首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
In order to obtain paper respirator with dust resistance performance and antibacterial property, silk photo-catalytic respirator paper was made by loading nano-TiO2 photo-catalyst on silk based respirator paper. The pore structure, surface topography and TiO2 distribution, and the filtration performance of silk respirator paper were studied by using a pore size meter (PSM), a field emission scanning electron microscope (FESEM), and a filter tester, respectively. In addition, the antibacterial property of silk respirator paper was also investigated. The results showed that the pore structure and filtration performance of silk respirator paper could be controlled by changing the degree of beating of silk pulp and the basis weight of silk paper. Silk respirator paper of 45 g/m2 made from silk pulp having beating degree of 85 oSR had high filtration efficiency and appropriate filtration resistance. Nano-TiO2 particles were mainly attached to the surface of silk paper, and the loading of nano-TiO2 photo-catalyst resulted in a slight decrease in filtration resistance and filtration efficiency of silk respirator paper. It, however, improved the antibacterial property of silk respirator paper effectively.  相似文献   

2.
Bombyx mori (B. mori) silk was modified with the nano-TiO2 and chitosan dispersion system by the crosslinking reactions of citric acid (CA) and maleic anhydride (MA). The average size of the nano-TiO2 particles in the aqueous dispersion system was 36.7 nm. The scanning electron microscopy (SEM) micrographs showed that the nano-TiO2 particles were spherical and homogeneously dispersed in the dispersion system, and the surface ofB. mori silk fiber treated with the nano-TiO2 and chitosan dispersion system was rougher than that of the untreated one. X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) Spectrometry indicated that the crystallinity of theB. mori silk fiber increased after treatment. It was also found that the nano-TiO2 and chitosan contributed to significantly enhance the mechanical properties including breaking strength, breaking elongation, initial modulus, rupture work, and elastic recovery property of theB. mori silk fiber. The wrinkle-resistant performance of the treatedB. mori silk fabrics was also greatly improved.  相似文献   

3.
By incorporating organic-inorganic nano-hybridization into wet phase inversion coating-forming method, a novel antimicrobial polyurethane synthetic leather coating with in-situ generated nano-TiO2 (PUT) was prepared. The antibacterial activity against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Micrococcus luteus, antifungal activity against Aspergillus niger and toxicity of this PUT coating were investigated respectively. Experimental results showed that the antimicrobial activity of the PUT coating increased with increasing nano-TiO2 concentration. Low nano-TiO2 concentration (≤0.50 wt%) resulted in negligible or limited antimicrobial activity. When the nano-TiO2 concentration increased up to 0.75 and 1.00 wt%, the antibacterial activity of the PUT coating exceeded 82 and 93 % respectively, and no Aspergillus niger growth was observed on the coating surface within 28 days. Cell culture assay indicated that the PUT coating had no detrimental effect on the morphologies and proliferation rate of normal human dermal fibroblasts, which indicated a non-toxic and skin-friendly characteristic. According to these results, the PUT coating was capable of reducing the risk of microbial contamination while remained skin-friendly to wearers. More importantly, the organic-inorganic nano-hybridization technique developed in this study was carried out simultaneously during the established wet phase inversion coating-forming method for PU leather manufacture, which promised its possible application on an industrial scale.  相似文献   

4.
The properties of polarizing films prepared using iodine vapor and using I2/KI solution are compared to investigate the possibility of using vapor phase iodine adsorption in preparing polarizing film. The structure of PVA films drawn to different draw ratios and the amount of iodine adsorbed in drawn PVA films using iodine vapor were investigated. Increases in the degree of crystallinity, crystalline orientation index and birefringence with increase in draw ratio of PVA film, were observed by WAXD and polarizing microscope analysis. The amounts of iodine adsorbed by PVA film were 2–4 wt% for 20 min. UV-visible analysis suggests that I3 ? and I5 ? structures of iodine exist in the polarizing film after drawing in boric acid solution. Single transmittance and degree of polarization of polarizing films prepared using iodine vapor were about 30–50 % and over 99 %, respectively, at total draw ratios of over 3. The possibility of employing vapor phase adsorption of iodine instead of solution adsorption to prepare commercial polarizing film is suggested.  相似文献   

5.
The wrinkle-resistant property of cotton specimens treated by 1,2,3,4-butanetetracarboxylic acid (BTCA) and catalysed by sodium hypophosphite (SHP) in the presence of TiO2 or nano-TiO2 has been evaluated in the present study. In this study, Scanning Electron Microscopy proved the presence of TiO2 or nano-TiO2 on the fibre surface. It was also found that 0.1–0.2 % TiO2 or nano-TiO2 was the optimum concentration to enhance the wrinkle-resistance of BTCA-SHP-treated cotton fabrics. In addition, the TiO2 or nano-TiO2 added in the wrinkle-resistant treatment could act as a multi-functional finishing agent to improve the UV protection property while they are safe to human skin as proved by the cytotoxicity test. Therefore, TiO2 or nano-TiO2 was evident that they could enhance the finishing performance and minimise the side effect.  相似文献   

6.
Quantitative adsorption kinetic and equilibrium parameters for indigo carmine dyeing of silk were studied using UV-visible absorption spectroscopy. The effect of initial dye concentration, contact time, pH, material to liquor ratio (MLR), and temperature were determined to find the optimal conditions for adsorption. The mechanism of adsorption of indigo carmine dyeing onto silk was investigated using the pseudo first-order and pseudo second-order kinetic models. The adsorption kinetics was found to follow a pseudo-second-order kinetic model with an activation energy (E a) of 51.06 kJ/mol. The equilibrium adsorption data of indigo carmine dye on silk were analyzed by the Langmuir and Freundlich models. The results indicate that the Langmuir model provides the best correlation. Adsorption isotherms were also used to obtain thermodynamic parameters such as free energy (ΔG o), enthalpy (ΔH o), and entropy (ΔS o) of adsorption. The negative values of ΔG o and ΔH o indicate the overall adsorption process is a spontaneous and exothermic one.  相似文献   

7.
Silk yarn was dyed with morin (2′,3,4′,5,7-pentahydroxyflavone) by using alum as mordant. In order to optimize the process, three methods of dyeing involving: pre-mordanting, simultaneous mordanting, and post-mordanting were assessed and compared with a mordant-free process. The adsorption of alum-morin dye onto silk fibers indicated that the adsorption capacities were significantly affected by pH, the initial dye concentration, and temperature. The initial dye adsorption rates of alum-morin dye on silk before equilibrium was reached increased with higher dyeing temperatures. The pseudo second-order kinetic model was indicated for alum-morin dyeing (simultaneous mordanting) of silk at pH 4.0 with an activation energy (E a ) of 45.26 kJ/mol. The value of the enthalpy of activation (ΔH #) for alum-morin dyeing on silk at pH 4.0 was −31.29 kJ/mol. Also, the free energy (ΔG o) and entropy changes (ΔS o) for alum-morin dyeing on silk were −17.73 kJ/mol and −45.7 J/molK, respectively, consistent with a spontaneous and exothermic adsorption process.  相似文献   

8.
In this paper, a silane coupling agent, 3-aminopropyltriethoxysilane, was reacted with nano-TiO2 to introduce amino group onto it which was then reacted with trichlorotriazine to obtain a dichlorotriazine functionalized nano-TiO2 for the firm fixation of it on cotton fibers. The reaction process was monitored by the titration of primary and secondary amino groups, and the reaction conditions were optimized with orthogonal method accordingly. The dichlorotriazine functionalized nano-TiO2 was reacted with cotton fabric by the nucleophile substitution reaction to afford nano-TiO2 functionalized cotton fabric, the structure and surface morphology of the nano-TiO2 finished cotton fibers were studied by FT-TR and SEM. In addition, the fixation duration of the nano-TiO2 modified cotton was studied according to AATCC test method 61–2010. The results show that the washing fastness of the nano-TiO2 is excellent.  相似文献   

9.
By combining the organic-inorganic hybridization, wet phase inversion, and electrospinning, novel electrospun polyurethane (PU) membranes with in-situ generated nano-TiO2 were prepared, which satisfied the requirements of an ideal wound dressing. The morphology of the PU-TiO2 mats and the cross sectional morphologies of the membranes were characterized by a scanning electron microscopy (SEM). The average diameter of the individual fibers obtained from the solutions was 341±12 nm. SEM micrographs with higher magnification further showed that the in-situ generated TiO2 particles were well-separated and dispersed homogeneously in the membranes. The average sizes of TiO2 particles were increased from 31 to 57 nm, with the increase of nano-TiO2 concentration. The water vapor transmission rates (WVTRs) of the membranes were in the range of 373.55–3121.86 g/m2·d and decreased gradually with the increase of nano-TiO2 concentration. The water absorption of various PU membranes was in the range of 210.90–397.98 % which was enough to prevent wound beds from exudate accumulation. Shake flask testing indicated that the PU membrane exhibited antibacterial efficiency against Pseudomonas aeruginosa (Ps. aeruginosa) and Staphylococcus aureus (S. aureus) due to in-situ generated of nano-TiO2. These electrospun nanofibrous membranes also had no toxic effect and showed good and immediate adherence to L929 cells.  相似文献   

10.
Poly(ethylene terephthalate) (PET)/CaCO3 and PET/modified-CaCO3 (m-CaCO3) nanocomposites were prepared by melt blending. The morphology indicated that m-CaCO3 produced by reacting sodium oxalate and calcium chloride, was well dispersed in PET matrix and showed good interfacial interaction with PET compared to CaCO3. No significant differences in the thermal properties such as, glass transition, melting and degradation temperatures, of the nanocomposites were observed. The thermal shrinkage of PET at 120 °C was 10.8 %, while those of PET/CaCO3 and PET/m-CaCO3 nanocomposites were 2.9–5.2 % and 1.2–2.8 %, respectively depending on filler content. The tensile strength of PET/CaCO3 nanocomposite decreased with CaCO3 loading, whereas that of PET/m-CaCO3 nanocomposites at 0.5 wt% loading showed a 17 % improvement as compared to neat PET. The storage modulus at 120 °C increased from 1660 MPa for PET to 2350 MPa for PET/CaCO3 nanocomposite at 3 wt% loading, and 3230 MPa for PET/m-CaCO3 nanocomposite at 1 wt% loading.  相似文献   

11.
Natural fibers are largely divided into two categories depending on their origin: plant based and animal based. Plant based natural jute fiber reinforced polypropylene (PP) matrix composites (20 wt% fiber) were fabricated by compression molding. Bending strength (BS), bending modulus (BM), tensile strength (TS), Young’s modulus (YM), and impact strength (IS) of the composites were found 44.2 MPa, 2200 MPa, 41.3 MPa, 750 MPa and 12 kJ/m2, respectively. Animal based natural B. mori silk fiber reinforced polypropylene (PP) matrix composites (20 wt% fiber) were fabricated in the same way and the mechanical properties were compared over the silk based composites. TS, YM, BS, BM, IS of silk fiber reinforced polypropylene composites were found 55.6 MPa, 760 MPa, 57.1 MPa, 3320 MPa and 17 kJ/m2 respectively. Degradation of composites in soil was measured upto twelve weeks. It was found that plant based jute fiber/PP composite losses its strength more than animal based silk fiber/PP composite for the same period of time. The comparative study makes it clear that mechanical properties of silk/PP composites are greater than those values of jute/PP composites. But jute/PP composites are more degradable than silk/PP composites i.e., silk/PP composites retain their strength for a longer period than jute/PP composites.  相似文献   

12.
Normal corn, Hylon V and Hylon VII starches were partially degraded by acid-ethanol treatment and applied to heat-moisture treatment (HMT) for improving the enzymatic resistance of starch. The weight-average degree of polymerization (DPw) of acid-ethanol-treated (AET) corn starches ranged from 6.75 × 105 to 181, 4.48 × 105 to 121, and 1.94 × 105 to 111 anhydrous glucose units for normal corn, Hylon V and Hylon VII starches, respectively. Starch retained its granular structure after AET and HMT, recovery of starch granules after modifications were higher than 92%. Resistant starch (RS) content and boiling-stable RS content of corn starch increased after dual modification, and the increment increased with increasing duration of AET. The boiling-stable RS content of dual-modified starch increased from 1.5 to 9.2, 12.2 to 24.1, and 18.0 to 36.2% for normal corn, Hylon V and Hylon VII starches, respectively. Increments of RS content and boiling-stable RS content of dual-modified starches were significantly correlated (r2 > 0.700) with DPw of starch, revealing that the enzymatic resistance of dual-modified corn starch granules increased with decreasing molecular size of starch. Result also suggested that starch granules partially degraded with AET could improve the molecular mobility and ordering during the consequent HMT.  相似文献   

13.
In this paper, the effect of water hardness, expressed in CaCO3 equivalent, on the dyeing silk with acid dye under acid, alkaline and isoelectric point dyeing conditions was studied by zeta potential method. Under acid condition and in the presence of calcium ion, the positive zeta potential of silk was found to decrease with a reduction in the dye adsorption. Such a phenomenon might be due to the presence of cation which increased the dyeing potential barrier at the interface between fibre and dye solution. This would result in a higher resistance of dye anions passing through the interface. Under alkaline condition, the zeta potential on silk was negative and resulted in a strong potential barrier for the dye anions. The presence of calcium ion would result in a decrease in the absolute value of zeta potential of silk fibre with an overall increase in dye absorption. Under isoelectric point, the zeta potential of silk fibre was found to be near zero and dye adsorption was not influenced by the cations. When studying the effect of calcium ion on the silk dyeing with acid dye under acid, alkaline and isoelectric point dyeing conditions, it was found that calcium ions influenced dye exhaustion and fixation greatly under acidic and alkaline dyeing conditions, which such influence became much smaller when the pH of dyebath was at the isoelectric point of the fibre. These results showed that calcium ion could produce strong electrolytic effect on dyeing even under very low concentrations.  相似文献   

14.
The efficient and safe flocculation of colored wastewaters from textile and leather industries is of great significance for natural environment and human health. In this work, an eco-friendly bamboo pulp cellulose grafting ployacrylamide (BPC-g-PAM) flocculant was synthesized and employed to remove organic dyes from dye solutions by flocculation. The flocculation performance of the synthesized BPC-g-PAM was evaluated by chroma and turbidity removals of a series of cationic and disperse dye solutions. A L9(34) orthogonal experiment was designed to optimize the flocculation process of the BPC-g-PAM. The positive results showed that, the BPC-g-PAM exhibited an excellent flocculation performance to organic dye solutions. The average decolorization rate reached 96.7 % and the chroma could be reduced to 5° or even lower for the disperse dye solutions. The mechanism of the BPC-g-PAM flocculation to disperse dyes was investigated and determined as chemical adsorption kinetics. Furthermore, the eco-friendly BPC-g-PAM also held an excellent biodegradability of 66.5 % at 45 d and 67.6 % at 90 d in soil extracting solution, which were far higher than the corresponding data of the commercial PAM.  相似文献   

15.
Alkaline sulfite–anthraquinone (AS/AQ) pulping of wheat straw and totally chlorine free (TCF) bleaching of resulting pulps was investigated. Wheat straw was supplied by the Ferdosii University Experimental Station in Northeastern Iran, cleaned and chopped into about 3–5 cm long pieces. In the AS/AQ pulping experiments, the active alkali charge on oven dry wheat straw, heating time to maximum cooking temperature, AQ dose and liquor to straw ratio were kept constant at 16%, 60 min, 0.1% and 4/1, respectively. The alkali ratio, Na2SO3/NaOH, calculated as NaOH, was varied from 20/80 to 80/20. Cooking time at maximum temperature was varied from 30 to 90 min and maximum cooking temperature was adjusted between 152 and 160 °C. Reference soda and soda/AQ pulps were produced.AS/AQ and soda/AQ pulps with kappa numbers below 15 were produced easily. Cooking of corresponding soda pulps under comparable conditions stopped at a kappa number of 25. The characteristics of unbleached AS/AQ, soda/AQ and soda pulps were compared. AS/AQ and soda/AQ pulps had similar tensile strength but tear was in favor to AS/AQ. The latter had much higher yield and brightness.TCF bleaching of AS/AQ pulp was performed in O Q (OP) or O Q (OP) P sequences. Oxygen delignification (O) resulted in a delignification degree of approximately one third. Followed by a chelating treatment (Q) and a subsequent (OP) stage under drastic conditions a brightness of 82.7% ISO was achieved in an O Q (OP) sequence. The sequence O Q (OP) P, with 2% H2O2 in the final P stage, improved brightness from 77.2% ISO after the OP stage to 83.6% ISO. Bleaching led to only small losses in tensile and burst strength but enhanced tear strength. Short beating in a Jokro mill was sufficient to attain good pulp strength. The results of this study indicate that AS/AQ pulping and TCF bleaching is a convincing alternative to produce high-quality pulp from wheat straw for writing and printing paper.  相似文献   

16.
Depithed Sudanese bagasse was examined for its suitability for pulp production. Bagasse fibre dimensions, morphological and chemical characteristics are reported. The pulping trials were carried out with soda–AQ and alkaline sulphite–AQ (AS–AQ) methods and soda method as reference. The AS–AQ pulping gave the best results in yield, degree of delignification, mechanical and optical pulp properties. Blending of bagasse and bamboo alkaline sulphite–anthraquinone pulps in different ratios gave well-balanced pulp strength characteristics with good tensile and tear indices, widening the range of different end products from bagasse pulp. Totally chlorine free bleaching (Q1O/PQ2P) of the best unbleached bagasse pulps gave bleached pulps of 76.9% ISO brightness, suitable for use in writing and printing grades of paper.  相似文献   

17.
We report on the in situ synthesis and stabilization of manganese dioxide (MnO2) onto four different silk yarns (mulberry, tasar, muga and eri silks). A new ultrasound-assisted procedure was used to reduce permanganate (MnO4 ?) and yielded MnO2 nanoparticles (NPs) on/in the different silk fibers. Using a factorial design we assessed the influence of the silk type, manganese precursor concentration, sonication time, and temperature. The results indicated no measurable effect of the process parameters on the silk structures, but significant correlation with the rate of degradation of methylene blue (MB) and the fraction of permanganate consumed. Further optimization of the factorial model identified the optimal process conditions for each silks: mulberry (150 min sonication, 20 mM permanganate), eri (360 min, 10 mM), tasar (150 min, 10 mM) and Muga (20 min, 10 mM). The operational stability (successive catalysis) of the optimum hybrids showed good performance over 5 cycles and most importantly reduced direct dye absorption relatively to dye oxidation. Overall, we found that all silks could template the formation and stabilization of different MnO2 polymorphs and yielded catalytic instead of stoichiometric hybrid fibers.  相似文献   

18.
Polyacrylonitrile (PAN) nanoparticles were successfully prepared by dispersion polymerization of acrylonitrile (AN) in water using 10 and 20 wt% of the poly(ethylene oxide)-b-PAN macromolecular RAFT (PEO-b-PAN macro-RAFT) agent (M n=5,600 g/mol, PDI=1.15). The degrees of polymerization of the PEO and PAN blocks were 113 and 16, respectively. The PAN nanoparticles had a crumpled spherical appearance and their sizes ranged from 50–80 nm. The degree of crystallinity of the PAN particles was 23 %. The M n values of the PAN nanoparticles prepared with 10 and 20 wt% of the PEO-b-PAN macro-RAFT agent were 33,900 and 25,800 g/mol, respectively. The existence of the PEO block on the surface of the PAN nanoparticles was confirmed by 1H NMR spectroscopy and XPS.  相似文献   

19.
Quaternized chitosan (QCS) was prepared and its interface behavior on cellulosic substrates was investigated. FT-IR result indicated that quaternary ammonium groups were connected to -NH2 in chitosan, and the highest degree of substitution (DS) of QCS was 80.0 %. The adsorption behavior of QCS was well performed on cellulosic substrates. The initial critical concentrations of QCS were between 10 mg/l and 20 mg/l, which were related to its DS and the weight average molecular weight (M w ): the critical concentration decreased with the increasing DS of QCS, and the concentration increased when M w increased. The results from SEM and particle size revealed that the flocculation took place mainly because the electrostatic interaction between cellulosic substrates and QCS, which can be accelerated by forming a charge patch. At last, QCS displayed high efficiency as a retention and drainage-aid agent through a Schopper-Riegler beating degrees tester.  相似文献   

20.
Titanium dioxide (TiO2) is one of the excellent photocatalysts used for degradation of environmetal pollutants. In this work, 2.5, 5.0 and 7.5 wt.% of silver (Ag)-loaded TiO2 nanofibers of mean size 52–134 nm were synthesized by electrospinning method. These electrospun nanofibers were calcined at 500 °C to enable the transformation of Rutile (R) phase to Anatase (A), elimination of reaction moieties from the TiO2 matrix and subsequently formation of Ag clusters. The effect of Ag loading on the morphology, crystal structure, phase transformation, and band gap of these electrospun nanofibers have been characterized by scannining electron microscopy (SEM), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), raman spectroscopy and UV-visible spectroscopy. These nanofibers exhibited a red-shift in the absorbance edge and a significant enhancement of light absorption in the wavelength range of 250–550 nm. These electrospun nanofibers were investigated for photodecomposition of methylene blue (MB), and photocatalytic decolorization rates were determined by pseudo-first-order equation. The rate constants for the pure and those of 2.5, 5.0, and 7.5 wt% Agloaded TiO2 nanofibers were computed to be 0.1439 min-1, 0.1608 min-1, 0.1876 min-1, and 0.2251 min-1 respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号