首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Abstract

The objective of the project was to determine the effects of tillage on soil physical properties. A tillage project, involving three treatments with eight replications [no‐tillage (NT), chisel plowing (CP), and moldboard plowing (MP)], was initiated in the spring of 1989 in southern Illinois. The soil on which the work was conducted was a Grantsburg silt loam (fine‐silty, mixed, mesic Typic Fragiudalf), with a root‐restricting fragipan found at an average depth of 64 + 14 cm from the soil surface. Corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] were grown on the plot area on a yearly rotation. The soil physical properties evaluated were: penetration resistance; bulk density; aggregate stability; and pore size distribution by water‐release. Tillage effects on soil penetration resistance were mainly confined to the plow‐layer (i.e. top 23 cm of soil). Generally, the cone index (CI) values for the top 23 cm of soil for all treatments were below 2MPa, except at midseason in 1991, a dry year. Penetration resistance differences due to tillage treatments were not caused by differences in soil water content. Soil bulk density was generally highest for NT at planting, however, the bulk density for CP and MP increased later in the season attaining values comparable to those of NT treatment. Chiseling and moldboard plowing reduced soil aggregate stability. Soil temperature at planting was lower for no‐tillage compared to the moldboard plowed system. Effects of tillage on pore size distribution, for the first two years of the experiment, were significant only at planting. Total porosity was higher for MP than CP and NT in both years. At midseason, 1991, total porosity was lower with MP than with NT and CP. The improved NT crop performance relative to the CP and MP treatments could also be related to better seed bed and root bed conditions following soybean (third year) than sod (first year) and better weed control. Initial crop yield advantages of MP over the conservation tillage systems (NT and CP) deteriorated over time, resulting in decreased soil aggregation, total porosity and soil productivity.  相似文献   

2.
Tillage effects on near-surface soil hydraulic properties   总被引:1,自引:0,他引:1  
The processes for the formation of porosity are thought to differ between tilled and non-tilled cropping systems. The pores are created primarily by the tillage tool in the tilled systems and by biological processes in non-tilled systems. Because of the different methods of pore formation, the pore size distribution, pore continuity and hydraulic conductivity functions would be expected to differ among tillage systems. The objective of this study was to determine effects of three tillage systems — mold-board plow (MP), chisel plow (CP), and no-till (NT) — on hydraulic properties of soils from eight long-term tillage and rotation experiments. Tillage effects on saturated and unsaturated hydraulic conductivity, pore size distribution, and moisture retention characteristics were more apparent for soils with a continuous corn (CC) rotation than for either a corn-soybean (CS) rotation or a corn-oats-alfalfa (COA) rotation. Pore size distributions were similar among tillage systems for each soil except for three soils with a CC rotation. The MP system increased volume of pores >150 μm radius by 23% to 91% compared with the NT system on two of the soils, but the NT system increased the volume of the same radius pore by 50% on one other soil. The NT system had 30 to 180% greater saturated hydraulic conductivity than either the CP or MP systems. The NT system with a CC rotation showed a greater slope of the log unsaturated hydraulic conductivity; log volumetric water content relationship on two of the soils indicating greater water movement through a few relatively large pores for this system than for either the CP or MP systems.  相似文献   

3.
To take advantage of conservation tillage systems (including direct drilling and non-inversion) in central Iran, it is important to study the effects of different cultivation practices on soil structural stability as a physical indicator. A four-year study was conducted to investigate the effects of seven tillage systems on aggregate properties of a clay-loam soil (Calcic Cambisol) with continuous wheat (Triticum aestivum L.) production. Crop productivity was also evaluated. Tillage treatments were moldboard plowing+disking (MD) as conventional tillage; chisel plowing +disking (CD); chisel plowing+rotary tilling (CR); chisel plowing (twice)+disking (2CD); plowing with Khishchi (a regional rigid cultivator)+disking (KD) as non-inversion methods; and till-planting with cultivator combined drill (TP); and no-till (NT) as direct drilling methods. A randomized complete block design consisting of four replications was used. Samples were taken from three different soil depths. A wet sieving method was used to determine aggregate size distribution (ASD), and mean weight diameter (MWD) as indices of soil aggregate stability. Soil organic carbon was also determined. For the first three years of the experiment, ASD and MWD at 0–15 cm were similar in different tillage treatments, except for direct drilling which had a significantly higher amount of aggregate greater than 2 mm and 2–1 mm diameter compared to the conventional method. At the second and third sampling depths all treatments had similar influence on ASD and MWD. Tillage treatments showed a significant effect on ASD and MWD in the fourth year of the experiment in all three depths. Almost 70% of the aggregates in the MD system were less than 0.25 mm, while only 55% of the aggregates in the direct drilling methods were less than 0.25 mm diameter. The four-year yield average for conventional and non-inversion tillage systems was 7264 and 6815 kg ha−1, respectively. Although, direct drilling improved soil structural stability, its lower yield (5608 and 4731 kg ha−1 for TP and NT, respectively) potential would indicate that reduced tillage systems (i.e. CD) appear to be the accepted alternative management compared to conventional practice (MD).  相似文献   

4.
Many factors including management history, soil type, climate, and soil landscape processes affect the dynamics of soil organic carbon (SOC). The primary objective of this research was to determine the effects of no-tillage and tillage systems on the SOC content after 12 years of controlled treatments. A tillage experiment with three treatments (no-till (NT), chisel plow (CP) and moldboard plow (MP)) was initiated in the spring of 1989 in southern Illinois. The plot area was previously in a tall fescue hayland for 15 years and had a 6% slope. Maize (Zea mays L.) and soybean (Glycine max L. Merr.) were grown in the plot area on a yearly rotation system starting with maize. Periodically, the SOC content of various soil layers, to a depth of either 30 or 75 cm, was measured and expressed on both a gravimetric and volumetric basis. After 12 years, the 0–15 cm surface soil layer of MP was significantly lower in SOC than the NT and CP plots. For all but 2 values, the significance of findings did not change with the form of expression (gravimetric versus volumetric). The surface layer (0–15 cm), subsoil (15–75 cm), and rooting zone (0–75 cm) of all treatments had reduction in SOC on a volumetric basis when compared to the pre-treatment values for sod. At the end of the 12-year study, the MP system had significantly less SOC in the surface layer, subsurface layer and rooting zone than the NT system at comparable depths. After 12 years of tillage under a maize–soybean rotation, the NT treatment sequestered or maintained more SOC stock (47.0 Mt ha−1) than the CP (43.7 Mt ha−1) and MP (37.7 Mt ha−1) treatments. The annual rate of SOC stock build up in the root zone (0–75 cm), above the MP system base, was 0.71 Mt ha−1 year−1 for the NT system and 0.46 Mt ha−1 year−1 for the CP system. For land coming out of the Conservation Reserve Program and returning to row crop production, NT and CP systems would maintain more SOC stock than MP system and reduce CO2 emissions to the atmosphere.  相似文献   

5.
6.
Cracking due to soil shrinkage is a complex process whose effect on soil properties, crop growth and water quality are not adequately understood. The intensity of cracking depends on soil characteristics and management. The effect of three axle loads and three tillage methods on shrinkage characteristics and cracking behavior were studied for a heavy-textured lake bed soil in northwest Ohio. The three axle load treatments were 0, 10 and 20 Mg, and the three tillage treatments were no till (NT), chisel plowing (CP) and moldboard plowing (MP). Cracking area increased from 1.75% in July to 12.27% in September, was maximum in the NT treatment, and increased with increase in axle load. The no till and 30 Mg axle load caused significantly higher cracking than other axle load and tillage treatment combinations. Shrinkage of compressed soil cores under laboratory conditions showed that a bulk density of 1.5 Mg/m3 had the lowest total shrinkage volume. A combination of no till and heavy axle load increased the cracking area and accentuated adverse effects on soil structure.  相似文献   

7.
Numerous investigators of tillage system impacts on soil organic carbon (OC) or total nitrogen (N) have limited their soil sampling to depths either at or just below the deepest tillage treatment in their experiments. This has resulted in an over-emphasis on OC and N changes in the near-surface zones and limited knowledge of crop and tillage system impacts below the maximum depth of soil disturbance by tillage implements. The objective of this study was to assess impacts of long-term (28 years) tillage and crop rotation on OC and N content and depth distribution together with bulk density and pH on a dark-colored Chalmers silty clay loam in Indiana. Soil samples were taken to 1 m depth in six depth increments from moldboard plow and no-till treatments in continuous corn and soybean–corn rotation. Rotation systems had little impact on the measured soil properties; OC content under continuous corn was not superior to the soybean–corn rotation in either no-till or moldboard plow systems. The increase in OC (on a mass per unit area basis) with no-till relative to moldboard plow averaged 23 t ha−1 to a constant 30 cm sampling depth, but only 10 t ha−1 to a constant 1.0 m sampling depth. Similarly, the increase in N with no-till was 1.9 t ha−1 to a constant 30 cm sampling depth, but only 1.4 t ha−1 to a constant 1.0 m sampling depth. Tillage treatments also had significant effects on soil bulk density and pH. Distribution of OC and N with soil depth differed dramatically under the different tillage systems. While no-till clearly resulted in more OC and N accumulation in the surface 15 cm than moldboard plow, the relative no-till advantage declined sharply with depth. Indeed, moldboard plowing resulted in substantially more OC and N, relative to no-till, in the 30–50 cm depth interval despite moldboard plowing consistently to less than a 25 cm depth. Our results suggest that conclusions about OC or N gains under long-term no-till are highly dependent on sampling depth and, therefore, tillage comparisons should be based on samples taken well beyond the deepest tillage depth.  相似文献   

8.
Determining soil quality indicators by factor analysis   总被引:1,自引:0,他引:1  
Soil quality indicators (SQIs) can be used to evaluate sustainability of land use and soil management practices in agroecosystems. The objective of this study was to identify appropriate SQI from factor analysis (FA) of five treatments: no-till corn (Zee mays) without manure (NT), no-till corn with manure (NTM), no-till corn–soybean (Glycine max) rotation (NTR), conventional tillage corn (CT), and meadow (M) in Coshocton, Ohio. Soil properties were grouped into five factors (eigenvalues > 1) for the 0–10 cm depth as: (Factor 1) water transmission, (Factor 2) soil aeration, (Factor 3) soil pore connection 1, (Factor 4) soil texture and (Factor 5) moisture status. Factor 2 was the most dominant, with soil organic carbon (SOC) the most dominant measured soil attribute contributing to this factor. For the 10–20 cm depth, factors identified were: (Factor 6) soil aggregation, (Factor 7) soil pore connection 2, (Factor 8) soil macropore, and (Factor 9) plant production. At 10–20 cm depth, Factor 6 was most dominant with SOC the most dominant measured soil attribute. Management × sample and slope position × sample interactions were significant among some factors for both depths. Overall, SOC was the most dominant measured soil attribute as a SQI for both depths. Other key soil attributes were field water capacity, air-filled porosity, pH and soil bulk density for the 0–10 cm depth, and total N and mean weight diameter of aggregates for the 10–20 depth. Therefore, SOC could play an important role for monitoring soil quality.  相似文献   

9.
Abstract

Soils of the Argentine humid pampa region are usually weakly structured due to its high silt content. Selecting crop sequence or tillage systems are an alternative in small farms for the protection of the soil against physical degradation and erosion given that conservation practices, grass meadows, and fertilizers are expensive and therefore rarely used. Evaluation of selected soil properties was conducted on soil sampled from a long‐term tillage experiment with continuous soybean established in 1975 on a Typic Argiudoll silty loam soil in Argentina. Tillage treatments included conventional tillage with moldboard plow (CT), chisel plow (CP), and no till (NT). A comparison with continuous corn under NT was also carried out. Sampling was performed after the emergence of both crops in 1990. Tillage and cropping treatments affected properties related to soil slacking and dispersion to a greater extent than they did on aggregate size distribution. According to the De Leenheer and De Boodt index, aggregate stability within soybean soil classified as bad for CT, unsatisfactory for CP, and very good for NT, whereas the soil with corn under NT classified as excellent. The no tillage treatment within soybean had significantly more organic carbon in the 0–5 cm depth than CP or CT. Soil respiration was significantly higher in NT than in CT in the surface layer, while CT showed higher values in the 10–15 cm depth. Tillage treatments did not significantly affect microbial biomass under soybean cropping. The effect of monoculture corn versus monoculture soybean under NT on soil respiration, biomass and organic carbon was not significant. Soil pH in the 0–5 cm depth under soybean was in the order NT > CP > CT, whereas the soil with corn under NT was more acid than the soybean soil (P=0.05). Cation exchange capacity and exchangeable bases followed a similar trend. Organic carbon (0–5 cm depth) and aggregate stability were significantly correlated when samples from all treatments were considered.  相似文献   

10.
In permanent no-till (NT), soil nutrients are no longer mixed into the topsoil as with moldboard plow/disking (MD), whereas chisel/disking (CD) does limited mixing. Surface broadcast and/or banded nutrient applications may result in high and low fertility zones in permanent NT, with possible implications for soil sampling and nutrient placement. We investigated effects of 25 years of continuous NT, CD and MD with corn planted in the same row locations on organic matter (SOM), pH-H2O and Mehlich-3 extractable phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg). Vertical distribution at 0–5, 5–10 and 10–15 cm depths was measured as well as horizontal distributions across corn rows. We observed higher SOM and P in NT and CD than in MD in the 0–15 cm layer. SOM content was greatest in the top 5 cm in NT, but declined sharply with depth. SOM content in CD was not as high at the surface as in NT, but did not decline as fast as in NT. SOM was uniform but low throughout the 0–15 cm depth of MD. In all tillage systems, SOM did not vary across rows. Soil pH was higher in the 0–5 cm layer of NT than the deeper layers but the reverse was true in the CD or MD treatments. Concentrations of P, K and Ca were higher in the surface 0–5 cm than 10–15 cm depth of all tillage systems, but most strikingly in NT and CD. Starter fertilizer injection resulted in higher P and lower pH in the injection zone of all tillage treatments, but most notably in NT. The pH was depressed under the band of side-dressed nitrogen with all tillage systems. Potassium accumulated in the rows of the previous crop, probably because it leached from crop residue that accumulated there. Tillage did not affect Mg distribution. Optimal nutrient management in NT should take account of horizontal and vertical nutrient and pH distributions. Samples in long-term NT could potentially be taken to a shallower depth if calibration curves are available. To avoid underestimating P and K availability or overestimate lime needs, high P or decreased pH bands should be avoided, as well as crop rows. Possibilities to reduce P and K applications with banding need more investigation. Results show the importance of regular liming in NT to maintain surface pH in the optimum range, but also show that lime does not have to be incorporated.  相似文献   

11.
Conservation farming practices are often considered effective measures to increase soil organic C (SOC) sequestration and/or to reduce CO2 emissions resulting from farm machinery operation. The long-term CO2 mitigation potentials of no-till (NT) versus conventional till (CT), stubble retention (SR) versus stubble burning (SB) and N fertilisation (NF) versus no N application (N0) as well as their interactions were examined on a Vertosol (Vertisol) in semi-arid subtropical Queensland, Australia by taking into account their impacts on SOC content, crop residue C storage, on-farm fossil fuel consumption and CO2 emissions associated with N fertiliser application. The experimental site had been cropped with wheat (Triticum aestivum L.) or barley (Hordeum vulgare L.) with a summer fallow for 33 years.

Where NT, SR or NF was applied alone, no significant effect on SOC was found in the 0–10, 10–20 and 0–20 cm depths. Nonetheless, the treatment effects in the 0–10 cm depth were interactive and maximum SOC sequestration was achieved under the NT + SR + NF treatment. Carbon storage in crop residues decreased substantially during the fallow period, to a range between 0.4 Mg CO2-e ha−1 under the CT + SB + NF treatment and 2.4 Mg CO2-e ha−1 under the NT + SR + N0 treatment (CO2-e stands for CO2 equivalent). The cumulative fossil fuel CO2 emission over 33 years was estimated to be 2.2 Mg CO2-e ha−1 less under NT than under CT systems. Cumulative CO2 emissions from N fertiliser application amounted to 3.0 Mg CO2 ha−1. The farm-level C accounting indicated that a net C sequestration of 4.5 Mg CO2-e was achieved under the NT + SR + NF treatment, whilst net CO2 emissions ranging from 0.5 to 6.0 Mg CO2-e ha−1 over 33 years occurred under other treatments.  相似文献   


12.
Wheat production in Morocco is constrained by both scarce climate and degraded soil quality. There is an urgent need to revert production decline while restoring country’s soils. Among conservation tillage systems known for their improvement in yield, no-till technology was found to influence soil quality as well. Soil quality indices are also affected by wheat rotations at medium and long-terms. This paper discusses changes in selected properties of a Calcixeroll soil, including total and particulate soil organic matter (SOM), pH, total N and aggregation, subjected, for 11 consecutive years, to various conservation and conventional agricultural systems. Tillage systems included no-tillage (NT) and conventional tillage (CT). Crop rotations were continuous wheat, fallow–wheat, fallow–wheat–corn, fallow–wheat–forage and fallow–wheat–lentils. Higher aggregation, carbon sequestration, pH decline and particulate organic matter (POM) buildup are major changes associated with shift from conventional- to NT system. Better stability of aggregates was demonstrated by a significantly greater mean weight diameter under NT (3.8 mm) than CT system (3.2 mm) at the soil surface. There was 13.6% SOC increase in (0–200 mm) over the 11-year period under NT, while CT did not affect much this soil quality indicator. Another valuable funding is the stratification of SOC and total nitrogen in NT surface horizon (0–25 mm) without their depletion at deeper horizon compared to tillage treatments. Fallow–wheat system resulted in reduction of SOC compared to WW, but 3-year wheat rotation tended to improve overall soil quality. Benefits from crop rotation in terms of organic carbon varied between 2.6 and 11.7%, with fallow–wheat–forage exhibiting the maximum. Combined use of NT and 3-year fallow rotation helped to improve soil quality in this experiment.  相似文献   

13.
Soil N mineralization was quantified in two long-term experiments in northern France, in which no-till (NT) and conventional tillage (CT) had been differentiated for 33 years (Site 1) and 12 years (Site 2). Both sites had the same soil type but differed in crop rotation. N mineralization kinetics were assessed in situ in bare soil in both systems for 254 days (Site 1) and 555 days (Site 2) by taking frequent measurements of water and nitrate contents from soil layers and using the LIXIM calculation model. The N mineralization potential was also determined in soil samples incubated under controlled laboratory conditions. Small or non-significant differences in water and nitrate contents between NT and CT were apparent within the soil profiles on both sites. Net mineralization did not differ significantly between sites or tillage treatments. The amount of N mineralized from August 2003 to April 2004 was 67 ± 10 kg N ha−1 on Site 1 and 74 ± 5 kg N ha−1 on Site 2, and 161 ± 6 kg N ha−1 from August 2003 to February 2005 on Site 2. The kinetics of N mineralization versus normalized time (equivalent time at constant temperature of 15 °C and water content at field capacity) were linear during the shorter period (254 days corresponding to 120 normalized days). The slope (N mineralization rate) did not differ significantly between treatments and sites, and the average rate was 0.57 ± 0.05 kg N ha−1 nd−1. The kinetics were non-linear on Site 2 over the longer period (555 days corresponding to 350 normalized days). They could be fitted to an exponential model with a slope at the origin of 0.62 kg N ha−1 nd−1. The N mineralization kinetics obtained in laboratory incubations for 120–150 normalized days were also almost linear with no significant differences between treatments. Assuming that mineralization took place in the ploughed layer (in CT) or over the same soil mass (in NT) they were in good agreement with the kinetics determined in situ on both sites. The calculated water drainage below the sampled profile was slightly greater in NT due to lower evaporation. The calculated leached N was slightly higher in NT than CT on Site 1, but did not differ between treatments on Site 2. It is concluded that N mineralization and leaching in NT and CT were similar, despite large differences in N distribution within the soil profile and a slight difference in organic N stock.  相似文献   

14.
No-till (NT) farming (conservation agriculture) began in the US in the 1960s. The state of Ohio has a university research location that began no-till research in 1962. A few innovative Ohio farmers, including NT pioneers David Brandt and Bill Richards, were early adopters of the new conservation practice. Initially, no-till was most successful on sloping, well drained soils, then with improvements to the system, including cover crops, it became more widely adopted on all soil types. David Brandt was an enthusiastic learner and teacher of no-till practices, working with chemical company representatives and Cooperative Extension Specialists to demonstrate the system.David Brandt's cooperation with Ohio State University researchers continues to provide a valuable site for studying the long term changes in soil health and ecosystem services. Results showed that total microbial biomass as one of the soil biological health indicators significantly increased with an associated decrease in carbon (C) loss under NT compared with conventional tilled soil (CT). Under NT, there was significantly higher total C and total N compared to CT. Active C, as a composite measure of soil health, significantly increased with NT. When cover crops, especially cover crop cocktail mixes, were used, NT substantially improved soil health. Long-term NT with cover crop cocktail mixes significantly increased the soil aggregate stability, compared with CT. The overall rate of C sequestration by NT suggested that the soils on the Brandt farm act as a consistent sink of atmospheric CO2 although this tends to level off after about 20 years. The Brandt farm showed that crop yields are increased under long-term NT with cover crops mixes. Results suggested that starting with a cover crop when switching from CT to NT, is more likely to ensure success and to maintain economic crop yields.Another early adopter, Bill Richards, from Circleville, Ohio, also became a national leader and promoter of no-till farming. He served as head of the United States Department of Agriculture's Natural Resources Conservation Service in the early 1990s and instituted a program that led to rapid expansion of no-till. He advises that farmers who follow conservation agriculture principles need to be more proactive, from local level to national levels, to influence policy decisions that can lead to robust improvement in soil health.  相似文献   

15.
Soil erosion and depositional processes in relation to land use and soil management need to be quantified to better understand the soil organic carbon (SOC) dynamics. This study was undertaken on a Miamian soil (Oxyaquic Hapludalfs) under on-farm conditions in western Ohio with the objectives of evaluating the effects of degree of erosion on SOC stock under a range of tillage systems. Six farms selected for this study were under: no-till (NT) for 15, 10, 6 and 1.5 years; chisel till every alternate year with annual manure application (MCT); and annual chisel till (ACT). A nearby forest (F) site on the same soil was chosen as control. Using the depth of A horizon as an indicator of the degree of erosion, four erosion phases identified were: uneroded (flat fields under F, NT15, and on the summit of sloping fields under NT10, NT6, NT1.5 and MCT); deposition (NT10, NT6, NT1.5 and ACT); slight (NT10, MCT and ACT); and moderate erosion (NT10 and ACT). Core and bulk soil samples were collected in triplicate from four depths (i.e., 0–10, 10–20, 20–30 and 30–50 cm) for each erosional phase in each field for the determination of bulk density, and SOC concentrations and stocks. SOC concentration in NT fields increased at a rate of 5% year−1 for 0–10 cm and 2.5% year−1 for 10–20 cm layer with increasing duration under NT. High SOC concentration for NT15 is indicative of SOC-sequestration potential upon conversion from plow till to NT. SOC concentration declined by 19.0–14.5 g kg−1 in MCT and 11.3–9.7 g kg−1 in NT10 between uneroded and slight erosion, and 12.0–11.2 g kg−1 between slight and moderate erosion in ACT. Overall SOC stock was greatest in the forest for each of the four depths. Total SOC stock for the 50 cm soil layer varied in the order F (71.99 Mg ha−1) > NT15 (56.10 Mg ha−1) > NT10 (37.89 Mg ha−1) = NT6 (36.58 Mg ha−1) for uneroded phase (P < 0.05). The lack of uneroded phase in ACT indicated high erosion risks of tillage, as also indicated by the high SOC stock for deposition phase from 0 to 50 cm soil layer (ACT (56.56 Mg ha−1) > NT1.5 (42.70 Mg ha−1) > NT10 (30.97 Mg ha−1)). Tillage increased soil erosion and decreased SOC stock for top 10 cm layer for all erosional phases except deposition.  相似文献   

16.
Quality of agricultural soils is largely a function of soil organic matter. Tillage and crop management impact soil organic matter dynamics by modification of the soil environment and quantity and quality of C input. We investigated changes in pools and fluxes of soil organic C (SOC) during the ninth and tenth year of cropping with various intensities under conventional disk-and-bed tillage (CT) and no tillage (NT). Soil organic C to a depth of 0.2 m increased with cropping intensity as a result of greater C input and was 10% to 30% greater under NT than under CT. Sequestration of crop-derived C input into SOC was 22±2% under NT and 9±4% under CT (mean of cropping intensities ± standard deviation of cropping systems). Greater sequestration of SOC under NT was due to a lower rate of in situ soil CO2 evolution than under CT (0.22±0.03 vs. 0.27±0.06 g CO2–C g−1 SOC yr−1). Despite a similar labile pool of SOC under NT than under CT (1.1±0.1 vs. 1.0±0.1 g mineralizable C kg−1 SOC d−1), the ratio of in situ to potential CO2 evolution was less under NT (0.56±0.03) than under CT (0.73±0.08), suggesting strong environmental controls on SOC turnover, such as temperature, moisture, and residue placement. Both increased C sequestration and a greater labile SOC pool were achieved in this low-SOC soil using NT and high-intensity cropping.  相似文献   

17.
A wide range of tillage systems have been used by producers in the Corn-Belt in the United States during the past decade due to their economic and environmental benefits. However, changes in soil organic carbon (SOC) and nitrogen (SON) and crop responses to these tillage systems are not well documented in a corn–soybean rotation. Two experiments were conducted to evaluate the effects of different tillage systems on SOC and SON, residue C and N inputs, and corn and soybean yields across Iowa. The first experiment consisted of no-tillage (NT) and chisel plow (CP) treatments, established in 1994 in Clarion–Nicollet–Webster (CNW), Galva–Primghar–Sac (GPS), Kenyon–Floyd–Clyde (KFC), Marshall (M), and Otley–Mahaska–Taintor (OMT) soil associations. The second experiment consisted of NT, strip-tillage (ST), CP, deep rip (DR), and moldboard plow (MP) treatments, established in 1998 in the CNW soil association. Both corn and soybean yields of NT were statistically comparable to those of CP treatment for each soil association in a corn–soybean rotation during the 7 years of tillage practices. The NT, ST, CP, and DR treatments produced similar corn and soybean yields as MP treatment in a corn–soybean rotation during the 3 years of tillage implementation of the second experiment. Significant increases in SOC of 17.3, 19.5, 6.1, and 19.3% with NT over CP treatment were observed at the top 15-cm soil depth in CNW, KFC, M, and OMT soil associations, respectively, except for the GPS soil association in a corn–soybean rotation at the end of 7 years. The NT and ST resulted in significant increases in SOC of 14.7 and 11.4%, respectively, compared with MP treatment after 3 years. Changes in SON due to tillage were similar to those observed with SOC in both experiments. The increases in SOC and SON in NT treatment were not attributed to the vertical stratification of organic C and N in the soil profile or annual C and N inputs from crop residue, but most likely due to the decrease in soil organic matter mineralization in wet and cold soil conditions. It was concluded that NT and ST are superior to CP and MP in increasing SOC and SON in the top 15 cm in the short-term. The adoption of NT or CP can be an effective strategy in increasing SOC and SON in the Corn-Belt soils without significant adverse impact on corn and soybean yields in a corn–soybean rotation.  相似文献   

18.
Tillage, organic resources and fertiliser effects on soil carbon (C) dynamics were investigated in 2000 and 2001 in Burkina Faso (West Africa). A split plot design with four replications was laid-out on a loamy-sand Ferric Lixisol with till and no-till as main treatments and fertiliser types as sub-treatments. Soil was fractionated physically into coarse (0.250–2 mm), medium (0.053–0.250 mm) and fine fractions (< 0.053 mm). Particulate organic carbon (POC) accounted for 47–53% of total soil organic carbon (SOC) concentration and particulate organic nitrogen (PON) for 30–37% of total soil nitrogen concentration. The POC decreased from 53% of total SOC in 2000 to 47% of total SOC in 2001. Tillage increased the contribution of POC to SOC. No-till led to the lowest loss in SOC in the fine fraction compared to tilled plots. Well-decomposed compost and single urea application in tilled as well as in no-till plots induced loss in POC. Crop N uptake was enhanced in tilled plots and may be up to 226 kg N ha−1 against a maximum of 146 kg N ha−1 in no-till plots. Combining crop residues and urea enhanced incorporation of new organic matter in the coarse fraction and the reduction of soil carbon mineralisation from the fine fraction. The PON and crop N uptake are strongly correlated in both till and no-till plots. Mineral-associated N is more correlated to N uptake by crop in tilled than in no-till plots. Combining recalcitrant organic resources and nitrogen fertiliser is the best option for sustaining crop production and reducing soil carbon decline in the more stabilised soil fraction in the semi-arid West Africa.  相似文献   

19.
A multi-year experiment was conducted to compare the effects of conservation tillage (no-till and ridge-till) with conventional plow tillage on organic C, N, and resin-extractable P in an alkaline semi-arid subtropical soil (Hidalgo sandy clay loam, a fine-loamy, mixed, hyperthermic Typic Calciustoll) at Weslaco, TX (26°9′N 97°57′W). Tillage comparisons were established on irrigated plots in 1992 as a randomized block design with four replications. Soil samples were collected for analyses 1 month before cotton planting of the eighth year of annual cotton (planted in March) followed by corn (planted in August).

No-till resulted in significantly (p<0.01) greater soil organic C in the top 4 cm of soil, where the organic C concentration was 58% greater than in the top 4 cm of the plow-till treatment. In the 4–8 cm depth, organic C was 15% greater than the plow-till control. The differences were relatively modest, but consistent with organic C gains observed in hot climates where conservation tillage has been adopted. Higher concentrations of total soil N occurred in the same treatments, however a significant (p<0.01) reduction in N was detected below 12 cm in the ridge-till treatment. The relatively low amount of readily oxidizable C (ROC) in all tillage treatments suggests that much of the soil organic C gained is humic in nature which would be expected to improve C sequestration in this soil.

Against the background of improved soil organic C and N, bicarbonate extractable P was greater in the top 8 cm of soil. Some of the improvement, however, appeared to come from a redistribution or “mining” of P at lower soil depths. The results indicate that stratification and redistribution of nutrients were consistent with known effects of tillage modification and that slow improvements in soil fertility are being realized.  相似文献   


20.
Soil carbon (C) losses and soil translocation from tillage operations have been identified as causes of soil degradation and soil erosion. The objective of this work was to quantify the variability in tillage-induced carbon dioxide (CO2) loss by moldboard (MP) and chisel (CP) plowing across an eroded landscape and relate the C loss to soil properties. The study site was a 4 ha wheat (Triticum aestivum L. cv. Marshall) field with rolling topography and five soil types in the Svea-Barnes complex in west central Minnesota (N. Latitude = 45°41′W, Longitude = 95°43′). Soil properties were measured at several depths at a 10 m spacing along north–south (N–S) and west–east (W–E) transects through severely eroded, moderately eroded and non-eroded sites. Conventional MP (25 cm deep) and CP (15 cm deep) equipment were used along the pre-marked transects. Gas exchange measurements were obtained with a large, portable chamber within 2 m of each sample site following tillage. The measured CO2 fluxes were largest with the MP > CP > not tilled (before tillage). The variation in 24 h cumulative CO2 flux from MP was nearly 3-fold on the N–S transect and 4-fold on the W–E transect. The surface soil organic C on the transects was lowest on the eroded knolls at 5.1 g C kg−1 and increased to 19.6 g C kg−1 in the depositional areas. The lowest CO2 fluxes were measured from severely eroded sites which indicated that the variation in CO2 loss was partially reflected by the degradation of soil properties caused by historic tillage-induced soil translocation with some wind and water erosion.

The spatial variation across the rolling landscape complicates the determination of non-point sources of soil C loss and suggests the need for improved conservation tillage methods to maintain soil and air quality in agricultural production systems.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号