的发展趋势进行了展望,以期为植物细根深入研究和根系生态学学科发展提供参考。  相似文献   

18.
Patterns of fine root biomass, production, and distribution were estimated for pure stands and mixtures of three-year-old loblolly pine (Pinus taeda L.) with red maple (Acer rubrum L.) or black locust (Robinia pseudoacacia L.) on the Virginia Piedmont to determine the role of fine roots in interference between pine and hardwood tree species. Estimates were based on amounts of live and dead fine roots separated from monthly core samples during the third growing season after planting. Live and dead fine root biomass and production varied by species, but mixtures of loblolly pine and black locust generally had greater fine root biomass and fine root production than pure stands or loblolly pine-red maple mixtures. Hardwood species had greater live fine root biomass per tree in mixtures with pine compared to pure stands. Greater live fine root biomass in pine-locust stands may be attributed to differential utilization of the soil volume by fine roots of these species. For all stands, approximately 50% of live five root biomass was located in the upper 10 cm of soil.  相似文献   

19.
In the Northern and Baltic countries, grey alder is a prospective tree species for short-rotation forestry. Hence, knowledge about the functioning of such forest ecosystems is critical in order to manage them in a sustainable and environmentally sound way. The 17-year-long continuous time series study is conducted in a grey alder plantation growing on abandoned agricultural land. The results of above- and below-ground biomass and production of the 17-year-old stand are compared to the earlier published respective data from the same stand at the ages of 5 and 10 years. The objectives of the current study were to assess (1) above-ground biomass (AGB) and production; (2) below-ground biomass: coarse root biomass (CRB), fine root biomass (FRB) and fine root production (FRP); (3) carbon (C) and nitrogen (N) accumulation dynamics in grey alder stand growing on former arable land. The main results of the 17-year-old stand were as follows: AGB 120.8 t ha?1; current annual increment of the stem mass 5.7 t ha year?1; calculated CRB 22.3 t ha?1; FRB 81 ± 10 g m?2; nodule biomass 31 ± 19 g m?2; fine root necromass 11 ± 2 g m?2; FRP 53 g DM m?2 year?1; fine root turnover rate 0.54 year?1; and fine root longevity 1.9 years. FRB was strongly correlated with the stand basal area and stem mass. Fine root efficiency was the highest at the age of 10 years; at the age of 17 years, it had slightly reduced. Grey alder stand significantly increased N and Corg content in topsoil. The role of fine roots for the sequestration of C is quite modest compared to leaf litter C flux.  相似文献   

20.
In the study reported here we examined the short-term effects (1–3 years) of slash retention (SR) and the long-term effects (13–15 years) of wood-ash application (A) on fine roots and mycorrhizae in a 40-year-old Norway spruce forest in southwest Sweden. Soil cores were used to obtain estimates of the biomass (g m−2) of roots in three diameter classes (<0.5, 0.5–1 and 1–2 mm), root length density (RLD), specific root length (SRL) and mycorrhizal root tip density (RTD). Fine root (<1 mm) length production and mortality, and mycelium production, were estimated using minirhizotron and mesh bag techniques, respectively. Compared with the control plots (C), the biomass of fine roots in diameter classes <0.5 mm and 0.5–1 mm was significantly higher in A plots, but lower in SR plots. In addition, RLD was significantly lower in the humus layer of SR plots than in the humus layers of C and A plots, but not in the other layers. None of the treatments affected the SRL. In all soil layers, the SR treatment resulted in significant reductions in the number of ectomycorrhizal root tips, and the mycelia production of fungi in mesh bags, relative to the C treatment, but the C and A treatments induced no significant changes in these variables. Fine root length production in the C, A and SR plots amounted to 94, 87 and 70 mm tube−1 during the 2003 growing season, respectively. Fine root mortality in treated plots did not change over the course of the study. We suggest that leaving logging residues on fertile sites may result in nitrogen mineralisation, which may in turn induce reductions in root biomass, and both root and mycelium production, and consequently affect nutrient uptake and the accumulation of organic carbon in soil derived from roots and mycorrhizae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号