首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在地下水位较高、地表易于形成积水的中国南方地区,通过农田排水措施可以及时排除多余地表积水,快速降低地下水位,以达到排涝降渍、协同调控的目的.文中基于室内砂槽试验,揭示暗管排水、明沟排水、不同反滤体高度的反滤体排水及改进暗管排水等措施的地下排水规律及效果.结果表明:将暗管周围土体置换为高渗透性土体介质的改进暗管排水可明显提高排水流量,当土体置换高度达2 cm时(对应于田间条件40 cm),其排水流量均高于相同埋深条件下的其他排水措施,达暗管排水的1.59~1.66倍;改进暗排在地表积水消失时仍保持较大的排水流量,可达相同埋深暗管流量的2倍以上,在积水层消失后,能迅速降低农田土壤水的渍害胁迫,将地下水位降低至暗管埋设高度;各种排水措施,在地表积水即将消失时,出现了流量与水头变化幅度较大的现象.相对于各种地下排水措施,改进暗管排水在除涝降渍中存在明显优势.研究结果可为涝渍灾害易发地区高效除涝降渍减灾工程设计和建设提供参考.  相似文献   

2.
Artificial subsurface drainage is not an option for addressing the saline, shallow ground water conditions along the west side of the San Joaquin Valley because of the lack of drainage water disposal facilities. Thus, the salinity/drainage problem of the valley must be addressed through improved irrigation practices. One option is to use drip irrigation in the salt affected soil.A study evaluated the response of processing tomato and cotton to drip irrigation under shallow, saline ground water at depths less than 1 m. A randomized block experiment with four irrigation treatments of different water applications was used for both crops. Measurements included crop yield and quality, soil salinity, soil water content, soil water potential, and canopy coverage. Results showed drip irrigation of processing tomato to be highly profitable under these conditions due to the yield obtained for the highest water application. Water applications for drip-irrigated tomato should be about equal to seasonal crop evapotranspiration because yield decreased as applied water decreased. No yield response of cotton to applied water occurred indicating that as applied water decreased, cotton uptake of the shallow ground water increased. While a water balance showed no field-wide leaching, salinity data clearly showed salt leaching around the drip lines.  相似文献   

3.
滴灌条件下排水暗管间距对土壤盐分淋洗的影响   总被引:7,自引:0,他引:7  
在滴灌淋洗条件下设计暗管排水试验,研究暗管不同埋设间距(15、20、25 m)对土壤剖面盐分分布及脱盐淋洗效果的影响。结果表明:滴灌淋洗期间,0~70 cm土层含盐量显著降低,与CK相比,试验地不同地段土壤平均含盐量减少10 g/kg以上。从暗管上方至相邻暗管中点位置处不同剖面土壤平均脱盐率逐渐减小,15、20、25 m间距小区在0~100 cm埋深土壤中点位置处最大脱盐率分别为84.01%、77.75%、73.98%,土壤整体脱盐率介于51.82%~60.43%之间。吸水管埋管间距越小,小区暗管排水阶段排水流量越大,排水矿化度、电导率也越大,但成本会略高。15 m间距相比20、25 m间距小区每公顷多投入的成本和平均脱盐率差值分别为8 430、12 570元和4.78%、8.61%;15 m间距暗管处理在水平距离暗管0、5、7.5 m处土壤脱盐率最大值分别为86.47%、85.15%、84.01%,且排水期间排水流量、矿化度、电导率最大,分别为2 m~3/h、189.15 g/L和35.9 mS/cm;土壤盐分淋洗效果优于20、25 m间距小区,淋洗相同盐分含量土壤所需灌水量也低于20、25 m间距;2次灌水后0~70 cm土层盐分整体已降至10 g/kg以下,作物生长条件大为改善,适宜作为指导新疆盐渍土改良滴管条件下暗管间距布设参数的依据。  相似文献   

4.
With the optimization of irrigation, more salts accumulate in the root zone of soils, due to less over-irrigation. On-farm irrigation management requires a certain amount of leaching to ensure sustainability. The objective is to quantify the pore volume of water required to efficiently leach excess salts from two saline soils, widely irrigated in central South Africa. A total of 30 lysimeters, 15 per soil type arranged in two parallel rows under a moveable rain shelter, were used. Five different salinity profiles per soil type, replicated three times, were leached using irrigation water with a 75 mS m−1 electrical conductivity. During irrigation the residual more saline pore water was displaced from the top downward through the root zone. The mean salinity of the soil profiles approached an equilibrium concentration equal to that of the irrigation water after 0.9 pore volume of soil was displaced by drainage water. For the sandy soil 0.2 and for the sandy loam soil 0.3 pore volumes were required to efficiently remove 70% of the excess salts. The remainder of the water was needed to leach the remaining 20% of the excess salts. This, however, was not efficient in terms of the amount of water required.  相似文献   

5.
Seasonal changes in the distribution of salt and water in fields of both arable and grassland saline sodic clay soils were studied under temperate rainfed conditions. Leaching of the topsoils during winter rains was further investigated in soil columns. The field studies indicated the cyclical nature of leaching. During winter rains the water moving through the macropores uniformly leached salt from the soil profile to a depth of 1.2 m, but in late summer the salt content of the grassland and arable soils had increased again by 11% and 35% respectively compared with their early spring salinity levels. The results indicated that the salt leached in winter was mainly not lost, but leached below 1.2 m, only to rise again as the soil profile dried in the summer. The implications for managing and reclaiming these soils with gypsum are discussed.Undisturbed grassland topsoils were slow to release salt into the leaching water, maximum salt concentration in the leachate only being reached well into the winters rains. In disturbed arable soils the maximum leachate concentration was achieved shortly after leaching commenced. The changes in surface structure brought about by rainfall impact on bare restructured ploughlayer soils caused a significant decline in leaching efficiency (up to 40%).The observed pattern of leaching questions the validity of the basic assumptions used in most of the mathematical leaching models.  相似文献   

6.
咸淡轮灌和生物炭对滨海盐渍土水盐运移特征的影响   总被引:1,自引:0,他引:1  
为利用滨海地区微咸水改良盐渍土,进行了不同咸淡水轮灌(淡淡、淡咸、咸淡、咸咸)和施用生物炭(0、15、30 t/hm^2)的室内入渗试验,探讨了咸淡轮灌和生物炭施用下滨海盐渍土水盐运移过程。结果表明:滨海盐渍土水分运动主要受初始入渗水质的影响,先咸后淡的轮灌方式更有利于土壤水分入渗,入渗速率增加了8.2%~46.9%,并小幅提高了土壤含水率;生物炭可促进咸淡轮灌下的水分运移,增加了相同时间内的湿润锋距离、累计入渗量、入渗速率及入渗后的土壤含水率,添加量为15 t/hm^2时入渗增益最佳,入渗速率提高了3.5%~22.0%;淡咸和咸淡处理的土壤含盐量均低于咸咸处理,脱盐率和脱盐区深度系数更高,咸淡处理可增加脱盐率,而淡咸处理可提高脱盐区深度系数;生物炭有利于咸淡轮灌下的土壤盐分淋洗,脱盐率和脱盐区深度系数分别提高了9.1%~15.0%和1.1%~7.5%,并增加了Ca^2+和Mg^2+含量,促进Na+淋洗,进而降低了微咸水利用风险,但在30 t/hm^2时盐分淋洗效果有所减弱。研究表明,添加15 t/hm^2生物炭配合微咸水-淡水轮灌能够改善滨海盐渍土的入渗特性、持水能力和盐分分布,可为该区盐渍土和微咸水开发利用提供参考。  相似文献   

7.
Summary Corn production on the organic soils of the Sacramento-San Joaquin Delta of California was affected by the salinity of the irrigation water and the adequacy of salt leaching. Full production was achieved on soils that were saline the previous year, provided the electrical conductivity of the irrigation water (ECi) applied by sprinkling was less than about 2 dS/m and leaching was adequate from either winter rainfall or irrigation to reduce soil salinity (ECMSW) below the salt tolerance threshold for corn (3.7 dS/m). For subirrigation, an ECi up to 1.5 dS/m did not decrease yield if leaching had reduced ECMSW below the threshold. If leaching was not adequate, even nonsaline water did not permit full production. In agreement with previous results obtained in a greenhouse, surface irrigation with water of an electrical conductivity of up to 6 dS/m after mid-season (end of July) did not reduce yield below that of treatments where the salinity of the irrigation water was not increased at mid-season. Results also reconfirm the salt tolerance relationship established in the previous three years of the field trial. The earlier conclusion that the irrigation method (sprinkler or subirrigation) does not influence the salt tolerance relationship was also confirmed.This project was sponsored jointly by the California State Water Resource Control Board, the California Department of Water Resources, the University of California, and the Salinity Laboratory of the US Department of Agriculture  相似文献   

8.
进行暗管排水条件下微咸水灌溉田间试验,设置3种暗管埋深,分别为80 cm(D1)、120 cm(D2)以及无暗管排水(D0),3种微咸水浓度,其电导率分别为0.78 dS/m(S1),3.75 dS/m(S2)和6.25 dS/m(S3),共9个处理,每个处理3组重复.试验结果表明:暗管排水措施可以有效排除微咸水灌溉过程中土壤中累积的盐分;在玉米全生育期内,暗管埋深D1条件下,3种浓度微咸水S1,S2和S3灌溉时根系土壤电导率分别下降了39.00%,31.56%和29.43%,暗管埋深D2条件下,根系土壤电导率则分别下降了31.91%,18.08%和7.44%;夏玉米干物质累积量、穗棒累积量和穗棒质量分配率及最终产量均随着微咸水浓度的升高而降低;在相同微咸水浓度下,不同暗管埋设条件下的夏玉米最终产量从大到小依次为D1,D2,D0;3种暗管埋设条件下的作物需水量从大到小依次为D0,D2,D1的规律;暗管埋深80 cm的处理(D1)下夏玉米水分利用效率最高,而未埋设暗管的处理(D0)水分利用效率最低;当暗管埋设条件一定时,夏玉米水分利用效率随微咸水浓度的升高呈逐渐降低的趋势.  相似文献   

9.
【目的】探索黄河三角洲地区盐渍土在不同淋洗条件下土壤脱盐规律。【方法】通过室内土柱淋洗脱盐模拟试验,设置2种淋洗方式(连续淋洗和间歇淋洗),分析了在连续淋洗和间歇淋洗条件下土壤淋洗耗水量、淋洗滤液的矿化度随时间、滤液累积量的变化规律和滤液的脱盐速率,同时分析了0~20、20~40、40~60、60~80、80~100 cm土层的电导率、SAR(钠吸附比)的变化过程。【结果】①不同淋洗方式条件下,土体脱盐共有3个过程,分别为盐分峰值初步形成过程、盐分峰值向下移动过程和土柱底层土体盐分峰值消失过程;连续淋洗和间歇淋洗土柱为达到一般农作物(计划湿润层为0~60 cm)生长所需淋洗水量为472.70 mm和411.60 mm,间歇淋洗较连续淋洗省水14.8%。②连续淋洗和间歇淋洗滤液矿化度随时间均表现为幂函数关系;连续淋洗和间歇淋洗的滤液脱盐效率分别为18.45 g/L2和28.49 g/L2,连续淋洗的滤液脱盐效率为间歇淋洗的64.7%。③连续淋洗土柱和间歇淋洗土柱淋洗后含盐量是淋洗脱盐前的11.89%和8.39%(以40~60 cm土层为例),间歇淋洗土柱中各层pH值增量均小于在连续淋洗土柱中pH值的增量,并且在间歇淋洗后各层土壤pH值虽有增加,但是还在一般植物生长的允许范围内;间歇淋洗土柱中SAR减小量大于连续淋洗土柱中SAR的减小量,RSC增量小于连续淋洗土柱中RSC的增量,SAR和RSC均在一般植物生长的允许范围内。【结论】盐渍土经过淋洗脱盐可以达到植物生长的要求,同时,间歇淋洗明显比连续淋洗节约水,在生产实践中采用间歇淋洗土壤脱盐效果更好。  相似文献   

10.
基于不同灌溉类型区土壤剖面理化性质的取样分析,对喷灌区、纯井灌区、河灌区及非灌溉区2m深度土壤剖面的理化性质进行了比较分析,揭示了长期喷灌条件下的土壤剖面理化性质的变化特征。结果表明,喷灌区与其他灌溉类型区相比,全剖面,尤其是心土层和底土层的含水率有较大幅度降低;犁底层及其以下一定深度范围内土层的干密度有较大幅度的增加...  相似文献   

11.
The HYDRUS-2D model was experimentally verified for water and salinity distribution during the profile establishment stage (33?days) of almond under pulsed and continuous drip irrigation. The model simulated values of water content obtained at different lateral distances (0, 20, 40, 60, 100?cm) from a dripper at 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 140 and 160?cm soil depths at different times (5, 12, 19, 26 and 33?days of profile establishment) were compared with neutron probe measured values under both irrigation scenarios. The model closely predicted water content distribution at all distances, times and soil depths as RMSE values ranged between 0.017 and 0.049. The measured mean soil water salinity (ECsw) at 25?cm from the dripper at 30, 60, 90 and 150?cm soil depth also matched well with the predicted values. A correlation of 0.97 in pulsed and 0.98 in continuous drip systems with measured values indicated the model closely predicted total salts in the root zone. Thus, HYDRUS-2D successfully simulated the change in soil water content and soil water salinity in both the wetting pattern and in the flow domain. The initial mean ECsw below the dripper in pulsed (5.25?dSm?1) and continuous (6.07?dSm?1) irrigations decreased to 1.31 and 1.36?dSm?1, respectively, showing a respective 75.1 and 77.6% decrease in the initial salinity. The power function [y?=?ax ?b ] best described the mathematical relationship between salt removal from the soil profile as a function of irrigation time under both irrigation scenarios. Contrary to other studies, higher leaching fraction (6.4–43.1%) was recorded in pulsed than continuous (1.1–35.1%) irrigation with the same amount of applied water which was brought about by the variation in initial soil water content and time of irrigation application. It was pertinent to note that a small (0.012) increase in mean antecedent water content (θ i ) brought about 8.25–9.06% increase in the leaching fraction during the profile establishment irrespective of the emitter geometry, discharge rate, and irrigation scenario. Under similar θ i , water applied at a higher discharge rate (3.876?Lh?1) has resulted in slightly higher leaching fraction than at a low discharge rate (1.91?Lh?1) under pulsing only owing to the variation in time of irrigation application. The influence of pulsing on soil water content, salinity distribution, and drainage flux vanished completely when irrigation was applied daily on the basis of crop evapotranspiration (ETc) with a suitable leaching fraction. Therefore, antecedent soil water content and scheduling or duration of water application play a significant role in the design of drip irrigation systems for light textured soils. These factors are the major driving force to move water and solutes within the soil profile and may influence the off-site impacts such as drainage flux and pollution of the groundwater.  相似文献   

12.
陶园  王少丽  许迪  瞿兴业 《农业机械学报》2016,47(4):113-118,179
提出一种占用耕地少、排水流量较常规暗排大且环境友好的改进暗排。基于室内土柱试验,分析改进暗排在地表积水、土体饱和条件下的排水除涝性能及其机理,提出地表积水土体饱和入渗条件下改进暗排排水流量的理论计算公式。结果表明,改进暗排可以有效提高暗管排水能力,试验条件下,反滤体宽度为2~6 cm的改进暗排在自由出流条件下的排水流量为常规暗排排水流量的2~3倍;积水层深度相同时,改进暗排排水性能随反滤体宽度的增加而增大,但增幅逐渐减小;土体介质和反滤体的渗透系数差别越大,改进暗排的排水作用越明显。理论方法计算结果与试验结果相吻合,证明提出的理论计算公式是合理可行的。  相似文献   

13.
【目的】探究渠道水深对渠床土壤入渗特性的影响及其变化规律。【方法】以河套灌区典型斗渠规模的渠道水深对渠床土壤入渗特性的影响为对象,采用水位下降静水法入渗试验,分析了渠道水深对累积入渗量、入渗率、渗漏强度的影响。【结果】(1)在同一渠道水深条件下,土壤累积入渗量随着渗漏用时的延长而增加;土壤入渗率和渠道渗漏强度均随渗漏用时逐渐减小并最终趋于稳定。(2)不同渠道水深条件下土壤累积入渗量、土壤入渗率和渠道渗漏强度均呈现出随水深的增加而增大的趋势。(3)在渠道水深作用下渠床土壤含水率动态分布受基质势梯度、土壤导水率及湿周的影响较大。【结论】渠道水深对渠床土壤入渗特性中的累积入渗量、入渗率、渗漏强度及渠床土壤含水率动态分布均有较大影响,且前三者均随水深的增加而呈现指数规律增大,并且在不同渠道水深的相近入渗特性下最优水深为70 cm。  相似文献   

14.
稻田土壤中氮素运移转化规律的试验研究   总被引:5,自引:1,他引:5  
通过大田试验,对宁夏银南灌区稻田土壤中氮素运移进行了研究,以探讨在不同排水条件下,稻田中氮素的迁移、转化规律。研究结果表明:水稻田中氮素淋失的基本形态为NO3--N和NH4+-N,在下渗水流的驱动下,NO3--N的下移深度明显大于NH4+-N;不同排水处理中,土壤剖面NH4+-N浓度呈现随深度增加逐渐降低的趋势,NO3--N浓度在地面以下100cm内随深度增加逐渐升高,超过100cm之后逐渐降低;每次施肥后,不同处理的排水中NO3--N和NH4+-N浓度均表现为短期内迅速上升,后期逐渐下降的趋势;氮素的淋失主要发生在6月9日(拔节期)以前,在此期间,应加强水肥管理,以减少氮素淋失。  相似文献   

15.
Summary Efficiency of sodic soil reclamation is thought to vary with types of chemicals used. This study examined the effects of five inorganic (H2SO4, CaCl2 · 2H2O, CaSO4 · 2H2O, FeSO4, Al2(SO4)3) and two organic compounds (polyacrylamide, and trihydroxy glutaric acid) on the rate and the extent of salt and Na leaching in moderately Na-affected saline soils: Saneli silty clay loam (Vertic Torrifluvents, ESP=17.5%) and Glendale silty clay (Typic Torrifluvents, ESP=13.5%). Air-dry soil samples (<2mm) were packed in columns, and chemicals, except H2SO4, were incorporated into the surface 5 cm of the soils, and in selected cases, to 30 cm. H2SO4 was surface-applied. Application rates of the inorganic chemicals were 3.57 and 10.7 mmol(+) kg-1 (2.5 and 7.5 Mg ha-1 in gypsum equivalent weight) in the silty clay loam, and 8 and 24 mmol(+) kg-1 in the silty clay, and the organic compounds were applied at rates of less than 620 kg ha-1. The soils were then leached with simulated Rio Grande water (EC = 1.1 dS m-1, SAR = 3.5) under continuous ponding. The tested inorganic compounds removed approximately equivalent amounts of exchangeable Na after approximately 35 cm of water application. However, the rate of water percolation (consequently the rate of salt leaching) from CaCl2 treated columns, became progressively slow after about 20 cm of water intake. The combined effect of rapid electrolyte leaching and insufficient replacement of Na in the surface layer seemed to be responsible for the flow reduction. Gypsum and H2SO4 treatments provided lower ratios of sodicity to salinity in percolating solutions and relatively uniform hydraulic gradients throughout the soil depth. Incorporation of chemicals to the surface 30 cm did not alter performance, except in CaCl2 treatments where water intake rates became even slower. The tested organic amendments improved initial water infiltration, but neither increased subsequent percolation rates nor improved salt and Na leaching. The fastest reclamation may be attained when chemicals are chosen and applied to yield an electrolyte concentration that is high enough to overcome Na effects at any depth of soil profiles throughout the leaching period.Contribution from Texas Agr. Expt. Sta. Texas A & M University System. This project was supported in part by the Binational Agricultural Research and Development (BARD) Fund and the Expanded Research Area Fund of the Texas Agricultural Experiment Station.  相似文献   

16.
The dynamics of groundwater table and salinity over 17 years in Khorezm   总被引:1,自引:0,他引:1  
Salinization of irrigated agricultural land threatens ecological sustainability and livelihoods of people. Salinization is especially severe in the dry lowlands world-wide and in Central Asia where large amounts of salts accumulated in the soil profile, originating from shallow saline groundwater (GW). Analysis of the unique dataset of 2000 monitoring wells of GW table and salinity in lowland Khorezm region of Uzbekistan over the period of 1990 till 2006 showed shallow GW levels of 1.1-1.4 m (±0.48-0.66 m) at start of leaching periods and 0.9-1.4 (±0.43-0.63 m) in July during the annual growing seasons. While leaching efficiency is decreased, shallow GW in July is far above the optimum levels of 1.4-1.5 m. The effects of topography, soil texture, and irrigation and drainage networks were found to favor shallow GW forced by excessive water diversion. The drainage network, which is seen by many specialists as underdeveloped and its improvement necessary to arrest unacceptable GW levels, is being used under its full capacity. The solution to alleviate land degradation is not only an improved drainage, but better controlled and more flexible water management.  相似文献   

17.
Quantifying nitrogen (N) losses below the root zone is highly challenging due to uncertainties associated with estimating drainage fluxes and solute concentrations in the leachate. Active and passive soil water samplers provide solute concentrations but give limited information on water fluxes. Mechanistic models are used to estimate leaching, but require calibration with measured data to ensure their reliability. Data from a drainage lysimeter trial under irrigation in which soil profile nitrate (NO3) concentrations were monitored using wetting front detectors (passive sampler) and ceramic suction cups (active sampler) were compared to NO3 concentrations in draining and resident soil water as simulated by the research version of the Soil Water Balance model (SWB-Sci). SWB-Sci is a daily time-step, cascading soil water and solute balance model that provides draining NO3 concentrations by accounting for incomplete solute mixing. As hypothesized, suction cup concentrations aligned closely with resident soil water concentrations, while wetting front detector concentrations aligned closely with draining soil water NO3 concentrations. These results demonstrate the power of combining monitoring and modelling to estimate NO3 leaching losses. Access to measured draining and resident NO3 concentrations, especially when complemented with modelled fluxes, can contribute greatly to achieving improved production and environmental objectives.  相似文献   

18.
The Sorraia Watershed has a long history of continuous irrigated maize. Imprecise water and fertiliser management has contributed to increase nitrate in the groundwater. Solving this problem requires the identification of problem sources and the definition of alternate management practices. This can be performed by an interactive use of selective experimentation and modelling. This paper presents the experimentation phase, where the field experiments were conducted under the irrigation and fertilisation management commonly found in the watershed. Two different soil representatives of the watershed were selected, presenting different water and solute transport properties. One is a silty loam alluvial soil, with a shallow water table, and the other is a sandy soil with a very low water retention capacity. The various terms of the water (consumption, drainage, soil storage) and nitrogen balance (plant uptake, mineralisation and leaching) were obtained from intensive monitoring in the soil profile up to 80 cm, corresponding to the crop root zone. The results showed that in the alluvial soil, up to 70 kg N ha−1 was produced by mineralisation. Current fertiliser management fail in that it does not consider the soil capability to supply mineral nitrogen from the organic nitrogen stored in the profile at planting. This leads to a considerable amount of NO3-N stored in the soil at harvesting, which is leached during the winter rainy season. In the sandy soil, the poor irrigation management (45% losses by deep percolation), leads to NO3-N leaching during the crop season and to inefficient nitrogen use by the crop.  相似文献   

19.
In situ use of groundwater by alfalfa   总被引:1,自引:0,他引:1  
Disposal of saline drainage water is a significant problem for irrigated agriculture. One proposal is to recycle drainage water to irrigate salt tolerant crops until the volume has been reduced sufficiently to enable final disposal by evaporation. Part of this concept requires in situ crop water reuse from shallow groundwater; and data is needed to quantify the potential use of groundwater by alternative crops. A column lysimeter study was initiated to determine the potential crop water use from shallow groundwater by alfalfa as a function of groundwater quality and depth to groundwater. The results demonstrated that up to 50% of the crop water use could be met from shallow groundwater (<1.2 m) with an electrical conductivity less than 4 dS/m, and that the potential crop water use from deeper groundwater (2 m) increased over the years. The columns with high salinity (>4 dS/m) in the shallow groundwater experienced increased salinity in the soil profile with time, which resulted in reduced crop water use from shallow groundwater. Yields decreased with time as the groundwater salinity increased and periodic leaching will be required for in situ use to be a sustainable practice. Statistical analysis of crop yield demonstrated that there was significant use of groundwater with an EC of 6 dS/m for a few years.  相似文献   

20.
Long term use of saline water for irrigation   总被引:1,自引:0,他引:1  
Use of saline drainage water in irrigated agriculture, as a means of its disposal, was evaluated on a 60 ha site on the west side of the San Joaquin Valley. In the drip irrigation treatments, 50 to 59% of the irrigation water applied during the six-year rotation was saline with an ECw ranging from 7 to 8 dS/m, and containing 5 to 7 mg/L boron and 220 to 310 g/L total selenium. Low salinity water with an ECw of 0.4 to 0.5 dS/m and B 0.4 mg/1 was used to irrigate the furrow plots from 1982 to 1985 after which a blend of good quality water and saline drainage water was used. A six-year rotation of cotton, cotton, cotton, wheat, sugar beet and cotton was used. While the cotton and sugar beet yields were not affected during the initial six years, the levels of boron (B) in the soil became quite high and were accumulated in plant tissue to near toxic levels. During the six year period, for treatments surface irrigated with saline drainage water or a blend of saline and low salinity water, the B concentration in the soil increased throughout the 1.5 m soil profile while the electrical conductivity (ECe) increased primarily in the upper l m of the profile. Increaszs in soil ECe during the entire rotation occurred on plots where minimal leaching was practiced. Potential problems with germination and seedling establishment associated with increased surface soil salinity were avoided by leaching with rainfall and low-salinity pre-plant irrigations of 150 mm or more. Accumulation of boron and selenium poses a major threat to the sustainability of agriculture if drainage volumes are to be reduced by using drainage water for irrigation. This is particularly true in areas where toxic materials (salt, boron, other toxic minor elements) cannot be removed from the irrigated area. Continual storage within the root zone of the cropped soil is not sustainable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号