首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent evidence from nitrogen (N) saturation studies indicates that forest floors in moderately impacted forests are the primary sink for atmospheric N inputs. Some researchers have suggested that the sink capacity of organic horizons is dependent on the amount of available carbon (C), which can be used for microbial N assimilation. To test the hypothesis that C limitation in forest floors exposed to chronic N deposition leads to an enhanced N leaching, a field C input manipulation experiment is under way in a deciduous forest. Since September 1999 aboveground C input has been doubled (by doubling litter input or by amending glucose) or excluded in replicated plots. Here we report the short-term response of concentrations of dissolved inorganic N (DIN: NO3 ?-N and NH4 +-N) in forest floor percolate to the C input manipulation. In autumn following the C input manipulation, DIN concentrations in forest floor percolate decreased in all plots except the No Litter plots compared to the pre-treatment summer concentrations. In contrast, the concentrations of DIN in the No Litter plots remained high. A different seasonal pattern of DIN leaching among treatments, along with measurements of microbial biomass C and potential nitrification rates of forest floor samples, indicates that seasonal N dynamics in the forest floor are largely regulated by C availability changes assoicated with litterfall C input.  相似文献   

2.
Forest floor and mineral soil samples were collected from subalpine spruce-fir forests at 1000 m above mean sea level on 19 mountains in the northeastern United States to assess patterns in trace metal concentrations, acidity, and organic matter content. The regional average concentrations of Pb, Cu, and Zn in the forest floor were 72.3 (2.9 s.e.) μg g?1, 8.5 (0.7) μg g?1, and 46.9 (2.0) μg g?1, respectively. The regional average concentrations of Pb, Cu, and Zn in the mineral soil were 13.4 (0.8) μg g?1, and 18.2 (1.2) μg g?1, respectively. The regional average pH values of the forest floor and mineral soil were 3.99 (0.03), and 4.35 (0.03), respectively. The Green Mountains had the highest concentrations of Pb (105.7 μg g?1), and Cu (22.7 μg g?1), in the forest floor. They also had the highest concentrations of Cu (18.0 μg g?1), in the mineral soil. Site aspect did not significantly influence any of the values. Concentrations of Pb were lower than concentrations reported earlier in this decade at similar sites while concentrations of Cu and Zn remained the same. We believe that these lower Pb concentrations reflect real changes in forest Pb levels that have occurred in recent years.  相似文献   

3.
We investigated the fate of added N and its effect on N fluxes in a long-term nitrogen fertilisation experiment. Ammonium nitrate was added annually (30 years) at mean rates of 0 (N0), 35 (N1), 73 (N2) and 108 (N3) kg N ha?1 yr?1 to a spruce forest in Sweden, which initially showed signs of N deficiency. Net N mineralisation and N leaching were measured in situ together with soil N pools. We used the PnET-CN model to model the maximum sustainable net N mineralisation rate. The short-term fate of added N was studied by addition of 15NH4Cl. In N1 and N2 most of the added N (80–120%) was retained in the system, compared to 45% in N3. A major fraction was retained in the organic horizons (58–79%). The internal N fluxes had increased considerably as a result of the N additions. Net N mineralisation in N1 had increased by a factor 10 and litterfall N flux by a factor 4. The PnET-CN model could not mimic the fast changes in tree growth and N mineralisation, but the maximum N mineralisation rate seems realistic. The ratio of actual to maximum mineralisation rate indicates that the N1 treatment now is close to N saturation, and nitrate was occasionally found in soil solution from the B-horizon in N1. The N retained was probably to a great extent immobilised directly by mycorrhizal fungi, as indicated by the high amounts of 15N found in the L and F layers and by the great fraction of 15N found in amino sugars compared to amino acids.  相似文献   

4.
川西3种亚高山针叶林的养分和凋落物格局分析   总被引:4,自引:0,他引:4  
LIN Bo  LIU Qing  WU Yan  HE Hai 《土壤圈》2006,16(3):380-389
Investigations were conducted to quantify litterfall, and litter and nutrient accumulation in forest floor, and to acquire information on litter decomposition and nitrogen and phosphorus release patterns in three different subalpine coniferous forests, a plantation (P1), a secondary forest (SF), and a primitive forest (PF), in western Sichuan, China. The litter trap method was used to evaluate litterfall with the litterbag method being utilized for litter decomposition. Seasonal patterns of litterfall were similar in the three forests, with two peaks occurring in September-November and March-May. The plantation revealed an annual litterfall of 4.38 x 103 kg ha-1, which was similar to those of SF and PF, but P1 had a lower mass loss rate and a higher C/N ratio. The C/N ratio may be a sound predictor for the decomposition differences. N concentrations of leaf litter in both the secondary forest and primitive forest increased first and then decreased, and the percentages of their final/initial values were 108.9% and 99.9%, respectively. P concentration in the three forests increased by the end of the study. The results of litterfall and decomposition indicated that in the plantation the potential to provide nutrients for soil organic matter was similar to those of SF and PF; however, its slower decomposition rate could result in a somewhat transient accumulation of litter in the forest floor.  相似文献   

5.
Jarrah (Eucalyptus marginata Donn ex Smith) forest grows on poor soils with low stores of plant-available nutrients. We evaluated the impact of fertilizers on nutrient cycling in soil under Jarrah forest using a field study with three rates of P (0, 50, 200 kg P ha–1) and three rates of N (0, 100, 200 kg N ha–1) in a full factorial design. Litterfall was significantly increased by N application (30% relative to controls) in the first 2 years after treatment and by P application in the second year. The amounts of N, P, K, Ca and Mg in litterfall were also increased significantly by both N and P fertilizer. Although fertilizer treatments did not affect the total amount of litter accumulated on the forest floor over 4–5 years after application, there were large treatment differences in the amounts of N and P stored in the forest floor. Microbial respiration in litter was significantly greater (19%) on P-treated plots relative to controls, but this increase did not translate into increased decomposition rates as measured in long-term (5-year) mesh-bag studies. The results indicate that factors other than nutrition are mainly responsible for controlling the rate of decomposition in this ecosystem. Application of P, in particular, resulted in substantial accumulation of P in forest floor litter over 5 years. This accumulation was partly a result of the deposition of P in litterfall, but was also probably a result of translocation of P from the mineral soil. During the 5-year decomposition study, there was no net release of P from leaf litter and, at the highest rate of P application, the amounts of P stored in forest floor litter were more than four-fold greater than in fresh litter. Regular fire, a common phenomenon in these ecosystems, may be an important P-mobilizing agent for enhancing plant P uptake in these forests.  相似文献   

6.
Studies of biogeochemical cycling and soil acidification have been carried out in even aged stands of Norway spruce, sitka spruce, Douglas fir, beech and oak under the frame of “The Element Cycling Project”. Deposition of excess nitrogen to forests is important as a potential acidifying input. In Denmark, reduced vitality in Norway spruce has promoted extensive planting of sitka spruce. However, several spruce aphid infestations have caused defoliation in many sitka spruce stands. The objectives of this study were to evaluate the effects of deposition and increased litterfall due to spruce aphid infestations on nitrogen transformations in the forest floor in sitka spruce stands on different soil types. The deposition of throughfall nitrogen range from 19 to 35 kg/ha/year. Fluxes of nitrogen in litterfall ranged from 21 to 77 kg/ha/year, whereas nitrogen leaching range from 1 to 57 kg/ha/year. Leaching was lowest at the infertile sites, but increased with magnitude of deposition and aphid infestations. Proton production according to the nitrogen transformations was largest at the fertile site most often affected by infestations. Huge amounts of bird droppings, honey dew and input of easily available nutrients by canopy leaching probably induced litter decomposition and formation of NO 3 ? in the soil water.  相似文献   

7.
Purpose

This study aimed to understand the mechanisms of the variations in carbon (C) and nitrogen (N) pools and examine the possibility of differentiating the burning effects from seasonal and pre-existed N limitations in a native suburban forest ecosystem influenced by prescribed burning in subtropical Australia.

Materials and methods

Soil and litterfall samples were collected from two study sites from 1 to 23 months since last burnt. Soil labile C and N pools, soil C and N isotopic compositions (δ13C and δ15N), litterfall mass production (LM), and litterfall total C, total N, δ13C and δ15N were analysed. In-situ gas exchange measurements were also conducted during dry and wet seasons for Eucalyptus baileyana and E. planchoniana.

Results and discussion

The results indicated that labile C and N pools increased within the first few months after burning, with no correlations with climatic factors. Therefore, it was possible that the increase was due to the burning-induced factors such as the incorporation of ashes into the soil. The highest values of soil and litterfall δ15N, observed when the study was commenced at the experimental sites, and their high correlations with climatic factors were indicative of long-term N and water limitation. The 13C signals showed that soil N concentrations and climatic factors were also two of the main factors controlling litterfall and foliage properties mainly through the changes in photosynthetic capacity and stomatal conductance.

Conclusions

Long-term soil N availabilities and climatic factors were the two of the main driving factors of C and N cycling in the studied forest sites. Further studies are needed to compare soil and litterfall properties before and after burning to profoundly understand the effects of prescribed burning on soil labile C and N variations.

  相似文献   

8.
[目的]探明亚热带不同森林类型的碳汇功能,为森林经营和针叶林改造中的树种选择提供指导。[方法]基于月动态监测,研究了罗卜岩自然保护区亚热带常绿阔叶林(米槠林)、常绿-落叶阔叶混交林(闽桦-闽楠林)和针叶林(马尾松林)3种森林类型的凋落物产量及碳氮归还动态变化。[结果](1) 3种林分中马尾松林的年总凋落量最高[9 815 kg/(hm2·a)],其次为闽桦-闽楠林[9 207 kg/(hm2·a)],米槠林最低[8 083 kg/(hm2·a)],叶是闽桦-闽楠林和马尾松林凋落物的主要组分,而米槠林凋落物以碎屑等其他组分为主;3种森林的总凋落量、叶、花果和其他组分凋落量月动态均呈双峰型曲线,峰值分别出现在11—12月和次年的4—5月。(2) 3种林分总凋落物碳归还量为马尾松林[4 970 kg/(hm2·a)]>闽桦-闽楠林[4 458 kg/(hm2·a)]>米槠林[3 804 kg/(hm2·a)],总凋落物氮归还量为闽桦-闽楠林[160 ...  相似文献   

9.
Temperate forests dominated by Quercus spp. cover large parts of Central Mexico and rural communities depend on these forests for wood and charcoal. The impacts of charcoal production on selected chemical properties including C and N dynamics, and populations of ammonifiers, nitrifiers and denitrifiers were investigated on surface soils (0–15 cm) collected during the dry and rainy season of these forests. Organic C was halved in soil at the kiln sites compared to undisturbed forest soil. Concentrations of exchangeable Ca2+, K+ and Mg2+ increased >1.6 times at kiln sites and pH increased from 4.5 in undisturbed soil to 7.0 at kiln sites. The kiln sites had 1.3 times and 2.4 times lower microbial biomass C and N, respectively, than undisturbed forest sites during the rainy season. Although the effect of charcoal production on NH4+, NO2? and NO3? concentrations was small, the ammonifying, nitrifying and denitrifiers were 16 times lower at the kiln sites than in the undisturbed forest soil. This research found that the charcoal production had a negative effect on the cultivable microorganisms involved in N cycling and the soil microbial biomass C and N compared to undisturbed forest soil. Differences in inorganic N dynamics were more affected by seasonality, i.e. precipitation, than by charcoal production.  相似文献   

10.
Species effects on earthworm density in tropical tree plantations in Hawaii   总被引:6,自引:0,他引:6  
Summary Tree species differ in the quantity and quality of litter produced, and these differences may significantly affect ecosystem structure and function. I examined the importance of tree species in determining earthworm densities in replicated stands of Eucalyptus saligna Sm. and Albizia falcataria (L.) Fosberg, and in mixed stands (25% albizia and 75% eucalyptus). Mean earthworm densities ranged from 92 m-2 in the pure eucalyptus, to 281 m-2 in the mixture, and a maximum of 469 m-2 in the pure albizia stands. Only two earthworm species were present, Pontoscolex corethrurus and Amynthas gracilis. Leaf biomass on the forest floor was highest in the pure eucalyptus and lowest in the pure albizia stands, whereas the annual fine litterfall production was lowest in the pure eucalyptus and highest in the albizia stands. The N content of fine litterfall was correlated positively with earthworm density, and the fine litterfall biomass: N ratio was correlated negatively with earthworm density. Greater leaf biomass on the forest floor under eucalyptus stands despite lower rates of litterfall suggests that litter quality, rather than litter quantity, was primarily responsible for the greater earthworm density in the albizia stands. Some biogeochemical effects of tree species in the tropics may be mediated through effects on earthworm populations.  相似文献   

11.
A major forest disturbance such as clearcutting may bring on a flush of mineral N in organic forest floor horizons, but the magnitude of this flush can vary markedly from one ecosystem to another. For example, it was previously established that clearcutting in a high elevation Engelmann spruce-subalpine fir (ESSF) ecosystem results in significantly higher NH4+ and NO3 concentrations, whereas clearcutting in an old-growth coastal western hemlock (CWH) ecosystem has little effect on mineral N dynamics. We hypothesized that the higher mineral N flush observed in the ESSF ecosystem is due to a greater temperature sensitivity of mineral N transformation rates, and to a lower proportion of heterotrophic nitrifiers, compared to the CWH ecosystem. To test these two hypotheses, we sampled forest floors several times over the growing season from clearcut and old-growth plots in both ecosystems, and measured gross mineral N transformation rates at field temperatures and at 10 °C above field temperatures, as well as with and without acetylene to inhibit autotrophic nitrifiers. Gross NH4+ transformations rates ranged between 20 and 120 μg N (g forest floor)−1 day−1 at the ESSF site, and between 15 and 40 μg N (g forest floor)−1 day−1 at the CWH site. Higher temperature increased gross NH4+ transformation rates in forest floor samples at both sites, but the average Q10 value was higher at the ESSF site (3.15) than at the CWH site (1.25). Temperature sensitivity at the ESSF site was greater in clearcut plots (Q10=4.31) than in old-growth plots (Q10=1.98). Gross NO3 transformation rates ranged between 10 and 32 μg N (g forest floor)−1 day−1 at the ESSF site, and between 10 and 24 μg N (g forest floor)−1 day−1 at the CWH site, but there were no significant effects of temperature or clearcutting on gross NO3 transformation rates at either site. Likewise, there were no significant differences in the proportion of heterotrophic nitrifiers between sites. Overall, our results support the view that the temperature sensitivity of microbial processes may explain the magnitude of the NH4+ flush in some coniferous ecosystems, but we lack the evidence relating the magnitude of the NO3 flush to the proportion of heterotrophic nitrifiers.  相似文献   

12.
Nitrogen (N) was added over two years to a spruce-dominated (Picea abies) montane forest at Alptal, central Switzerland. A solution of ammonium nitrate (NH4NO2) was frequently sprinkled on the forest floor (1500 m2) to simulate an additional input of 30 kg N ha-1 yr-1 over the ambient 12 kg bulk inorganic N deposition. The added nitrogen was labelled with 15NH4 15NO3 during the first year. Results are compared to a control plot. Neither the trees nor the ground vegetation showed any increase in their N content. Only 4.1% of N in the ground vegetation came from the N addition. Current-year needles contained 11 mg N g-1 dry weight, of which only 2% was from labelled N; older needles had approximately half as much 15N. The uptake from the treatment was therefore very small. Redistribution of N also took place in the trunks: 1 to 2-year-old wood contained 0.7% labelled N, tree rings dating back 3 to 14 years contained 0.4%. Altogether, the above-ground vegetation took up 12% of the labelled N. Most 15N was recovered in the soil: 13% in litter and roots, 63% in the sieved soil. Nitrate leaching accounted for 10%. Factors thought to be influencing N uptake are discussed in relation to plant use of N and soil conditions.  相似文献   

13.
Dise  N.B.  Matzner  E.  Gundersen  P. 《Water, air, and soil pollution》1998,105(1-2):143-154
To investigate which ecosystem parameters determine the risk and magnitude of nitrate leaching we compiled data from published and unpublished sources on dissolved inorganic nitrogen (DIN: NO3 -) in throughfall, DIN leaching loss in runoff or seepage water, and other ecosystem characteristics from 139 European forests. Not all data were available for all sites: 126 sites had at least one year's data on DIN inputs and DIN leaching loss; 40-50 sites had some data on soil chemistry and/or vegetation pools of N. DIN inputs in throughfall range between <1 and about 70 kg N ha-1 yr-1 and the losses with seepage or runoff range between <1 and 50 kg N ha-1 yr-1. Retention of N within the ecosystem increases with increasing DIN deposition and increasing proportion of NH4 + in deposition. The amount of N in needles and litterfall shows a significant linear relationship with throughfall deposition of DIN, whereas the C:N ratio of the organic (OH) horizon is uncorrelated to the level of throughfall-DIN flux. About 50% of the variability in DIN leaching loss can be explained by the flux of DIN in throughfall. Alternatively, about 60% of the variability in DIN leaching loss can be explained in a two-variable multiple regression combining the C:N ratio of the organic soil and the pH of the mineral soil. The survey data suggest that leaching of DIN from forest ecosystems in Europe is related in part to current DIN deposition and in part to the longer-term internal ecosystem N status as reflected in the chemistry of the humus and acidification status of the soil.  相似文献   

14.
The community structure of soil sarcodina in three different habitats within a typical mangrove forest in Dongzhaigang, Hainan, China was investigated with qualitative and quantitative analyses. The three habitats were Site A (bare land without vegetation), Site B (artificially planted mangroves) and Site C (natural mangroves). The abundance, species diversity, dominance and community similarity index of soil sarcodina in fresh and air-dried soils with different physical/chemical properties were comparatively analyzed. Statistical analyses showed that the sarcodina abundance was positively correlated with moisture, salinity, organic matter (OM), total nitrogen (TN), total phosphorus (TP) and sulfate (SO42?) of the mangrove soil, but the correlation coefficients with pH and total potassium (kalium, TK) were negative. The abundance and diversity index of sarcodina followed the order of Site A < Site B < Site C in both fresh and air-dried soils; Site B showed the highest community similarity with Site C; whereas, Sites A and C had the smallest community similarity in both fresh and dried samples from these three different habitats.  相似文献   

15.
天山森林凋落物和枯枝落时层的研究   总被引:10,自引:0,他引:10       下载免费PDF全文
通过1992-1995年的定位试验,对天山森林凋落物和枯枝落叶的主要性质进行了研究。结果表明,天山森林生态系统中养分运转具有独特性:(1)森林年凋落量较低,为2.1t/hm^2凋落物的季节动态变化呈单蜂型;(2)以凋落物形式的养分年归还量为Ca〉N〉K〉P。在凋落之前,大部分N、P、K被转移,K的转移量最大,而Ca则相对富集,归还量最小;(3)枯枝落叶层中养分贮量和蓄水量高,但有机物质分解率较低;  相似文献   

16.
Nitrogen balances and total N and C accumulation in soil were studied in reseeded grazed grassland swards receiving different fertilizer N inputs (100–500 kg N ha?1 year?1) from March 1989 to February 1999, at an experimental site in Northern Ireland. Soil N and C accumulated linearly at rates of 102–152 kg N ha?1 year?1 and 1125–1454 kg C ha?1 year?1, respectively, in the top 15 cm soil during the 10 year period. Fertilizer N had a highly significant effect on the rate of N and C accumulation. In the sward receiving 500 kg fertilizer N ha?1 year?1 the input (wet deposition + fertilizer N applied) minus output (drainflow + animal product) averaged 417 kg N ha?1 year?1. Total N accumulation in the top 15 cm of soil was 152 kg N ha?1 year?1. The predicted range in NH3 emission from this sward was 36–95 kg N ha?1 year?1. Evidence suggested that the remaining large imbalance was either caused by denitrification and/or other unknown loss processes. In the sward receiving 100 kg fertilizer N ha?1 year?1, it was apparent that N accumulation in the top 15 cm soil was greater than the input minus output balance, even before allowing for gaseous emissions. This suggested that there was an additional input source, possibly resulting from a redistribution of N from lower down the soil profile. This is an important factor to take into account in constructing N balances, as not all the N accumulating in the top 15 cm soil may be directly caused by N input. N redistribution within the soil profile would exacerbate the N deficit in budget studies.  相似文献   

17.
We compare forest floor microbial communities in pure plots of four tree species (Thuja plicata, Tsuga heterophylla, Pseudotsuga menziesii, and Picea sitchensis) replicated at three sites on Vancouver Island. Microbial communities were characterised through community level physiological profiles (CLPP), and profiling of phospholipid fatty acids (PLFA).Microbial communities from cedar forest floors had higher potential C utilisation than the other species. The F layer of the forest floor under cedar contained significantly higher bacterial biomass (PLFA) than the F layer under the other three tree species. There were differences in microbial communities among the three sites: Upper Klanawa had the highest bacterial biomass and potential C utilisation; this site also had the highest N availability in the forest floors. Forest floor H layers under hemlock and Douglas-fir contained greater biomass of Gram positive, Gram negative bacteria and actinomycetes than F layers based on PLFA, and H layers under spruce contained greater biomass of Gram negative bacteria than F layers. There were no significant differences in bacterial biomass between forest floor layers under cedar. Fungal biomass displayed opposite trends to bacteria and actinomycetes, being lowest in cedar forest floors, and highest in the F layer and at the site with lowest N availability. There were also differences in community composition among species and sites, with cedar forest floors having a much lower fungal:bacterial ratio than spruce, hemlock and Douglas-fir. The least fertile Sarita Lake site had a much greater fungal:bacterial ratio than the more fertile San Juan and Upper Klanawa sites. Forest floor layer had the greatest effect on microbial community structure and potential function, followed by site, and tree species. The similarity in trends among measures of N availability and microbial communities is further evidence that these techniques provide information on microbial communities that is relevant to N cycling processes in the forest floor.  相似文献   

18.
Dissolved organic matter (DOM) dynamics in spruce forested sites - examinations by analytical DOM fractionation Dissolved organic matter from two spruce forested sites in the Fichtelgebirge (Germany) was divided into different chemical and functional fractions, and the budgets of the fractions obtained were calculated. For both sites hydrophobic acids (HoS), hydrophilic acids (HiS), hydrophobic neutrals (HoN), hydrophilic neutrals (HiN), and hydrophilic bases (HiB) are discriminated concerning their dynamics in the compartments. Most of the HiN and HoN are mobilized by leaching from the forest canopy. Both neutral fractions are netto retained in the forest floor as well as in the mineral soil. In contrast, HoS and HiS are mainly released in the organic layers with a total input of organic acids from the forest floor into the mineral soil of ca 100 kg C (HoS) ha?1 a?1, and 50 kg C (HiS) ha?1 a?1, respectively. HoS are selectively better retained in the mineral horizons, leading to a mineral soil output of 2.4 – 4.4 kg C (HoS) ha?1 a?1, and 2.7 – 6.5 kg C (HiS) ha?1 a?1, respectively. It is concluded that the different mobility of the DOM fractions has implications for the mobilization and transport of organic pollutants and heavy metals.  相似文献   

19.
The forest floor was shown to be an effective sink of atmospherically deposited methylmercury (MeHg) but less for total mercury (Hgtotal). We studied factors controlling the difference in dynamics of MeHg and Hgtotal in the forest floor by doubling the throughfall input and manipulating aboveground litter inputs (litter removal and doubling litter addition) in the snow‐free period in a Norway spruce forest in NE Bavaria, Germany, for 14 weeks. The MeHg concentrations in the forest‐floor percolates were not affected by any of the manipulation and ranged between 0.03 (Oa horizon) and 0.11 (Oi horizon) ng Hg L–1. The Hgtotal concentrations were largest in the Oa horizon (24 ng Hg L–1) and increased under double litterfall (statistically significant in the Oi horizon). Similarly, concentrations of dissolved organic C (DOC) increased after doubling of litterfall. The concentrations of Hgtotal and DOC correlated significantly in forest‐floor percolates from all plots. However, we did not find any effect of DOC on MeHg concentrations. The difference in the coupling of Hgtotal and MeHg to DOC might be one reason for the differences in the mobility of Hg species in forest floors with a lower mobility of MeHg not controlled by DOC.  相似文献   

20.
This study was carried out in alien warmth-tolerant forest plantations of red oak (Quercus rubra), common beech (Fagus sylvatica) and European larch (Larix decidua). We compared the changes in foliar litterfall mass and biochemical composition after five months of cold period. The mean mass of fresh foliar litterfall collected in late autumn was 30% higher in red oak compared to the larch and beech plantations. After the cold period, the reduction of foliar litterfall mass did not exceed 10% in any of the studied plantations. The fresh foliar litterfall of red oak was the richest in cellular fibre and easily decomposable glucose and nutrients such as P and Mg, larch was distinguished by the highest lignin, N, K and Ca concentrations, while beech fresh foliar litterfall was the poorest in the aforementioned nutrients. After the cold period, the changes in the biochemical composition of foliar litterfall revealed different patterns. In the spring, the beech and red oak foliar litterfall was the richest in N, P and Ca, meanwhile the larch foliar litterfall still had the highest concentration of lignin but, in contrast to the autumn, was the poorest in nutrients. After the cold period Lignin: N, C: N and C: P ratios reached critical values indicating that the foliar litterfall of beech and red oak had started to decompose. The highest lignin concentration and the highest and most stable Lignin: N, C: N, C: P and N: P ratios after the cold period indicated that the slowest foliar litterfall decomposition took place in the larch plantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号