首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Byer RL 《Science (New York, N.Y.)》1988,239(4841):742-747
Diode laser-pumped solid-state lasers are efficient, compact, all solid-state sources of coherent optical radiation. Major advances in solid-state laser technology have historically been preceded by advances in pumping technology. The helical flash lamps used to pump early ruby lasers were superseded by the linear flash lamp and arc lamp now used to pump neodymium-doped yttrium-aluminum-garnet lasers. The latest advance in pumping technology is the diode laser. Diode laser-pumped neodymium lasers have operated at greater than 10 percent electrical to optical efficiency in a single spatial mode and with linewidths of less than 10 kilohertz. The high spectral power brightness of these lasers has allowed frequency extension by harmonic generation in nonlinear crystals, which has led to green and blue sources of coherent radiation. Diode laser pumping has also been used with ions other than neodymium to produce wavelengths from 946 to 2010 nanometers. In addition, Q-switched operation with kilowatt peak powers and mode-locked operation with 10-picosecond pulse widths have been demonstrated. Progress in diode lasers and diode laser arrays promises all solid-state lasers in which the flash lamp is replaced by diode lasers for average power levels in excess of tens of watts and at a price that is competitive with flash lamp-pumped laser systems. Power levels exceeding 1 kilowatt appear possible within the next 5 years. Potential applications of diode laser-pumped solid-state lasers include coherent radar, global sensing from satellites, medical uses, micromachining, and miniature visible sources for digital optical storage.  相似文献   

2.
We demonstrate enhanced generation of coherent light in the "water window" region of the soft x-ray spectrum at 4.4 nanometers, using quasi-phase-matched frequency conversion of ultrafast laser pulses. By periodically modulating the diameter of a gas-filled hollow waveguide, the phase mismatch normally present between the laser light and the generated soft x-ray light can be partially compensated. This makes it possible to use neon gas as the nonlinear medium to coherently convert light up to the water window, illustrating that techniques of nonlinear optics can be applied effectively in the soft x-ray region of the spectrum. These results advance the prospects for compact coherent soft x-ray sources for applications in biomicroscopy and in chemical spectroscopy.  相似文献   

3.
We report on stimulated Raman scattering in an approximately 1-meter-long hollow-core photonic crystal fiber filled with hydrogen gas under pressure. Light was guided and confined in the 15-micrometer-diameter hollow core by a two-dimensional photonic bandgap. Using a pulsed laser source (pulse duration, 6 nanoseconds; wavelength, 532 nanometers), the threshold for Stokes (longer wavelength) generation was observed at pulse energies as low as 800 +/- 200 nanojoules, followed by a coherent anti-Stokes (shorter wavelength) generation threshold at 3.4 +/- 0.7 microjoules. The pump-to-Stokes conversion efficiency was 30 +/- 3% at a pulse energy of only 4.5 microjoules. These energies are almost two orders of magnitude lower than any other reported energy, moving gas-based nonlinear optics to previously inaccessible parameter regimes of high intensity and long interaction length.  相似文献   

4.
The first step in vision: femtosecond isomerization of rhodopsin   总被引:6,自引:0,他引:6  
The kinetics of the primary event in vision have been resolved with the use of femtosecond optical measurement techniques. The 11-cis retinal prosthetic group of rhodopsin is excited with a 35-femtosecond pump pulse at 500 nanometers, and the transient changes in absorption are measured between 450 and 580 nanometers with a 10-femtosecond probe pulse. Within 200 femtoseconds, an increased absorption is observed between 540 and 580 nanometers, indicating the formation of photoproduct on this time scale. These measurements demonstrate that the first step in vision, the 11-cis----11-trans torsional isomerization of the rhodopsin chromophore, is essentially complete in only 200 femtoseconds.  相似文献   

5.
By performing cryogenic laser spectroscopy under a scanning probe electrode that induces a local electric field, we have resolved two individual fluorescent molecules separated by 12 nanometers in an organic crystal. The two molecules undergo a strong coherent dipole-dipole coupling that produces entangled sub- and superradiant states. Under intense laser illumination, both molecules are excited via a two-photon transition, and the fluorescence from this doubly excited system displays photon bunching. Our experimental scheme can be used to optically resolve molecules at the nanometer scale and to manipulate the degree of entanglement among them.  相似文献   

6.
We experimentally demonstrate emission of two quantum-mechanically correlated light pulses with a time delay that is coherently controlled via temporal storage of photonic states in an ensemble of rubidium atoms. The experiment is based on Raman scattering, which produces correlated pairs of spin-flipped atoms and photons, followed by coherent conversion of the atomic states into a different photon beam after a controllable delay. This resonant nonlinear optical process is a promising technique for potential applications in quantum communication.  相似文献   

7.
Encoding of olfactory information with oscillating neural assemblies   总被引:1,自引:0,他引:1  
In the brain, fast oscillations of local field potentials, which are thought to arise from the coherent and rhythmic activity of large numbers of neurons, were observed first in the olfactory system and have since been described in many neocortical areas. The importance of these oscillations in information coding, however, is controversial. Here, local field potential and intracellular recordings were obtained from the antennal lobe and mushroom body of the locust Schistocerca americana. Different odors evoked coherent oscillations in different, but usually overlapping, ensembles of neurons. The phase of firing of individual neurons relative to the population was not dependent on the odor. The components of a coherently oscillating ensemble of neurons changed over the duration of a single exposure to an odor. It is thus proposed that odors are encoded by specific but dynamic assemblies of coherently oscillating neurons. Such distributed and temporal representation of complex sensory signals may facilitate combinatorial coding and associative learning in these, and possibly other, sensory networks.  相似文献   

8.
Self-amplified spontaneous emission in a free-electron laser has been proposed for the generation of very high brightness coherent x-rays. This process involves passing a high-energy, high-charge, short-pulse, low-energy-spread, and low-emittance electron beam through the periodic magnetic field of a long series of high-quality undulator magnets. The radiation produced grows exponentially in intensity until it reaches a saturation point. We report on the demonstration of self-amplified spontaneous emission gain, exponential growth, and saturation at visible (530 nanometers) and ultraviolet (385 nanometers) wavelengths. Good agreement between theory and simulation indicates that scaling to much shorter wavelengths may be possible. These results confirm the physics behind the self-amplified spontaneous emission process and forward the development of an operational x-ray free-electron laser.  相似文献   

9.
Phase-matched harmonic conversion of visible laser light into soft x-rays was demonstrated. The recently developed technique of guided-wave frequency conversion was used to upshift light from 800 nanometers to the range from 17 to 32 nanometers. This process increased the coherent x-ray output by factors of 10(2) to 10(3) compared to the non-phase-matched case. This source uses a small-scale (sub-millijoule) high repetition-rate laser and will enable a wide variety of new experimental investigations in linear and nonlinear x-ray science.  相似文献   

10.
We demonstrate highly efficient cavity ringdown spectroscopy in which a broad-bandwidth optical frequency comb is coherently coupled to a high-finesse optical cavity that acts as the sample chamber. 125,000 optical comb components, each coupled into a specific longitudinal cavity mode, undergo ringdown decays when the cavity input is shut off. Sensitive intracavity absorption information is simultaneously available across 100 nanometers in the visible and near-infrared spectral regions. Real-time, quantitative measurements were made of the trace presence, the transition strengths and linewidths, and the population redistributions due to collisions and the temperature changes for molecules such as C2H2, O2, H2O, and NH3.  相似文献   

11.
A circadian rhythm of egg hatching in the moth Pectinophora gossypiella can be initiated with a brief light pulse. The action spectrum for this effect has a peak in the blue and near ultraviolet region of the spectrum with a sharp cutoff above 500 nanometers and a more gradual cutoff below 390 nanometers.  相似文献   

12.
Reversible electrochemical injection of discrete numbers of electrons into sterically stabilized silicon nanocrystals (NCs) (approximately 2 to 4 nanometers in diameter) was observed by differential pulse voltammetry (DPV) in N,N'-dimethylformamide and acetonitrile. The electrochemical gap between the onset of electron injection and hole injection-related to the highest occupied and lowest unoccupied molecular orbitals-grew with decreasing nanocrystal size, and the DPV peak potentials above the onset for electron injection roughly correspond to expected Coulomb blockade or quantized double-layer charging energies. Electron transfer reactions between positively and negatively charged nanocrystals (or between charged nanocrystals and molecular redox-active coreactants) occurred that led to electron and hole annihilation, producing visible light. The electrogenerated chemiluminescence spectra exhibited a peak maximum at 640 nanometers, a significant red shift from the photoluminescence maximum (420 nanometers) of the same silicon NC solution. These results demonstrate that the chemical stability of silicon NCs could enable their use as redox-active macromolecular species with the combined optical and charging properties of semiconductor quantum dots.  相似文献   

13.
Measuring atomic-resolution images of materials with x-ray photons during chemical reactions or physical transformations resides at the technological forefront of x-ray science. New x-ray-based experimental capabilities have been closely linked with advances in x-ray sources, a trend that will continue with the impending arrival of x-ray-free electron lasers driven by electron accelerators. We discuss recent advances in ultrafast x-ray science and coherent imaging made possible by linear-accelerator-based light sources. These studies highlight the promise of ultrafast x-ray lasers, as well as the technical challenges and potential range of applications that will accompany these transformative x-ray light sources.  相似文献   

14.
Microspectrophotometric measurements of individual dark-adapted rhabdoms of the prawn Palaemonetes vulgaris reveal the presence of two light-sensitive pigments. A pigment with maximum absorbancy at 555 nanometers is converted by light to a long-lived intermediate with wavelength of maximum absorbancy at 496 nanometers. A second pigment with wavelength of maximum absorbancy at 496 nanometers bleaches in the light, seemingly without forming detectable products at wavelengths longer than 375 nanometers. Both pigments occur in each layer of microvilli.  相似文献   

15.
A general method of manipulating adsorbed atoms and molecules on room-temperature surfaces with the use of a scanning tunneling microscope is described. By applying an appropriate voltage pulse between the sample and probe tip, adsorbed atoms can be induced to diffuse into the region beneath the tip. The field-induced diffusion occurs preferentially toward the tip during the voltage pulse because of the local potential energy gradient arising from the interaction of the adsorbate dipole moment with the electric field gradient at the surface. Depending upon the surface and pulse parameters, cesium (Cs) structures from one nanometer to a few tens of nanometers across have been created in this way on the (110) surfaces of gallium arsenide (GaAs) and indium antimonide (InSb), including structures that do not naturally occur.  相似文献   

16.
Precision spectroscopy at ultraviolet and shorter wavelengths has been hindered by the poor access of narrow-band lasers to that spectral region. We demonstrate high-accuracy quantum interference metrology on atomic transitions with the use of an amplified train of phase-controlled pulses from a femtosecond frequency comb laser. The peak power of these pulses allows for efficient harmonic upconversion, paving the way for extension of frequency comb metrology in atoms and ions to the extreme ultraviolet and soft x-ray spectral regions. A proof-of-principle experiment was performed on a deep-ultraviolet (2 x 212.55 nanometers) two-photon transition in krypton; relative to measurement with single nanosecond laser pulses, the accuracy of the absolute transition frequency and isotope shifts was improved by more than an order of magnitude.  相似文献   

17.
An unusual distribution of particle sizes has been observed following the formation of molybdenum particles by argon ion sputtering. Many of the molybdenum particles produced by sputtering at the threshold pressure for particle formation in the vapor appear to be single crystalline cubes. There are two prominent peaks in the edge length distribution of the cubes, one centered at 4.8 nanometers with a halfwidth of approximately 1.3 nanometers and the other at 17.5 nanometers. The peak for the larger cubes is approximately square and has a total width of 7.0 nanometers. Evidence is presented that the larger cubes are formed by a 3 by 3 by 3 self-arrangement of the smaller cubes, which contain approximately 7000 atoms. Self-arrangement in inorganic structures is normally only observed when the building blocks are atoms, molecules, or clusters of less than 100 atoms.  相似文献   

18.
Picosecond optical excitation was used to coherently control the excitation in a single quantum dot on a time scale that is short compared with the time scale for loss of quantum coherence. The excitonic wave function was manipulated by controlling the optical phase of the two-pulse sequence through timing and polarization. Wave function engineering techniques, developed in atomic and molecular systems, were used to monitor and control a nonstationary quantum mechanical state composed of a superposition of eigenstates. The results extend the concept of coherent control in semiconductors to the limit of a single quantum system in a zero-dimensional quantum dot.  相似文献   

19.
Femtosecond optical measurement techniques have been used to study the primary photoprocesses in the light-driven transmembrane proton pump bacteriorhodopsin. Light-adapted bacteriorhodopsin was excited with a 60-femtosecond pump pulse at 618 nanometers, and the transient absorption spectra from 560 to 710 nanometers were recorded from -50 to 1000 femtoseconds by means of 6-femtosecond probe pulses. By 60 femtoseconds, a broad transient hole appeared in the absorption spectrum whose amplitude remained constant for about 200 femtoseconds. Stimulated emission in the 660- to 710-nanometer region and excited-state absorption in the 560- to 580-nanometer region appeared promptly and then shifted and decayed from 0 to approximately 150 femtoseconds. These spectral features provide a direct observation of the 13-trans to 13-cis torsional isomerization of the retinal chromophore on the excited-state potential surface. Absorption due to the primary ground-state photoproduct J appears with a time constant of approximately 500 femtoseconds.  相似文献   

20.
Lloyd S 《Science (New York, N.Y.)》1993,261(5128):1569-1571
Arrays of weakly coupled quantum systems might compute if subjected to a sequence of electromagnetic pulses of well-defined frequency and length. Such pulsed arrays are true quantum computers: Bits can be placed in superpositionsof 0 and 1, logical operations take place coherently, and dissipation is required only for error correction. Operated with frequent error correction, such a system functions as a parallel digital computer. Operated in a quantum-mechanically coherent manner, such a device functions as a generalpurpose quantum-mechanical micromanipulator, capable of both creating any desired quantum state of the array and transforming that state in any desired way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号