首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 降雨侵蚀力简易算法是较大尺度应用USLE/RUSLE进行土壤侵蚀评价研究的必要内容。基于降雨量和降雨时间建立月降雨侵蚀力计算模型,并以陕北黄土丘陵沟壑区为例,进行模型的拟合。结果表明:随着自变量中降雨量和降雨时间表示方式的改变,模型的拟合优度表现出明显的差异;对于不同因变量而言,以ΣEI30(或lg(ΣEI30))和以ΣEI10(或lg(ΣEI10))为因变量的模型拟合优度在整体上比较接近甚至相同,而以ΣE60I10(或lg(ΣE60I10))为因变量的模型拟合优度在整体上略低;就尺度效应而言,在时间尺度上,整个汛期的模型拟合优度低于1个月份或多个月份模型的拟合优度,在空间尺度上,区域模型中的拟合优度低于至少1个流域的模型拟合优度;在实际应用中,可以选择以ΣEI30为因变量的月降雨侵蚀力公式对该区域进行土壤侵蚀评价。  相似文献   

2.
Continuous half-hourly measurements of soil CO2 efflux made between January and December 2001 in a mature trembling aspen stand located at the southern edge of the boreal forest in Canada were used to investigate the seasonal and diurnal dependence of soil respiration (Rs) on soil temperature (Ts) and water content (θ). Daily mean Rs varied from a minimum of 0.1 μmol m−2 s−1 in February to a maximum of 9.2 μmol m−2 s−1 in mid-July. Daily mean Ts at the 2-cm depth was the primary variable accounting for the temporal variation of Rs and no differences between Arrhenius and Q10 response functions were found to describe the seasonal relationship. Rs at 10 °C (Rs10) and the temperature sensitivity of Rs (Q10Rs) calculated at the seasonal time scale were 3.8 μmol m−2 s−1 and 3.8, respectively. Temperature normalization of daily mean Rs (RsN) revealed that θ in the 0–15 cm soil layer was the secondary variable accounting for the temporal variation of Rs during the growing season. Daily RsN showed two distinctive phases with respect to soil water field capacity in the 0–15 cm layer (θfc, 0.30 m3 m−3): (1) RsN was strongly reduced when θ decreased below θfc, which reflected a reduction in microbial decomposition, and (2) RsN slightly decreased when θ increased above θfc, which reflected a restriction of CO2 or O2 transport in the soil profile.Diurnal variations of half-hourly Rs were usually out of phase with Ts at the 2-cm depth, which resulted in strong diurnal hysteresis between the two variables. Daily nighttime Rs10 and Q10Rs parameters calculated from half-hourly nighttime measurements of Rs and Ts at the 2-cm depth (when there was steady cooling of the soil) varied greatly during the growing season and ranged from 6.8 to 1.6 μmol m−2 s−1 and 5.5 to 1.3, respectively. On average, daily nighttime Rs10 (4.5 μmol m−2 s−1) and Q10Rs (2.8) were higher and lower, respectively, than the values obtained from the seasonal relationship. Seasonal variations of these daily parameters were highly correlated with variations of θ in the 0–15 cm soil layer, with a tendency of low Rs10 and Q10Rs values at low θ. Overall, the use of seasonal Rs10 and Q10Rs parameters led to an overestimation of daily ranges of half-hourly RsRs) during drought conditions, which supported findings that the short-term temperature sensitivity of Rs was lower during periods of low θ. The use of daily nighttime Rs10 and Q10Rs parameters greatly helped at simulating ΔRs during these periods but did not improve the estimation of half-hourly Rs throughout the year as it could not account for the diurnal hysteresis effect.  相似文献   

3.
Continuous half-hourly measurements of soil (Rs) and bole respiration (Rb), as well as whole-ecosystem CO2 exchange, were made with a non steady-state automated chamber system and with the eddy covariance (EC) technique, respectively, in a mature trembling aspen stand between January 2001 and December 2003. Our main objective was to investigate the influence of long-term variations of environmental and biological variables on component-specific and whole-ecosystem respiration (Re) processes. During the study period, the stand was exposed to severe drought conditions that affected much of the western plains of North America. Over the 3 years, daily mean Rs varied from a minimum of 0.1 μmol m−2 s−1 during winter to a maximum of 9.2 μmol m−2 s−1 in mid-summer. Seasonal variations of Rs were highly correlated with variations of soil temperature (Ts) and water content (θ) in the surface soil layers. Both variables explained 96, 95 and 90% of the variance in daily mean Rs from 2001 to 2003. Aspen daily mean Rb varied from negligible during winter to a maximum of 2.5 μmol m−2 bark s−1 (2.2 μmol m−2 ground s−1) during the growing season. Maximum Rb occurred at the end of the aspen radial growth increment and leaf emergence period during each year. This was 2 months before the peak in bole temperature (Tb) in 2001 and 2003. Nonetheless, Rb was highly correlated with Tb and this variable explained 77, 87 and 62% of the variance in Rb in the respective years. Partitioning of Rb between its maintenance (Rbm) and growth (Rbg) components using the mature tissue method showed that daily mean Rbg occurred at the same time as aspen radial growth increment during each growing season. This method led, however, to systematic over- and underestimations of Rbm and Rbg, respectively, during each year. Annual totals of Rs, Rb and estimated foliage respiration (Rf) from hazelnut and aspen trees were, on average, 829, 159 and 202 g C m−2 year−1, respectively, over the 3 years. These totals corresponded to 70, 14 and 16%, respectively, of scaled-up respiration estimates of Re from chamber measurements. Scaled Re estimates were 25% higher (1190 g C m−2 year−1) than the annual totals of Re obtained from EC (949 g C m−2 year−1). The independent effects of temperature and drought on annual totals of Re and its components were difficult to separate because the two variables co-varied during the 3 years. However, recalculation of annual totals of Rs to remove the limitations imposed by low θ, suggests that drought played a more important role than temperature in explaining interannual variations of Rs and Re.  相似文献   

4.
To study the feasibility of using magnetic techniques for monitoring soil pollution in Shanghai, magnetic properties and heavy metals in the topsoils in an urban site (Songnan Town) and a less-urbanized agricultural site (Luojing Town) in Baoshan District, Shanghai, were studied. Compared with the background, magnetic signals of the urban topsoils are extremely enhanced with magnetic susceptibility (χlf) from 127.3–1959 × 10− 8 m3 kg− 1; while those of the agricultural topsoils are only slightly increased. However, both the urban and agricultural topsoils contain few pedogenic SP grains, as indicated by their low χfd% (< 3.6%). Ratios of χarm/SIRM, χarm/χlf and SIRM/χlf indicate that the grain size of magnetic minerals in the urban topsoils is significantly coarser than that in the background and the agricultural topsoils. Furthermore, the urban topsoils show low coercivity and magnetic soft behaviors, as indicated by higher SOFT%, lower HARD%, higher IRM300 mT/SIRM (close to 1) and lower IRM− 200 mT/SIRM (close to − 1). It suggests that the urban topsoils have received some coarse ferrimagnetic particles. Heavy metals are highly enriched in the magnetic fractions of the topsoils. Geochemical properties of the magnetic fraction of the urban topsoils are significantly different from those of the agricultural topsoils, further indicating that the extra magnetic minerals accumulated in the urban topsoils are neither inherited from soil parent materials nor from pedogenic processes, but originate from anthropogenic activities. The significant correlations between heavy metals and χlf, χarm, SIRM, SOFT and HIRM of the topsoils in the district indicate that the magnetic techniques can be used for monitoring soil pollution in Shanghai. The soils with χlf from 39–50 × 10− 8 m3 kg− 1 in the district are tentatively defined as “slightly polluted soils”; those with χlf > 50 × 10− 8 m3 kg− 1 are defined as “polluted soils”.  相似文献   

5.
Rainfall erosivity map for Brazil   总被引:1,自引:0,他引:1  
Rainfall erosivity is the potential ability for rainfall to cause soil loss. Erosivity can be quantified by means of the R factor calculation of the universal soil loss equation (USLE). The purpose of this study was to investigate the spatial distribution of annual rainfall erosivity in Brazil. For each of eight Brazilian regions covering the whole of the territory of Brazil, one adapted equation was applied using pluviometric records obtained from 1600 weather stations. A geographic information system (GIS) was used to interpolate the values and to generate a map showing spatial variations of erosivity. The annual values of erosivity ranged from 3116 to 20,035 MJ mm ha−1 h−1 year−1. The region with highest annual values was the extreme northwestern, while the northeastern region showed the lowest annual values of erosivity. For the most part of the Brazilian territory, December and January revealed the highest erosivity values, while the lowest values were observed from June to September.  相似文献   

6.
Soil moisture and gaseous N-flux (N2O, N2) dynamics in Costa Rican coffee plantations were successively simulated using a mechanistic model (PASTIS) and two process-based models (NGAS and NOE). Two fertilized (250 kg N ha−1 y−1) coffee plantations were considered, namely a monoculture and a system shaded by the N2 fixing legume species Inga densiflora. In situ N2O fluxes were previously measured in these plantations. NGAS and NOE used specific microbial activities for the soils. To parameterize NGAS, we estimated N mineralization via in situ incubations and the contribution of heterotrophic soil respiration to total soil respiration. Potential denitrification rates and the proportion of denitrified N emitted as N2O were measured in the laboratory to define the values of NOE parameters, as well as nitrification rates and related N2O production rates for parameterizing both models. Soil moisture and both NGAS and NOE N2O fluxes were best modelled on an hourly time step. Soil moisture dynamics were satisfactorily simulated by PASTIS. Simulated N2O fluxes by both NGAS and NOE (3.2 and 2.1 kg N ha−1 y−1 for NGAS; 7.1 and 3.7 kg N ha−1 y−1 for NOE, for the monoculture and shaded plantations respectively) were within a factor of about 2 of the observed annual fluxes (4.3 and 5.8 kg N ha−1 y−1, for the monoculture and shaded plantations respectively). Statistical indicators of association and coincidence between simulated and measured values were satisfactory for both models. Nevertheless, the two models differed greatly in describing the nitrification and denitrification processes. Some of the algorithms in the model NGAS were apparently not applicable to these tropical acidic Andosols. Therefore, more detailed information about microbial processes in different agroecosystems would be needed, notably if process-oriented models were to be used for testing strategies for mitigating N2O emissions.  相似文献   

7.
S. Yin  Y. Xie  M.A. Nearing  C. Wang 《CATENA》2007,70(3):306-312
The 30-min rainfall erosivity index (EI30) is commonly used in the Universal Soil Loss Equation for predicting soil loss from agricultural hillslopes. EI30 is calculated from the total kinetic energy and the maximum 30-min rainfall intensity of a storm. Normally, EI30 values are calculated from breakpoint rainfall information taken from continuous recording rain gauge charts, however, in many places in China and other parts of the world the detailed chart-recorded rain gauge data relative to storm intensities are not readily available, while hourly rainfall is readily available. The objective of this study was to assess the accuracy of EI30 estimations based on 5-, 10-, 15-, 30-, and 60-min time-resolution rainfall data as compared to EI30 estimations from breakpoint rainfall information. 456 storm events from five soil conservation stations in eastern China were used. The values of EI30 based on the fixed-time-interval data were less than those calculated from breakpoint data. The average conversion factors (ratio of values calculated from the breakpoint data to those from the fixed-interval data) for the five stations decreased from 1.105 to 1.009 for the estimation of E values, from 1.668 to 1.007 for I30 values, and from 1.730 to 1.014 for EI30 values as the time resolution increased from 60 to 5 min. The maximum 30-min rainfall intensity was the major source of error in estimating EI30 for 60-min fixed-interval data, while storm kinetic energy played a proportionately more significant role as the fixed-interval data decreased from 60 to 5 min.  相似文献   

8.
Global change scenarios predict an increasing frequency and duration of summer drought periods in Central Europe especially for higher elevation areas. Our current knowledge about the effects of soil drought on nitrogen trace gas fluxes from temperate forest soils is scarce. In this study, the effects of experimentally induced drought on soil N2O and NO emissions were investigated in a mature Norway spruce forest in the Fichtelgebirge (northeastern Bavaria, Germany) in two consecutive years. Drought was induced by roof constructions over a period of 46 days. The experiment was run in three replicates and three non-manipulated plots served as controls. Additionally to the N2O and NO flux measurements in weekly to monthly intervals, soil gas samples from six different soil depths were analysed in time series for N2O concentration as well as isotope abundances to investigate N2O dynamics within the soil. N2O fluxes from soil to the atmosphere at the experimental plots decreased gradually during the drought period from 0.2 to −0.0 μmol m−2 h−1, respectively, and mean cumulative N2O emissions from the manipulated plots were reduced by 43% during experimental drought compared to the controls in 2007. N2O concentration as well as isotope abundance analysis along the soil profiles revealed that a major part of the soil acted as a net sink for N2O, even during drought. This N2O sink, together with diminished N2O production in the organic layers, resulted in successively decreased N2O fluxes during drought, and may even turn this forest soil into a net sink of atmospheric N2O as observed in the first year of the experiment. Enhanced N2O fluxes observed after rewetting up to 0.1 μmol m−2 h−1 were not able to compensate for the preceding drought effect. During the experiment in 2006, with soil matric potentials in 20 cm depth down to −630 hPa, cumulative NO emissions from the throughfall exclusion plots were reduced by 69% compared to the controls, whereas cumulative NO emissions from the experimental plots in 2007, with minimum soil matric potentials of −210 hPa, were 180% of those of the controls. Following wetting, the soil of the throughfall exclusion plots showed significantly larger NO fluxes compared to the controls (up to 9 μmol m−2 h−1 versus 2 μmol m−2 h−1). These fluxes were responsible for 44% of the total emission of NO throughout the whole course of the experiment. NO emissions from this forest soil usually exceeded N2O emissions by one order of magnitude or more except during wintertime.  相似文献   

9.
A localized rainfall kinetic energy (E) equation and an erosivity map were developed, and the suitability of the universal soil loss equation (USLE) for assessing the soil erosion of a non‐US region was investigated. After accurately measuring and gathering data regarding raindrop size using disdrometers in four northern Taiwan locations, this study investigated the drop size distribution under different conditions by categorizing the rainfall patterns to develop regression equations for estimating the unit volume‐specific kinetic energy (KEmm) and the unit time‐specific kinetic energy (KEtime) of northern Taiwan. Climate zoning, which is not considered in currently used designs, was then implemented along with two‐stage cluster analysis to construct a rainfall erosivity (R) distribution map using the kriging model. The binary polynomial regression function of KEtime, which had the highest correlation (R2 = 0.98), was suggested to estimate E in northern Taiwan. It was found that the pattern and intensity (I) of rainfall will slightly affect E. The climatic influence on the root mean square of the semivariogram was significant, which suggests that climate zoning can help estimate the rainfall erosivity (R). The outcomes were extended to estimate R in areas without rainfall stations.  相似文献   

10.
黔西高原地区降雨侵蚀力的简易算法   总被引:2,自引:2,他引:2  
[目的]对黔西高原地区侵蚀性降雨特性进行分析并探索降雨侵蚀力的简易算法,为该区土壤侵蚀预报模型的建立提供理论依据。[方法]利用径流小区观测法,基于毕节小区2012—2014年53次降雨过程资料进行分析。[结果](1)降雨量(P)和最大60min降雨动能(E60)是影响坡面产流、产沙的两个主要因子。坡面产流、产沙与最大60min雨强(I_(60))显著相关;(2)坡面产流产沙与二元复合因子的相关系数显示,EI_(60),PI_(60)和I30I_(60)是影响坡面产流、产沙的3类主要降雨复合指标,EI30和EI_(60)与坡面产流产沙的相关系数间相差较小;(3)基于坡面产流、产沙与降雨单指标和降雨复合指标的相关关系,确定了简易算法的参数。[结论]基于可比性,以R=EI30作为参照值对3种简易算法的结果进行决定系数和偏差率比较后,得到研究区便捷、快速的降雨侵蚀力简易算法为:R=0.344(PI_(60))。  相似文献   

11.
The CO2 efflux from loamy Haplic Luvisol and heavy metal (HM) uptake by Zea mays L. were studied under increased HM contamination: Cd, Cu, and Ni up to 20, 1000, and 2500 mg kg−1 soil, respectively. Split-root system with contrasting HM concentrations in both soil halves was used to investigate root-mediated HM translocation in uncontaminated soil zones. To separate root-derived and soil organic matter (SOM)-derived CO2 efflux from soil, 14CO2 pulse labeling of 15-, 25-, and 35-days-old plants was applied. The CO2 evolution from the bare soil was 10.6 μg C–CO2 d−1 g−1 (32 kg C–CO2 d−1 ha−1) and was not affected by HM (except 2500 mg Ni kg−1). The average CO2 efflux from the soil with maize was about two times higher and amounted for about 22.0 μg C–CO2 d−1 g−1. Portion of assimilates respired in the rhizosphere decreased with plant development from 6.0 to 7.0% of assimilated C for 25-days-old Zea mays to 0.4–2.0% for 45-days-old maize. The effect of the HM on root-derived 14CO2 efflux increased with rising HM content in the following order: Cd < Cu < Ni. In Cu and Ni contaminated soils, shoot and root dry matter decreased to 70% and to 50% of the uncontaminated control, respectively. Plants contained much more HM in the roots than in the shoots. A split-root system with contrasting HM concentrations allowed to trace transport of mobile forms of HM by roots from contaminated soil half into the uncontaminated soil half. The portion of mobile HM forms in the soil (1 M NH4NO3 extract) increased with contamination and amounted to 9–16%, 2–6% and 1.5–3.5% for Cd, Cu, and Ni, respectively. Corresponding values for the easily available HM (1 M NH4OAc extract) were 22–52%, 1–20% and 5–8.5%. Heavy metal availability for plants decreased in the following order: Cd > Cu ≥ Ni. No increase of HM availability in the soil was found after maize cultivation.  相似文献   

12.
13.
Previous studies have demonstrated inconsistent results on the impact of tillage systems on nitrogen (N) losses from field-applied manure. This study assessed the impact of no-tillage (NT) and conventional tillage (CT) systems on gaseous N losses, N2O:N2O + N2 ratios and NO3-N leaching following surface application of cattle manure. The study was undertaken during the 2003/2004 and 2004/2005 seasons at two field sites in Nova Scotia namely, Streets Ridge (SR) in Cumberland County and the Bio-environmental Engineering Centre (BEEC) in Truro. Results showed that the NT system had higher (p < 0.05) NH3 losses than CT. Over the two seasons, manure incorporation in CT reduced NH3 losses on average by 86% at SR and 78% at BEEC relative to NT. At both sites and during both seasons, denitrification rates and N2O fluxes in NT were generally higher than in CT plots, presumably due to higher soil water and organic matter content in NT. Over the two seasons, mean denitrification rates at SR were 239 and 119 g N ha−1 d−1, while N2O fluxes were 120 and 64 g N ha−1 d−1 under NT and CT, respectively. At BEEC mean denitrification rates were 114 and 71 g N ha−1 d−1, while N2O fluxes were 52 and 27 g N ha−1 d−1 under NT and CT, respectively. Conversely, N2O:N2O + N2 ratios were lower in NT than CT suggesting more complete reduction of N2O to N2 under NT. When averaged across all soil depths, NO3-N was higher (p < 0.05) in CT than NT. Nitrate-N decreased with depth at both sites regardless of tillage. In most cases, NO3-N was higher under CT than NT at all soil depths. Similarly, flow-weighted average NO3-N concentrations in drainage water were generally higher under CT. This may be partly attributed to higher denitrification rates under NT. Therefore, NT may be a viable strategy to remove NO3-N from the soil, and thus, reduce NO3-N contamination of groundwater. However, it should be noted that while the use of NT reduces NO3-N leaching it may come with unintended environmental tradeoffs, including increased NH3 and N2O emissions.  相似文献   

14.
近年来遥感反演降水产品的时空分辨率不断提高,为估算区域尺度上具有空间连续性的降雨侵蚀力提供了新的可能。但以往研究在应用遥感降水产品估算降雨侵蚀力时多忽略了其与站点观测数据间的差异和对其纠偏的可能性。该研究以广东省86个气象站2001—2020年的逐时降水资料估算的降雨侵蚀力为观测值,评估两套IMERG(integrated multi-satellite retrievals for GPM)遥感降水产品-GPM_3IMERGHH(0.1°,逐30-min)和GPM_3IMERGDF(0.1°,逐日)对广东省降雨侵蚀力的估算精度并量化偏差,再结合拟合纠偏确定基于遥感反演降水数据估算广东省降雨侵蚀力的最优方法。结果表明:这两套产品均不适宜直接估算降雨侵蚀力指标,不同时间尺度、不同方法直接应用时精度均较低,克林-古普塔效率系数(Kling-Gupta efficiency, KGE)小于等于0.51。但多年平均和极端次事件降雨侵蚀力与对应观测值间具有强相关性(皮尔逊相关系数大于等于0.78),具备纠偏的潜力。因此,本研究发展线性模型对IMERG估算结果进行纠偏,交叉验证结果表明纠偏后GPM_3IMERGHH估算多年平均降雨侵蚀力(R因子)的KGE可达0.79,10年一遇EI30的KGE可达0.64,优于采用站点日降水估算降雨侵蚀力并插值的精度(KGE分别为0.60和0.59),与采用站点小时降水估算降雨侵蚀力并插值的精度相近(KGE分别为0.77和0.66)。当前研究结果充分展示了遥感反演降水在土壤水蚀领域的应用潜力和前景。  相似文献   

15.
The seasonal fluxes of heat, moisture and CO2 were investigated under two different rice environments: flooded and aerobic soil conditions, using the eddy covariance technique during 2008 dry season. The fluxes were correlated with the microclimate prevalent in each location. This study was intended to monitor the environmental impact, in terms of C budget and heat exchange, of shifting from lowland rice production to aerobic rice cultivation as an alternative to maintain crop productivity under water scarcity.The aerobic rice fields had higher sensible heat flux (H) and lower latent heat flux (LE) compared to flooded fields. On seasonal average, aerobic rice fields had 48% more sensible heat flux while flooded rice fields had 20% more latent heat flux. Consequently, the aerobic rice fields had significantly higher Bowen ratio (0.25) than flooded fields (0.14), indicating that a larger proportion of the available net radiation was used for sensible heat transfer or for warming the surrounding air.The total C budget integrated over the cropping period showed that the net ecosystem exchange (NEE) in flooded rice fields was about three times higher than in aerobic fields while gross primary production (GPP) and ecosystem respiration (Re) were 1.5 and 1.2 times higher, respectively. The high GPP of flooded rice ecosystem was evident because the photosynthetic capacity of lowland rice is naturally large. The Re of flooded rice fields was also relatively high because it was enhanced by the high photosynthetic activities of lowland rice as manifested by larger above-ground plant biomass. The NEE, GPP, and Re values for flooded rice fields were −258, 778, and 521 g C m−2, respectively. For aerobic rice fields, values were −85, 515, and 430 g C m−2 for NEE, GPP, and Re, respectively. The ratio of Re/GPP in flooded fields was 0.67 while it was 0.83 for aerobic rice fields.This short-term data showed significant differences in C budget and heat exchange between flooded and aerobic rice ecosystems. Further investigation is needed to clarify seasonal and inter-annual variations in microclimate, carbon and water budget of different rice production systems.  相似文献   

16.
The effects of di-(2-ethylhexyl) phthalate (DEHP) at five different doses from 10 to 1000 mg kg−1 soil on biological properties were investigated over a period of 56 days. Meanwhile, the dissipation of DEHP was also monitored. The results indicated that the microbial biomass C (Cmic) fluctuated at around 70 mg kg−1 soil for the control, whereas the Cmic varied significantly for the soil samples contaminated by DEHP. The catalase activities in all five treatments were stimulated at most time, and the activities of phosphatase in the soils treated by DEHP with 500 mg kg−1 or 1000 mg kg−1 were significantly higher than the other treatments from the 20th day. Urease was more sensitive and inhibited significantly during the initial period of incubation. Additionally, the dose–response relationship of invertase was presented in the later phase of incubation. The activities of urease and invertase might indicate soil perturbations caused by the introduction of DEHP. The dissipation of DEHP was found to follow the pseudo first-order kinetics behavior.  相似文献   

17.
Land preparation for mechanisation in vineyards of the Anoia–Alt Penedès region, NE Spain, has required major soil movements, which has enormous environmental implications not only due to changes in the landscape morphology but also due to soil degradation. The resulting cultivated soils are very poor in organic matter and highly susceptible to erosion, which reduces the possibilities of water intake as most of the rain is lost as runoff. In order to improve soil conditions, the application of organic wastes has been generalised in the area, not only before plantation but also every 3–4 years at rates of 30–50 Mg ha− 1 mixed in the upper 30 cm.These organic materials are important sources of nutrients (N and P) and other elements, which could reduce further fertilisation cost. However, due to the high susceptibility to sealing of these soils, erosion rates are relatively high, so a higher nutrient concentration on the soil surface increases non-point pollution sources due to runoff.The aim of this study is to analyse the influence of applied composted cattle manure on infiltration, runoff and soil losses and on nutrients transported by runoff in vineyards of the Alt Penedès–Anoia region, NE Spain. In the two plots selected for the analysis, composted cattle manure had been applied in alternate rows 1 year previous to the study. In each plot soil surface samples (0–25 cm) were taken and compared to those of plots without manure application. The study was carried out at laboratory scale using simulated rainfall. Infiltration rates were calculated from the difference between rainfall intensity and runoff rates, and the sediment and total nitrogen and phosphorus were measured for each simulation. In addition, the influence of compost was investigated in the field under natural rainfall conditions by analysing the nutrient concentration in runoff samples collected in the field (in the same plots) after seven rainfall events, which amount different total precipitation and had different erosive character.Compost application increases infiltration rates by up to 26% and also increases the time when runoff starts. Sediment concentration in runoff was lower in treated (13.4 on average mg L− 1) than in untreated soils (ranging from 16.8 to 23.4 mg L− 1). However, the higher nutrient concentration in soils produces a higher mobilisation of N (7–17 mg L− 1 in untreated soils and 20–26 mg L− 1 in treated soils) and P (6–7 mg L− 1 in untreated soils and 13–19 mg L− 1 in treated soils). A major part of the P mobilised was attached to soil particles (about 90% on average) and only 10% was dissolved. Under natural conditions, higher nutrient concentrations were always recorded in treated vs. untreated soils in both plots, and the total amount of N and P mobilised by runoff was higher in treated soils, although without significant differences. Nutrient concentrations in runoff depend on rainfall erosivity but the average value in treated soils was twice that in untreated soils for both plots.  相似文献   

18.
During raindrop impact soil, aggregates breakdown and produce finer, more transportable particles and micro-aggregates. These particles and micro-aggregates appreciably affect the processes of infiltration, seal and crust development, runoff, and soil erosion. Aggregate stability is, therefore, an important property that may explain, quantify, and predict these processes. This study was designed to develop improved formulae for assessing interrill erosion rate by incorporating the aggregate stability index (As) in the prediction evaluations for soil erodibilites of Ultisols in subtropical China. Field experiments of simulated rainfall involving rainstorm simulations with medium and high rainfall intensity were conducted on six cultivated soils for which the soil aggregate stability was determined by the LB-method. This study yielded two prediction equations Di = 0.23AsI2(1.05 − 0.85 exp−4sin θ) and Di = 0.34AsqI(1.05 − 0.85 exp−4sin θ) that allowed a comparison of their efficiency in assessing the interrill erosion rate. As is an aggregate stability index, which reflected the main mechanisms of aggregate breakdown in interrill erosion process, θ is the slope angle, I is the rainfall intensity, and q is the runoff rate. Relatively good agreement was obtained between predicted and measured values of erosion rates for each of the prediction models (R2 = 0.86**, and R2 = 0.90**). It was concluded that these formulae based on the stability index, As, have the potential to improve methodology for assessing interrill erosion rates for the subtropical Chinese Ultisols. Considering the time-consuming and costly experimentation of runoff rate measurements, the equation without runoff rate (q) was the more convenient and effective one to predict interrill erosion rates on Ultisols of subtropical China.  相似文献   

19.
20.
To date, tillage erosion experiments in Canada have only been conducted on conventionally tilled corn-based production systems in Ontario and conventionally tilled cereal-based production in Manitoba. Estimates and assumptions have been made for all other production systems. Therefore, the objective of this study was to evaluate the erosivity of primary and secondary tillage operations within conventional and conservation potato production systems used in Atlantic Canada. Regression analysis determined that a direct relationship exists between slope gradient and both the mean displacement distance of the tilled layer (TL) and the mass of translocated soil (TM) for the chisel plough (CP), mouldboard plough (MP) and offset disc (OD), but not for the vibrashank (VS). Overall, the potential for tillage erosion of the MP, CP, and OD was similar (1.8–1.9 kg m−1 %−1 pass−1) and larger than that of the VS (0.3 kg m−1 %−1 pass−1). The regression coefficients for each implement were improved after including slope curvature, and we recommend that curvature be included in any future tillage erosion modelling. Our results show that both residue management to control wind and water erosion and soil movement to control tillage erosion must be considered when choosing implements and developing best management practices with regards to reducing the negative impacts of total soil erosion on potato production systems in Atlantic Canada.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号