首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
基于介电特性与IRIV-GWO-SVR算法的番茄叶片含水率检测   总被引:10,自引:8,他引:2  
为了探究利用介电特性检测作物水分状况的可行性,研究了一种基于介电特性的有效、快速、精确检测番茄叶片含水率的方法。以300片不同含水率的番茄叶片为研究对象,通过LCR测量仪测定叶片在0.05~200 k Hz下的相对介电常数ε′和介质损耗因数ε″,并采用干燥法测量叶片含水率。利用迭代保留信息变量法(iteratively retains informative variables,IRIV)对介电参数进行特征变量选取,并与连续投影算法(successive projections algorithm,SPA)进行比较,利用支持向量回归机(support vector regression,SVR)分别建立叶片全变量、2种特征变量与叶片含水率的关系模型。结果表明,基于迭代保留信息变量法选取特征变量的支持向量回归模型(IRIV-SVR)具有良好的预测能力,但预测精度仍需提高,故引入灰狼优化算法(grey wolf optimizer,GWO)优化模型的参数c(惩罚因子)和g(核函数参数)。最终,经GWO优化后的模型(IRIV-GWO-SVR)的预测集决定系数R2与均方根误差RMSE分别为0.963 8,0.020 7。因此,利用介电特性结合IRIV-GWO-SVR算法预测番茄叶片含水率是可行的,同时为其他叶片含水率检测提供了一种新的方法和思路。  相似文献   

2.
省域土地人口经济多维协调格局及分区发展策略   总被引:1,自引:1,他引:0  
张慧  苏航  薛睿  章桂芳 《农业工程学报》2019,35(21):262-270
为了实现玉米含水率的快速无损检测,该文利用精密阻抗分析仪和自制介电参数测量传感器通过500 mV的激励电压在1 kHz~5.462 MHz频率范围内测量了热风干燥过程中不同含水率与不同温度下玉米籽粒的介电常数?''和介电损耗?"。通过对双介电参数频谱的分析,对含水率回归模型建模频段进行了初步选择,以1.072~5.462 MHz之间15个测量频点的双介电参数和温度值T共计31维变量作为支持向量回归机(support vector regression,SVR)模型的输入全变量,分别利用竞争性自适应重加权算法(competitive adaptive reweighted sampling,CARS)、迭代保留信息变量算法(iteratively retains informative variables,IRIV)和CARS-IRIV联合算法筛选特征变量,建立全变量、CARS、IRIV和CARS-IRIV筛选特征变量与玉米籽粒含水率的SVR模型。引入鲸鱼优化算法(whale optimization algorithm,WOA)优化SVR模型参数c(惩罚因子)和g(核函数参数),结果表明CARS-IRIV筛选特征变量(?''3.854MHz、?"3.854MHz、?''5.462MHz、?"5.462MHz、T)建立的SVR模型经WOA优化后(CARS-IRIV-WOA-SVR)具有最优的预测精度,预测集决定系数、预测集均方根误差和剩余预测偏差分别为0.998 4,0.40%和24.55,且模型复杂度最低。该研究为基于双介电参数和支持向量回归机实现玉米含水率快速无损检测提供了新的研究思路和基础数据。  相似文献   

3.
为了实现玉米含水率的快速无损检测,该文利用精密阻抗分析仪和自制介电参数测量传感器通过激励电压在1 kHz~5.462 MHz频率范围内测量了热风干燥过程中不同含水率与不同温度下玉米籽粒的介电常数ε''和介电损耗ε"。通过对双介电参数频谱的分析,对含水率回归模型建模频段进行了初步选择,以1.072~5.462 MHz之间15个测量频点的双介电参数和温度值T共计31维变量作为支持向量回归机(support vector regression,SVR)模型的输入全变量,分别利用竞争性自适应重加权算法(competitive adaptive reweighted sampling,CARS)、迭代保留信息变量算法(iteratively retains informative variables,IRIV)和CARS-IRIV联合算法筛选特征变量,建立全变量、CARS、IRIV和CARS-IRIV筛选特征变量与玉米籽粒含水率的SVR模型。引入鲸鱼优化算法(whale optimization algorithm,WOA)优化SVR模型参数c(惩罚因子)和g(核函数参数),结果表明CARS-IRIV筛选特征变量(ε''3.854MHz、ε"3.854MHz、ε''5.462MHz、ε"5.462MHz、T)建立的SVR模型经WOA优化后(CARS-IRIV-WOA-SVR)具有最优的预测精度,预测集决定系数、预测集均方根误差和剩余预测偏差分别为0.998 4,0.40%和24.55,且模型复杂度最低。该研究为基于双介电参数和支持向量回归机实现玉米含水率快速无损检测提供了新的研究思路和基础数据。  相似文献   

4.
基于敏感波段的小麦冠层氮含量估测模型   总被引:1,自引:2,他引:1  
为提高小麦冠层叶片氮素含量检测精度,在不同生育时期对5种不同氮素水平的小麦试验田进行光谱采集,获取了234个范围为350~2 500 nm的高光谱数据。在比较蒙特卡洛-无信息变量消除(monte carlo-uninformative variable elimination,MC-UVE)、随机青蛙(random frog)、竞争自适应重加权采样(competitive adaptive reweighted sampling,CARS)及移动窗口偏最小二乘法的波段选择等方法的基础上,提出一种竞争性自适应重加权算法与相关系数法相结合的敏感波段选择方法,并从2151个原始波段中选出了30个敏感波段。用筛选后的30个波段数据建立非线性回归模型,得到了径向基神经网络模型校正集均方根误差为0.3699,预测集均方根误差为1.074e-009,校正决定系数为0.9832,预测决定系数为0.9982。试验结果表明:经过竞争自适应重加权采样的相关分析后所建立的径向基神经网络预测模型,无论是预测精度还是建模精度,比误差后向传播(back propagation,BP)神经网络和支持向量回归模型相比都有了显著提高,该方法在小麦氮含量预测过程中具有明显的优势,可在实际生产中应用。  相似文献   

5.
快速检测番茄水分胁迫状态,对于科学有效地进行番茄的水肥管理,保障和提高番茄的产量和品质具有重要意义。该文利用太赫兹光谱对水分极为敏感的特性,提出了基于太赫兹光谱技术的番茄水分胁迫状态的快速检测方法。试验利用太赫兹光谱系统获取不同水分胁迫番茄叶片的功率谱、吸光度及透射率频谱数据。采用(Savitzky-Golay, SG)算法对数据进行降噪,利用稳定性竞争自适应重加权(Stability Competitive Adaptive Reweighted Sampling, SCARS)算法进行了多维特征频段的提取;在此基础上,建立了叶片含水率功率谱、吸光度及透射率等单一维度下的多元线性回归(Multiple Linear Regression, MLR)模型。结果表明,太赫兹功率谱和吸光度与叶片含水率之间呈负相关;而透射率则随水分胁迫程度的提高逐渐升高,呈正相关。为了进一步提高模型的精度,使用支持向量机(Support Vector Machines, SVM)在融合3种维度太赫兹特征的基础上,建立了番茄含水率的融合预测模型,结果表明,预测集R2达到0.951 4,RMSE为0.366 8,均高于单一维度检测模型,实现了番茄水分的快速检测。  相似文献   

6.
绿原酸(chlorogenicacid,CGA)是评价金银花品质的重要指标。为了实现金银花贮藏期间CGA含量变化的快速有效检测,该文采集了500个不同贮藏时间(0~20d)的金银花高光谱图像,构建CGA含量的高光谱检测模型。为了提高模型性能,采用savizky-golay卷积平滑(SG),移动窗口平滑(moving average),标准正态变量(standard normal variable,SNV),基线校正(baseline correction,BC),多元散射校正(multiplicative scatter correction,MSC),正交信号校正(orthogonal signal correction,OSC)6种预处理方法并建立偏最小二乘回归(partial least squares regression,PLSR)模型,确定SNV方法为最佳预处理方法,其预测集的R2为0.976 6,RMSE为0.271 1%。为了简化校准模型,利用无信息变量消除(uninformative variable elimination,UVE),连续投影算法(successive projections algorithm,SPA),竞争性自适应加权算法(competitive adaptive reweighted sampling,CARS)以及UVE-CARS、UVE-SPA等方法对SNV预处理后的光谱提取特征波长。然后,分别基于全光谱数据和所选特征变量数据,建立线性偏最小二乘回归(PLSR)和非线性BP神经网络模型。结果表明:UVE-CARS算法可以有效地减少提取变量个数(共提取26个,仅占全光谱范围的3.2%),PLSR和BP模型的预测集R2分别为0.974 6和0.978 4,RMSE分别为0.286 3%和0.250 3%。非线性BP模型预测结果整体优于线性PLSR模型,在BP模型中,UVE-CARS-BP预测精度最高,预测集的R2和RMSE的值分别为0.978 4, 0.250 3%。综上,基于高光谱成像技术建立的SNV-UVE-CARS-BP模型,可以实现金银花贮藏过程中CGA含量变化的快速无损预测。  相似文献   

7.
基于透射光谱的玉米叶片水分含量快速检测   总被引:2,自引:2,他引:0  
为实现玉米叶片水分含量快速检测,利用近红外光谱仪在300~1 700 nm采用透射法对玉米叶片水分含量进行快速检测。试验利用烘干法对叶片水分梯度进行控制,并测量玉米叶片的透射光谱曲线和含水率。对透射光谱数据采用Savitzky-Golay方法进行平滑预处理,滤除光谱波动噪声干扰。分析了叶片透射光谱与含水率之间的相关关系,通过相关性分析提取敏感波长800、932、1 423 nm;利用主成分分析法提取敏感波长478、748、1058和1 323 nm。综合二者敏感波长最终筛选出水分敏感波长800、1 323、1 058和1 423 nm。利用这4个波长的组合得到比值植被指数、差值植被指数和归一化植被指数等12种植被指数,选取了最优差值植被指数DVI(1423、800)与透射率T1 323和T1 058建立了玉米叶片含水率多元线性回归诊断模型,建模集决定系数Rc2=0.968 8,验证集决定系数Rv2=0.951 9,预测结果方根误差为0.061。结果表明,利用透射光谱技术检测的玉米叶片水分含量具有较高的精度,可为植物叶片水分快速检测仪器开发提供指导。  相似文献   

8.
脂肪作为一种重要的品质参数,在大西洋鲑鱼片中的分布很不均匀。为寻找一种能替代脂肪化学检测的快速无损的方法,该研究应用可见/近红外高光谱成像测定大西洋鲑鱼片的脂肪含量分布。分别采用可见/短波近红外(400-1100 nm)和近红外(900-1700 nm)系统获取大西洋鲑鱼片样本的高光谱图像。提取样本图像的平均光谱并与其相应的脂肪含量化学值采用偏最小二乘回归(partial least squares regression,PLSR)和最小二乘支持向量机(least-squares support vector machines,LS-SVM)建立相关性模型。为降低高光谱图像的共线性和冗余度,基于竞争性自适应重加权算法(competitive adaptive reweighted sampling,CARS)分别在可见/短波近红外和近红外光谱区间提取16个(468,479,728,734,785,822,863,890,895,899,920,978,1005,1033,1040,1051 nm)和15个(975,995,1023,1047,1095,1124,1167,1210,1273,1316,1354,1368,1575,1632,1661 nm)特征波长,并分别建立PLSR和LS-SVM模型。特征波长模型的性能优于全波段模型,且近红外区间的特征波长PLSR模型为最优,预测决定系数(R2p)为0.92,预测均方根误差(root mean square error of prediction,RMSEP)为0.92%,剩余预测偏差(residual predictive deviation,RPD)为3.50。最后,将最优模型用于预测高光谱图像上所有像素点的脂肪含量以展示样本上脂肪的分布。此外,还基于该技术对大西洋鲑整鱼片实现了脂肪分布可视化。结果表明高光谱成像技术结合化学计量学方法在大西洋鲑鱼片脂肪的定量和分布可视化上有一定的研究和应用前景。  相似文献   

9.
拉曼光谱法无损检测蜂蜜中的果糖和葡萄糖含量   总被引:5,自引:3,他引:2  
应用拉曼光谱结合化学计量学方法对蜂蜜果糖和葡萄糖含量进行了定量分析。用自适应迭代重加权惩罚最小二乘(adaptive iteratively reweighted penalized least squares,airPLS)算法进行基线校正,用竞争性自适应重加权采样(competitive adaptive reweighted sampling,CARS)算法筛选变量,分别用线性的偏最小二乘(partial least squares,PLS)回归算法和非线性的支持向量机(support vector machines,SVM)回归算法建立定量校正模型,并进行预测。2种模型都有较好的预测结果。对果糖,SVM模型预测值与高效液相色谱法(high performance liquid chromatography,HPLC)测定值的相关系数(R)和预测均方根误差(root mean square error of prediction,RMSEP)分别为0.902和1.401,略优于PLS模型(R为0.892,RMSEP为1.604);对葡萄糖,PLS模型的R和RMSEP分别为0.968和0.669,优于SVM模型(R为0.933,RMSEP为1.410)。结果表明拉曼光谱结合化学计量学方法可快速无损测定蜂蜜果糖和葡萄糖含量。  相似文献   

10.
基于漫反射光谱的初制绿茶含水率无损检测方法   总被引:7,自引:4,他引:3  
茶叶含水率是影响茶叶加工品质的一项重要指标。为了实现茶叶加工中含水率的快速检测,该文提出了一种应用漫反射光谱技术的绿茶初制过程中含水率无损检测方法。采用波长范围在325~1 075 nm 的可见-短波近红外光谱仪,对炒青绿茶在8个加工工序中随机抽取的568个茶叶样本进行漫反射光谱扫描,光谱扫描后立即测量样本的含水率。对于得到的光谱数据,采用小波变换降低其信息维度并提取小波系数,比较小波低频系数对于光谱特征信息的提取能力,结果显示,小波低频系数能够有效提取原始光谱数据中的特征信息。采用3种回归算法:偏最小二乘回归、神经网络和支持向量机分别建立含水率的测量模型。比较发现支持向量机回归模型的结果最优,建模相关系数为0.9985,预测相关系数为0.9875。研究结果表明,漫反射光谱可以用于绿茶含水率的无损、快速检测,小波变换是一种有效的光谱特征提取算法,而且支持向量机回归算法具有高精度和强泛化能力,可广泛用于回归分析。  相似文献   

11.
基于高光谱图像光谱与纹理信息的生菜氮素含量检测   总被引:13,自引:10,他引:3  
高光谱图像包含丰富的光谱与图像信息,该文基于此试图构建生菜氮素检测模型。利用高光谱图像采集系统获取可见-近红外(390~1 050 nm)范围内的生菜叶片高光谱图像,同时利用凯氏定氮法获取对应叶片的氮素值。将光谱反射值较大波长图像与反射值较小波长图像相除并用阈值化法构建掩膜图像,获取感兴趣区域(ROI,region of interest)。由于高光谱数据量大、且数据间冗余性强,因此如何有效的提取一些特征波长十分重要。该文采用主成分分析(PCA,principal component analysis)对原始高光谱图像进行处理,根据前3个主成分图像(PC1、PC2、PC3)在全波长下的权重系数分布图选出662.9、711.7、735.0、934.6 nm 4个特征波长及对应的光谱特征,并且分别提取4个特征波长图像、主成分图像PC1、PC2、PC3在ROI下的基于灰度共生矩阵的纹理特征,最后利用支持向量机回归(SVR,support vector machine regression)分别建立生菜叶片基于特征波长光谱特征、特征波长图像与主成分图像的纹理特征及光谱纹理融合特征与对应氮素值之间的关系模型。结果表明,在校正性能指标决定系数R2C上,基于光谱特征+特征波长图像纹理特征的模型较好,R2C=0.996,校正集均方根误差RMSEC为0.034;在预测性能指标决定系数R2P上,基于光谱特征的模型较好,R2P=0.86,预测集均方根误差RMSEP为0.22。该研究结果可为农作物氮素的快速、无损检测提供一定的参考价值。  相似文献   

12.
优化BP神经网络提高高光谱检测调理鸡肉菌落总数精度   总被引:3,自引:3,他引:0  
针对调理鸡肉菌落总数在贮藏期间易受到外界因素影响,提出了一种优化反向传播(back propagation,BP)神经网络的调理鸡肉菌落总数预测方法。以贮藏在4℃条件下的调理鸡肉为研究对象,采集其表面400~1 000 nm高光谱信息共计419个波段作为全波段,并利用竞争性自适应重加权(competitive adaptive reweighted sampling,CARS)算法筛选出34个特征波段,分别以全波段和特征波段对应的光谱值作为BP神经网络输入,采用鸟群算法(bird swarm algorithm,BSA)和免疫算法(immune algorithm,IA)优化BP神经网络的初始权重和阈值,建立调理鸡肉菌落总数的BP、BSA-BP、IA-BP、BSA-IA-BP预测模型。试验结果表明:经过CARS筛选特征波长的BSA-IA-BP模型预测效果最佳,预测集相关系数RP、均方根误差、剩余预测偏差分别为0.93、0.31lg(CFU/g)、2.68,且模型稳定性最好。该研究为基于BP神经网络实现调理鸡肉菌落总数快速无损检测提供了算法支撑和理论基础。  相似文献   

13.
快速、无损和准确检测青贮玉米原料含水率,对确保青贮玉米发酵品质、推动青贮产业健康快速发展有重要现实意义。为探究高光谱技术在青贮玉米原料含水率检测方面的可行性,研究通过高光谱成像系统获取青贮玉米原料高光谱图像并利用烘箱加热法测定实际含水率。在粒子更新方式和惯性权重2个方面对传统离散粒子群算法(discretebinary particle swarm optimization,DBPSO)进行优化,提出基于改进型离散粒子群算法(modified discrete binary particle swarm optimization,MDBPSO)的特征波段优选方法,并利用相关系数分析法(correlation coefficient,CC)、DBPSO和MDBPSO法提取原料含水率高光谱特征变量,基于全波段反射光谱(total spectral reflectance,TSR)和特征波段反射光谱建立青贮玉米原料含水率预测模型。结果表明,MDBPSO优选特征波段适应度函数的收敛精度和收敛效率较DBPSO法均有明显改善,最优适应度值由0.761 6提高至0.812 3,函数收敛迭代次数由280次降低至79次。MDBPSO-PLSR预测模型的建模精度和预测精度均高于CC-PLSR、DBPSO-PLSR和TSR-PLSR预测模型,其校正集决定系数Rc2和均方根误差RMSEC(root mean square error of calibration)分别为0.81和0.032,预测集决定系数Rp2和均方根误差RMSEP(root mean square error of prediction)分别为0.80和0.045。该研究表明,利用高光谱图像技术检测青贮玉米原料含水率具有较高的精度,研究可为后续开发青贮玉米原料水分快速检测仪器提供借鉴方法。  相似文献   

14.
小波变换耦合CARS算法提高土壤水分含量高光谱反演精度   总被引:4,自引:3,他引:1  
为实现干旱地区土壤水分含量(soil moisture content,SMC)的快速监测,该文以渭干河-库车河绿洲为靶区,采用小波变换(wavelet transform,WT)对反射光谱进行1~8层小波分解,通过相关性分析确定最大分解层数,再通过竞争性自适应重加权(competitive adaptive reweighted sampling,CARS)滤除冗余变量,筛选出与SMC相关性较好的波长变量,并叠加各层特征光谱的优选波长变量作为最优变量集,用偏最小二乘回归(partial least squares regression,PLSR)构建土壤水分含量预测模型并进行分析.结果显示:1)小波分解过程中,土壤反射率与SMC的相关性不断增强,到小波变换第6层分解(L6)处达到最高,因此小波变换最大分解层数为6层分解;2)通过对土样进行WT-CARS耦合算法筛选出变量,得出的最优变量集包括400~500、1 320~1 461、1 851~1 961、2 125~2 268 nm区域之间共131个波长变量;3)相对于全波段预测模型,各层特征光谱的CARS优选变量预测模型的精度均高,并且基于最优变量集的预测模型的精度最高,该模型的建模集均方根误差0.021、建模集决定系数0.721、预测集均方根误差0.028、预测集决定系数0.924、相对分析误差2.607.说明WT-CARS耦合算法使其在建立模型时尽可能少地损失光谱细节、较为彻底的去除噪声,同时还能对无信息变量进行有效去除,为该研究区SMC的预测提供新的思路.  相似文献   

15.
[目的]对基于细菌觅食优化算法的支持向量机在土壤墒情预测中的应用进行探讨,为现代农业研究中土壤墒情预测及农业生产提供支持。[方法]基于支持向量回归机方法建立土壤墒情预测模型,利用细菌觅食优化算法优化支持向量机预测模型的相关参数。根据从种植区采集的田间数据对模型进行建模和测试。[结果]与仅利用支持向量回归机和利用粒子群优化的支持向量回归机分别建立的模型进行对比,发现本研究所提算法建立的预测模型的预测效果更佳。[结论]该模型预测效果较好,所建模型已应用于实际项目,预测精度基本满足要求,且运行稳定。进而证明了该研究所提算法的有效性和可行性。  相似文献   

16.
高光谱图像结合特征变量筛选定量检测羊肉中狐狸肉掺假   总被引:3,自引:3,他引:0  
为了探讨快速无损检测羊肉糜中狐狸肉掺假含量的可行性,该研究利用高光谱技术结合特征变量筛选方法开展了其定量检测研究。利用遗传算法、竞争性自适应重加权算法和二维相关光谱分析(Two-Dimensional Correlation Spectroscopy,2D-COS)3种方法分别对代表性样品全部846个波长进行特征波长筛选,得到207、34和14个特征波长;基于全部波长和特征波长建立羊肉糜中狐狸肉掺假含量的偏最小二乘回归(Partial Least Squares Regression,PLSR)和支持向量回归(Support Vector Regression,SVR)模型并进行比较。研究结果表明,基于全部波长和特征波长建立的SVR模型性能均优于PLSR模型。其中,利用2D-COS方法提取的14个特征波长建立的SVR模型(即2D-COS-SVR模型)性能最优,其预测集决定系数和均方根误差分别为0.928和3.00%,相对分析误差为4.85,表明高光谱结合2D-COS-SVR模型可以有效实现羊肉糜中狐狸肉掺假的定量检测。该研究结果为开发低成本肉类掺假检测系统提供技术支持和参考依据。  相似文献   

17.
孟珊  李新国  焦黎 《土壤通报》2023,54(2):286-294
  目的  为湖滨绿洲土壤高光谱估算土壤电导率值提供方法支持,实现区域土壤盐分快速估测。  方法  利用实测的土壤电导率值与土壤高光谱数据联合分析,采用竞争自适应重加权采样(CARS)、连续投影算法(SPA)、遗传算法(GA)筛选土壤电导率的特征波段,并基于全波段及特征波段构建BP神经网络(BPNN)、支持向量机(SVM)、极限学习机(ELM)三种机器学习算法模型,引入偏最小二乘模型(PLSR)进行对照,比较其模型精度。  结果  研究区土壤电导率值变化范围0.02~17.22 mS cm?1,平均值为2.61 mS cm?1,变异系数为134.87%,呈现强变异性;CARS、SPA、GA算法筛选的特征波段将建模输入量分别压缩至全波段数量的0.87%、1.68%、0.70%,减少建模输入量,提升建模速率,变量方法的选择CARS > SPA > GA;三种机器学习算法模型均优于PLSR模型,决定系数(R2)平均增加20.57%,相对分析误差(RPD)平均增加17.84%,土壤电导率高光谱估算模型以CARS-SVM最优,训练集与验证集R2分别为0.76和0.75,RMSE分别为1.79 和1.68 mS cm?1,RPD分别为2.04和2.00。土层深度20 ~ 30 cm的土壤电导率高光谱估算模型精度最高,训练集与验证集R2分别为0.83和0.84,RMSE分别1.37和1.77 mS cm?1,RPD分别为2.41和2.50。  结论  基于CARS-SVM的土壤电导率高光谱估算模型精度高,估算能力最优,可以为湖滨绿洲土壤电导率估算提供科学参考。  相似文献   

18.
基于CARS算法的不同类型土壤有机质高光谱预测   总被引:2,自引:8,他引:2       下载免费PDF全文
不同土壤类型的理化性质和光谱性质存在差异,以往研究多以高光谱反射率或光谱吸收特征建立模型,输入变量类型结构单一,往往导致土壤有机质(Soil Organic Matter,SOM)预测模型的精度不高。为提高SOM高光谱预测模型精度,该研究以黑龙江省海伦市为研究区,将不同类型土壤分别以竞争自适应重加权采样(Competitive Adaptive Reweighted Sampling,CARS)筛选的特征波段、数字高程模型(Digital Elevation Model,DEM)数据和光谱指数作为输入变量,结合随机森林(Random Forest,RF)算法建立SOM预测模型。结果表明:1)通过CARS算法筛选后,各土壤类型特征波段压缩至全波段数目的16%以下,在很大程度上降低土壤高光谱变量维度和计算复杂程度,从而提高了模型的预测能力,说明CARS算法在提取特征关键波段变量、优化模型结构方面起到重要作用;2)不同类型土壤的SOM预测精度存在差异,沼泽土的预测精度最高为0.768,性能与四分位间隔距离的比率(Ratio of Performance to InterQuartile distance,RPIQ)为3.568;黑土次之,草甸土的预测精度最低,仅0.674,RPIQ为1.848。3类土壤的RPIQ均达到1.8以上,模型具有较好的预测能力;3)局部回归预测精度最优,验证集的调整后决定系数为0.777,均方根误差(Root Mean Square Error,RMSE)为0.581%,模型验证RPIQ为2.689,模型稳定性高。该试验筛选的预测因子通过RF模型可实现SOM含量的快速预测,简化了传统复杂的程序,可为中尺度区域不同类型土壤的SOM预测提供依据,为输入量的选择提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号