首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Seismic data from central Tibet have been combined to image the subsurface structure and understand the evolution of the collision of India and Eurasia. The 410- and 660-kilometer mantle discontinuities are sharply defined, implying a lack of a subducting slab beneath the plateau. The discontinuities appear slightly deeper beneath northern Tibet, implying that the average temperature of the mantle above the transition zone is about 300 degrees C hotter in the north than in the south. There is a prominent south-dipping converter in the uppermost mantle beneath northern Tibet that might represent the top of the Eurasian mantle lithosphere underthrusting the northern margin of the plateau.  相似文献   

2.
King SD  Ritsema J 《Science (New York, N.Y.)》2000,290(5494):1137-1140
Numerical models demonstrate that small-scale convection develops in the upper mantle beneath the transition of thick cratonic lithosphere and thin oceanic lithosphere. These models explain the location and geochemical characteristics of intraplate volcanos on the African and South American plates. They also explain the presence of relatively high seismic shear wave velocities (cold downwellings) in the mantle transition zone beneath the western margin of African cratons and the eastern margin of South American cratons. Small-scale, edge-driven convection is an alternative to plumes for explaining intraplate African and South American hot spot volcanism, and small-scale convection is consistent with mantle downwellings beneath the African and South American lithosphere.  相似文献   

3.
Chen WP  Yang Z 《Science (New York, N.Y.)》2004,304(5679):1949-1952
Eleven intracontinental earthquakes, with magnitudes ranging from 4.9 to 6, occurred in the mantle beneath the western Himalayan syntaxis, the western Kunlun Mountains, and southern Tibet (near Xigaze) between 1963 and 1999. High-resolution seismic waveforms show that some focal depths exceeded 100 kilometers, indicating that these earthquakes occurred in the mantle portion of the lithosphere, even though the crust has been thickened there. The occurrence of earthquakes in the mantle beneath continental regions where the subduction of oceanic lithosphere ceased tens of millions years ago indicates that the mantle lithosphere is sufficiently strong to accumulate elastic strain.  相似文献   

4.
Upper mantle xenoliths found in ocean island basalts are an important window through which the oceanic mantle lithosphere may be viewed directly. Osmium isotopic data on peridotite xenoliths from the Kerguelen Islands, an archipelago that is located on the northern Kerguelen Plateau in the southern Indian Ocean, demonstrate that pieces of mantle of diverse provenance are present beneath the Islands. In particular, peridotites with unradiogenic osmium and ancient rhenium-depletion ages (to 1.36 x 10(9) years old) may be pieces of the Gondwanaland subcontinental lithosphere that were incorporated into the Indian Ocean lithosphere as a result of the rifting process.  相似文献   

5.
The lithospheric mantle beneath the Kaapvaal-Zimbabwe craton of southern Africa shows variations in seismic P-wave velocity at depths within the diamond stability field that correlate with differences in the composition of diamonds and their syngenetic inclusions. Middle Archean mantle depletion events initiated craton keel formation and early harzburgitic diamond formation. Late Archean accretionary events involving an oceanic lithosphere component stabilized the craton and contributed a younger Archean generation of eclogitic diamonds. Subsequent Proterozoic tectonic and magmatic events altered the composition of the continental lithosphere and added new lherzolitic and eclogitic diamonds to the Archean diamond suite.  相似文献   

6.
Seismic imaging of the downwelling Indian lithosphere beneath central Tibet   总被引:10,自引:0,他引:10  
A tomographic image of the upper mantle beneath central Tibet from INDEPTH data has revealed a subvertical high-velocity zone from approximately 100- to approximately 400-kilometers depth, located approximately south of the Bangong-Nujiang Suture. We interpret this zone to be downwelling Indian mantle lithosphere. This additional lithosphere would account for the total amount of shortening in the Himalayas and Tibet. A consequence of this downwelling would be a deficit of asthenosphere, which should be balanced by an upwelling counterflow, and thus could explain the presence of warm mantle beneath north-central Tibet.  相似文献   

7.
Sen G  Jones RE 《Science (New York, N.Y.)》1990,249(4973):1154-1157
The maximum depth at which large (>1000 km(3)) terrestrial mafic magma chambers can form has generally been thought to be the Moho, which occurs at a mean depth of about 35 kilometers beneath the continents and 8 kilometers beneath ocean basins. However, the presence of layers of cumulus magnesium-rich spinel and olivine and intercumulus garnet in an unusual mantle xenolith from Oahu, Hawaii, suggests that this rock is a fragment of a large magma chamber that formed at a depth of about 90 kilometers; Hawaiian shield-building magmas may pond and fractionate in such magma chambers before continuing their ascent. This depth is at or near the base of the 90-million-year-old lithosphere beneath Oahu; thus, rejuvenated stage alkalic magmas containing mantle xenoliths evidently also originate below the lithosphere.  相似文献   

8.
A mass imbalance exists in Earth for Nb, Ta, and possibly Ti: continental crust and depleted mantle both have subchondritic Nb/Ta, Nb/La, and Ti/Zr, which requires the existence of an additional reservoir with superchondritic ratios, such as refractory eclogite produced by slab melting. Trace element compositions of minerals in xenolithic eclogites derived from cratonic lithospheric mantle show that rutile dominates the budget of Nb and Ta in the eclogites and imparts a superchondritic Nb/Ta, Nb/La, and Ti/Zr to the whole rocks. About 1 to 6 percent by weight of eclogite is required to solve the mass imbalance in the silicate Earth, and this reservoir must have an Nb concentration >/= 2 parts per million, Nb/La >/= 1.2, and Nb/Ta between 19 and 37-values that overlap those of the xenolithic eclogites. As the mass of eclogite in the continental lithosphere is significantly lower than this, much of this material may reside in the lower mantle, perhaps as deep as the core-mantle boundary.  相似文献   

9.
The stretching and break-up of tectonic plates by rifting control the evolution of continents and oceans, but the processes by which lithosphere deforms and accommodates strain during rifting remain enigmatic. Using scattering of teleseismic shear waves beneath rifted zones and adjacent areas in Southern California, we resolve the lithosphere-asthenosphere boundary and lithospheric thickness variations to directly constrain this deformation. Substantial and laterally abrupt lithospheric thinning beneath rifted regions suggests efficient strain localization. In the Salton Trough, either the mantle lithosphere has experienced more thinning than the crust, or large volumes of new lithosphere have been created. Lack of a systematic offset between surface and deep lithospheric deformation rules out simple shear along throughgoing unidirectional shallow-dipping shear zones, but is consistent with symmetric extension of the lithosphere.  相似文献   

10.
In plate tectonic theory, lithosphere that descends into the mantle has a largely derivative composition, because it is produced as a refractory residue by partial melting, and cannot be resorbed readily by the parent mantle. We suggest that lithosphere sinks through the asthenosphere, or outer mantle, and accumulates progressively beneath to form an accretionary mesosphere, or inner mantle. According to this model, there is an irreversible physicochemical evolution of the mantle and its layers. We make the key assumption that the rate at which mass has been transferred from the lithosphere to the mesosphere is proportional to the rate of radiogenic heat production. Calculations of mass transfer with time demonstrate that the entire mass of the present mesosphere could have been produced in geologically reasonable times (3 x 10(9) to 4.5 x 10(9) years). The model is consistent with the generation of the continental crust during the last 3 x 1O(9) years and predicts an end to plate tectonic behavior within the next 10(9) years.  相似文献   

11.
Over 5600 short-period recordings of teleseismic events were used to create deterministic maps of P-wave scatterers in the upper mantle beneath Southern California. Between depths of 50 and 200 kilometers, the southern flank of the slab subducting beneath the Transverse Ranges is marked by strong scattering. The marked scattering indicates that the edge of the slab is a sharp thermal boundary. Such a boundary could be produced by slab shearing or small-scale convection in the surrounding mantle. The northern limb of the slab is not a strong scatterer, consistent with thicker lithosphere north of the Transverse Ranges.  相似文献   

12.
Thermobarometric and Os isotopic data for peridotite xenoliths from late Miocene and younger lavas in the Sierra Nevada reveal that the lithospheric mantle is vertically stratified: the shallowest portions (<45 to 60 kilometers) are cold (670 degrees to 740 degrees C) and show evidence for heating and yield Proterozoic Os model ages, whereas the deeper portions (45 to 100 kilometers) yield Phanerozoic Os model ages and show evidence for extensive cooling from temperatures >1100 degrees C to 750 degrees C. Because a variety of isotopic evidence suggests that the Sierran batholith formed on preexisting Proterozoic lithosphere, most of the original lithospheric mantle appears to have been removed before the late Miocene, leaving only a sliver of ancient mantle beneath the crust.  相似文献   

13.
Temperatures of equilibration for the majority (81 percent) of the eclogite xenoliths of the Roberts Victor kimberlite pipe in South Africa range between 1000 degrees and 1250 degrees C, falling essentially on the gap of the lower limb of the subcontinental inflected geotherm derived from garnet peridotite xenoliths. In view of the Archean age (>2.6 x 10(9) years) of these eclogites and their stratigraphic position on the geotherm, it is proposed that the inflected part of the geotherm represents the convective boundary layer beneath the conductive lid of the lithospheric plate. The gradient of 8 Celsius degrees per kilometer for the inflection is characteristic of a double thermal boundary layer and suggests layered convection rather than whole mantle convection for the earth.  相似文献   

14.
Hotspots, basalts, and the evolution of the mantle   总被引:2,自引:0,他引:2  
The trace element concentration patterns of continental and ocean island basalts and of mid-ocean ridge basalts are complementary. The relative sizes of the source regions for these fundamentally different basalt types can be estimated from the trace element enrichment-depletion patterns. Their combined volume occupies most of the mantle above the 670 kilometer discontinuity. The source regions separated as a result of early mantle differentiation and crystal fractionation from the resulting melt. The mid-ocean ridge basalts source evolved from an eclogite cumulate that lost its late-stage enriched fluids at various times to the shallower mantle and continental crust. The mid-ocean ridge basalts source is rich in garnet and clinopyroxene, whereas the continental and ocean island basalt source is a garnet peridotite that has experienced secondary enrichment. These relationships are consistent with the evolution of a terrestrial magma ocean.  相似文献   

15.
Observations of core-diffracted P (Pdiff) and SH (SHdiff) waves recorded by the Missouri-to-Massachusetts (MOMA) seismic array show that the ratio of compressional (P) seismic velocities to horizontal shear (SH) velocities at the base of the mantle changes abruptly from beneath the mid-Pacific (VP/VS = 1.88, also the value predicted by reference Earth models) to beneath Alaska (VP/VS = 1.83). This change signifies a sudden lateral variation in material properties that may have a mineralogical or textural origin. A textural change could be a result of shear stresses induced during the arrival at the core of ancient lithosphere from the northern Pacific paleotrench.  相似文献   

16.
Near the Mantle Electromagnetic and Tomography (MELT) Experiment, seamounts form and off-axis lava flows occur in a zone that extends farther to the west of the East Pacific Rise than to the east, indicating a broad, asymmetric region of melt production. More seamounts, slower subsidence, and less dense mantle on the western flank suggest transport of hotter mantle toward the axis from the west. Variations in axial ridge shape, axial magma chamber continuity, off-axis volcanism, and apparent mantle density indicate that upwelling is probably faster and more melt is produced beneath 17 degrees15'S than beneath 15 degrees55'S. Recent volcanism occurs above mantle with the lowest seismic velocities.  相似文献   

17.
Three-dimensional modeling of upper-mantle anelastic structure reveals that thermal upwellings associated with the two superplumes, imaged by seismic elastic tomography at the base of the mantle, persist through the upper-mantle transition zone and are deflected horizontally beneath the lithosphere. This explains the unique transverse shear wave isotropy in the central Pacific. We infer that the two superplumes may play a major and stable role in supplying heat and horizontal flow to the low-viscosity asthenospheric channel, lubricating plate motions and feeding hot spots. We suggest that more heat may be carried through the core-mantle boundary than is accounted for by hot spot fluxes alone.  相似文献   

18.
Major chemical exchange between the crust and mantle occurs in subduction zone environments, profoundly affecting the chemical evolution of Earth. The relative contributions of the subducting slab, mantle wedge, and arc lithosphere to the generation of island arc magmas, and ultimately new continental crust, are controversial. Isotopic data for lavas from a transect of volcanoes in a single arc segment of northern Honshu, Japan, have distinct variations coincident with changes in crustal lithology. These data imply that the relatively thin crustal lithosphere is an active geochemical filter for all traversing magmas and is responsible for significant modification of primary mantle melts.  相似文献   

19.
Electrical conductivity in the precambrian lithosphere of western canada   总被引:1,自引:0,他引:1  
The subcrustal lithosphere underlying the southern Archean Churchill Province (ACP) in western Canada is at least one order of magnitude more electrically conductive than the lithosphere beneath adjacent Paleoproterozoic crust. The measured electrical properties of the lithosphere underlying most of the Paleoproterozoic crust can be explained by the conductivity of olivine. Mantle xenolith and geological mapping evidence indicate that the lithosphere beneath the southern ACP was substantially modified as a result of being trapped between two nearly synchronous Paleoproterozoic subduction zones. Tectonically induced metasomatism thus may have enhanced the subcrustal lithosphere conductivity of the southern ACP.  相似文献   

20.
The reaction dolomite + 2 coesite --><-- diopside + 2 diamond + 2O(2) defines the coexistence of diamond and carbonate in mantle eclogites. The oxygen fugacity of this reaction is approximately 1 log unit higher at a given temperature and pressure than the oxygen fugacities of the analogous reactions that govern the stability of diamond in peridotite. This difference allows diamond-bearing eclogite to coexist with peridotite containing carbonate or carbonate + diamond. This potential coexistence of diamond-bearing eclogite and carbonate-bearing peridotite can explain the presence of carbon-free peridotite interlayered with garnet pyroxenites that contain graphitized diamond in the Moroccan Beni Bousera massif at the Earth's surface and the preferential preservation of diamond-bearing eclogitic relative to peridotitic xenoliths in the Roberts Victor kimberlite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号