首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Results of studying the effect of different plant species on the humus status of loamy sandy soddy-podzolic soil were generalized. It was found that the application of different green manure species (Lupinus luteus L., Trifolium pratense L., and Raphanus sativus L.) and straw from cereal crops (Secale cereale, Hordeum L.) under percolative conditions helped to sustain a stable humus budget in grain agrophytocenoses. A significant change in the fractional composition of HAs and FAs occurred under the effect of green manure. The fractions of free HAs and those bound to clay minerals accumulated with the application of Trifolium pratense and Raphanus sativus biomass and cereal straw. Lower amounts of aggressive and free FAs were formed in the soil with the application of straw and fallow plants. The decomposition of green manure and the formation of humic substances also depended on the hydrothermal conditions during application of manure.  相似文献   

2.
通过对华北平原小麦–玉米轮作农田生态系统18年田间施肥试验,研究了长期不同施肥处理对耕层(0—20 cm)土壤腐殖质及活性腐殖质组分碳和氮的影响。试验设化肥NPK不同组合(NPK、NP、NK、PK),全部施用有机肥(OM),一半有机肥+化肥NPK(1/2OMN)及不施肥(CK)共7个处理。结果表明,各施肥处理均能在不同程度上增加土壤腐殖质(胡敏酸、富里酸和胡敏素)及活性腐殖质(活性胡敏酸和活性富里酸)组分碳和氮含量,提高可浸提腐殖质(胡敏酸和富里酸)及活性腐殖质组分碳和氮分配比例;但施肥对土壤活性腐殖质组分碳和氮含量的增加率均分别高于腐殖质组分碳和氮。各处理土壤腐殖质及活性腐殖质组分碳和氮含量均为OM处理最高,且有机肥与化肥NPK配施高于单施化肥各处理;而化肥处理中NPK均衡施用效果最好。说明施用有机肥、有机肥与化肥NPK配施及化肥NPK均衡施用是增加土壤腐殖质及活性腐殖质组分碳和氮的关键;活性腐殖质组分碳和氮较腐殖质组分碳和氮对施肥措施的响应更灵敏。  相似文献   

3.
In order to investigate the effect of soil water and texture on C and N mineralisation of applied organic matter, sheep manure was sandwiched between two halves of intact soil cores and incubated at 20°C. The soils contained 10.8% (L1), 22.4% (L3) and 33.7% (L5) clay, respectively, and were drained to seven different matric potentials in the range -15 to -1,500 hPa. Evolution of CO2-C was determined during 4 weeks of incubation. Contents of NO3--N, 15N and microbial biomass N were determined at the end of the incubation. The net release of CO2-C from the manure (estimated as the difference between soils with and without manure) and the total CO2-C evolution from soils with manure was not related to soil water content. Most CO2-C evolved from manure-amended soils in the least clayey L1 soil. The manure caused immobilisation of soil NO3--N but the soil matric potential had no major effects on the net NO3--N production. Less than 1% of the manure 15N was found as NO3--N at the end of the incubation. When unamended, the sandy L1 soil held the least N in microbial biomass but the largest increases in biomass N caused by manure application were found in this soil. Despite the higher increases in microbial biomass N in the L1 soil, the total content of microbial biomass N in soils with manure application peaked in the most clayey soil (L5). The recovery of manure 15N at the end of the incubation ranged from 89% to 102%. The variation in 15N recovery was not related to soil clay content nor to soil matric potential. The experimental set-up was designed to mimic field conditions where manure is left as a discrete layer surrounded by structurally intact soil. In this situation the soil clay content and the soil water level appeared to have little influence on the C and N turnover in the manure layer.  相似文献   

4.
在荆门市双季稻区研究了不同的土壤改良措施对土壤腐殖质组成及结合形态、土壤理化性质、双季稻产量的影响。结果表明:不同土壤改良措施均提高了土壤水溶性物质、胡敏酸、胡敏素含量、可提取腐殖物质总量,其中泥炭土、菇渣及生物有机肥处理增幅较大;不同土壤改良措施增加了土壤松结合态腐殖质、稳结合态腐殖质、紧结合态腐殖质含量及结合态腐殖质总含量,其中生物有机肥处理达到显著水平。各土壤改良措施均不同程度地增加了早、晚稻产量,平均比单施化肥处理的早稻增产6.6%、晚稻增产9.5%;同时提高了土壤有机质、全氮、碱解氮、有效磷、速效钾含量与阳离子交换量,降低了土壤容重。各改良措施中,生物有机肥处理的增产幅度较大,早、晚稻分别增产10.13%和17.50%,且对土壤理化性质的改良效果优于其它处理。  相似文献   

5.
ABSTRACT

Research was conducted to determine the effects of perennial legume and their mulches on cereal grain yield and the alterations to clay loam Cambisol properties. The perennial legumes (Trifolium pratense L., Medicago sativa L.) as well as their mixtures with festulolium (x Festulolium) were studied in conjunction with their aboveground biomass management methods: removal from the field (cut twice for forage), mixed management (the first cut was for forage, the second and third cuts were mulched) and mulching (four times) in an organic arable farming system. Mulching of legumes biomass resulted in a higher total nitrogen (N) used for green manure. A similar amount of N was accumulated for lucerne and lucerne-festulolium mulch when using mulching and mixed management. Legumes used for mulching caused the amount of mineral N in soil to increase in late autumn (62.7–82.9 kg ha–1) and decrease in spring (39.5–64.0 kg ha–1). This mineral N had a positive impact on crop yield (r = 0.68–0.71*); however, mineral N in autumn had a negative impact on soil sustainable organic compounds (r = ?0.71*). The results indicate that the most suitable treatment was the legume-festulolium mixture, which used the biomass under mixed management.  相似文献   

6.
Substituting chemical fertilizers with manure is an important method for efficient nutrient management in rice cropping systems of China.Labile nitrogen(N) is the most active component of the soil N pool and plays an essential role in soil fertility.However,the effects of manure substitution on soil labile N in rice cropping systems and their relationships with soil properties,fertilization practices,and climatic conditions remain unclear and should be systematically quantified.Here,we investiga...  相似文献   

7.
In leached chernozems used in crop rotations with different amounts of plant residues for nine years, the following parameters have been determined: the changes in the contents of the total carbon and carbon and nitrogen from the readily hydrolyzable components of the soil organic matter: the labile humus, detritus, and mortmass. No significant differences in the content of Corg in the soil among the crop rotations have been found. The different inputs of plant residues have significantly affected the contents of carbon and nitrogen in the readily mineralizable soil organic matter. The decrease in the mean annual input of the aboveground plant residues to the soil from 1.5 to 0.2 t C/ha resulted in the reduction of the carbon and nitrogen contents in the soil by 19–25% for the labile humus, 24–28% for the detritus, and 33–36% for the mortmass. The labile humus formed the largest fraction (3890 mg of C/kg soil or 10.3% of Corg on the average for the crop rotations); the fractions of the detritus (1546 mg C/kg soil or 10.3%) and mortmass (627 mg C/kg soil or 1.7% of Corg) were the next.  相似文献   

8.
The number and biomass of the microbial community in the upper humus horizon (0–20 cm) were determined in the main types of alluvial soils (mucky gley, desertified soddy calcareous, hydrometamorphic dark-humus soils) in the Volga River delta. Fungal mycelium and alga cells predominate in the biomass of the microorganisms (35–50% and 30–47%, respectively). The proportion of prokaryotes in the microbial biomass of the alluvial soils amounts to 2–6%. No significant seasonal dynamics in the number and biomass of microorganisms were revealed in the alluvial soils. The share of carbon of the microbial biomass in the total carbon content of the soil organic matter is 1.4–2.3% in the spring. High coefficients of microbial mineralization and oligotrophy characterize the processes of organic matter decomposition in the alluvial soils of the mucky gley, desertified soddy calcareous, and hydrometamorphic dark humus soil types.  相似文献   

9.
Tannins are polyphenolic compounds that may influence litter decomposition, humus formation, nutrient (especially N) cycling and ultimately, plant nutrition and growth. The aim of this study was to determine the response of C and N transformations in soil to tannins of different molecular weight from Norway spruce (Picea abies (L.) Karst) and Scots pine (Pinus sylvestris L.) needles, tannic acid and cellulose. Arginine was added to test whether the soil microbial community was limited by the amount of N, and arginine+tannin treatments were used to test whether the effects of tannins could be counteracted by adding N. Soil and needle samples were taken from adjacent 70-year-old Scots pine and Norway spruce stands located in Kivalo, northern Finland. Tannins were extracted from needles and fractioned based on molecular weight; the fractions were then characterized by LC-MS and GC-MS. Light fractions contained tannin monomers and dimers as well as many other compounds, whereas heavy fractions consisted predominantly of polymerized condensed tannins. Spruce needles contained more procyanidin than prodelphinidin units, while in pine needles prodelphinidin units seemed to be dominant. The fractions were added to soil samples, pine fractions to pine soil and spruce fractions to spruce soil, and incubated at 14 °C for 6 weeks. CO2 evolution was followed throughout the experiment, and the rates of net mineralization of N and net nitrification, concentration of dissolved organic N (DON) and amounts of microbial biomass C and N were measured at the end of the experiment. The main effects of the fractions were similar in both soils. Light fractions strongly enhanced respiration and decreased net N mineralization, indicating higher immobilization of N in the microbial biomass. On the contrary, heavy fractions reduced respiration and slightly increased net N mineralization, suggesting toxic or protein-precipitating effects. The effects of tannic acid and cellulose resembled those of light fractions. DON concentrations generally decreased during incubation and were lower with heavy fractions than with light fractions. No clear differences were detected between the effects of light and heavy fractions on microbial biomass C and N. Treatments that included addition of arginine generally showed trends similar to treatments without it, although some differences between light and heavy fractions became more obvious with arginine than without it. Overall, light fractions seemed to act as a labile source of C for microbes, while heavy fractions were inhibitors.  相似文献   

10.
豆科绿肥替代化学氮肥促进柑橘幼苗生长和氮素吸收   总被引:3,自引:0,他引:3  
  【目的】  果园豆科绿肥还田是实现有机肥替代化肥的重要途径。研究不同绿肥替代化学氮肥比例对柑橘幼苗生长、氮素吸收、根系形态及土壤微生物量的影响,以期为柑橘减施氮肥和实现绿色有机生产提供理论依据。  【方法】  以1年生柑橘(Citrus reticulate L.)幼苗为材料进行盆栽试验,供试绿肥为拉巴豆(Dolichos lablab L.)和印度豇豆(Vigna sinensis Hayata)。在相同氮磷钾养分施用量下,设置5个绿肥氮替代比例:0 (100%F)、25% (25%G+75%F)、50% (50%G+50%F)、75% (75%G+25%F)和100% (100%G),磷钾量不足时由化肥补齐。在柑橘抽春梢期测定其各部位干物质量和氮素累积量,分析柑橘根系形态和根系活力,并测定土壤微生物量碳氮含量。  【结果】  相比100%F处理,两种豆科绿肥替代化学氮肥均显著提高了柑橘干物质量和氮素累积量,以75%G+25%F和100%G处理的效果最好,其干物质量和氮素吸收量分别提高42.71%~82.95%和38.88%~53.31%;土壤微生物量碳含量提高了5.12%~48.42%,土壤微生物量氮含量提高了6.35%~133.67%,并且微生物量碳氮含量随着绿肥替代化学氮肥比例的增加而增加。绿肥替代化学氮肥处理明显提高了柑橘幼苗总根长和根表面积,其中以< 1.5 mm径级根提高最多。相比100%F处理,绿肥替代化学氮肥处理的柑橘幼苗总根长和根表面积分别提高88.34%~324.87%和78.82%~372.91%;柑橘根径级<1.5 mm 根长和根表面积随着拉巴豆替代化学氮肥比例增加而增加,而印度豇豆处理则以替代50%和100%化学氮肥处理最高。同时,相比单施化肥处理,拉巴豆和印度豇豆替代化学氮肥处理柑橘根系活力分别提高43.95%~47.48%和40.61%~66.14%。相关性和结构方程分析表明,两种豆科绿肥替代化学氮肥可直接影响柑橘干物质量,也可通过改善柑橘根系形态和活力,增加土壤微生物量碳氮含量,直接或间接地影响柑橘氮累积量和干物质量;绿肥C/N值和柑橘氮素累积量存在显著正相关性,其通过直接影响柑橘氮素累积量,或间接改变柑橘根系形态、根系活力和微生物量,进而直接或间接影响柑橘干物质量。  【结论】  在等氮磷钾养分条件下,拉巴豆和印度豇豆替代化学氮肥均明显促进了土壤微生物增殖,提高柑橘根系活力、根系长度和根表面积,促进柑橘氮素吸收和干物质积累。在不改变柑橘常规氮磷钾施用量的前提下,豆科绿肥替代75%~100%的化学氮肥为较适宜的替代比例,其能够促进柑橘幼苗氮素吸收和干物质积累。  相似文献   

11.
The impact of long-term dust pollution emitted from a cement plant on soil chemistry, and the concentrations of plant nutrients, lignin, cellulose and hemicellulose in the stemwood of 80–85-year-old Pinus sylvestris was investigated at different distances from the emission source. It was found that alkaline cement dust (pH 12.3–12.6) emissions for over 40 years resulted in an alkalisation (pH 6.7–7.9) of the polluted soil compared to a pH value of 3.8 in unpolluted soil. There were also nutrient imbalances in the soil, as well as certain disturbances in mineral nutrition processes and accumulation of nutrients in the tree stems. The average concentrations of K, Ca and Mg in stems were higher and those of N and P lower than in the unpolluted area. The lignin (L) content in stemwood increased, hemicellulose (Hc) decreased, while cellulose (Ce) did not change. A variation in the partitioning of L, Ce, Hc and nutrients between different sections of stems and between trees from different sample plots was found. L, Ce and Hc were not related to the internal K, Ca and Mg concentrations. Correlations were established between L, Ce, or Hc content and C content, and between L and Hc content in stem tissues. The contents of wood components were not related to N or P in the alkalised areas, but seemed to be more associated with P than with N. Alterations in the arbitrarily chosen ratio L/(Ce + Hc) indicated changes in wood quality, and a negative correlation with N/P was found in stem tissue in the polluted area, while positive correlations with N/Mg and Ca/Mg were found in the control area.  相似文献   

12.
Return of high nitrogen (N) content crop residues to soil, particularly in autumn, can result in environmental pollution resulting from gaseous and leaching losses of N. The EU Landfill Directive will require significant reductions in the amounts of biodegradable materials going to landfill. A field experiment was set up to examine the potential of using biodegradable waste materials to manipulate losses of N from high N crop residues in the soil. Leafy residues of sugar beet were co‐incorporated into soil with materials of varying C:N ratios, including molasses, compactor waste, paper waste, green waste compost and cereal straw. The amendment materials were each incorporated to provide approximately 3.7 t C per hectare. The most effective material for reducing nitrous oxide (N2O) production and leaching loss of NO3? was compactor waste, which is the final product from the recycling of cardboard. Adding molasses increased N2O and NO3? leaching losses. Six months following incorporation of residues, the double rate application of compactor waste decreased soil mineral N by 36 kg N per hectare, and the molasses increased soil mineral N by 47 kg N per hectare. Compactor waste reduced spring barley grain yield by 73% in the first of years following incorporation, with smaller losses at the second harvest. At the first harvest, molasses and paper waste increased yields of spring barley by 20 and 10% compared with sugar beet residues alone, and the enhanced yield persisted to the second harvest. The amounts of soil mineral N in the spring and subsequent yields of a first cereal crop were significantly correlated to the lignin and cellulose contents of the amendment materials. Yield was reduced by 0.3–0.4 t/ha for every 100 mg/g increase in cellulose or lignin content. In a second year, cereal yield was still reduced and related to the cellulose content of the amendment materials but with one quarter of the effect. Additional fertilizer applied to this second crop did not relieve this effect. Although amendment materials were promising as tools to reduce N losses, further work is needed to reduce the negative effects on subsequent crops which was not removed by applying 60 kg/ha of fertilizer N.  相似文献   

13.
The effect of long-term (45 years) mineral and organic fertilization on soil organic matter (SOM) quantity (organic C and N content) and quality (hot-water-soluble C content, microbial biomass C content, hydrophobic organic components of SOM, soil enzyme activities) was determined in a field experiment established in Trutnov (North Bohemia, sandy loam, Eutric Cambisol). Six treatments were chosen for investigation: unfertilized control, mineral fertilization (NPK), straw N, farmyard manure (FYM) and straw and FYM completed with mineral NPK. Soil samples were taken from the arable layer (0–20 cm) in spring over the period of 2004–2010. The positive effect of FYM on the total organic C and N content, hot-water-soluble C content and hydrophobic organic components of SOM was more than 50% higher than that of straw and mineral N fertilization. Application of straw N increased microbial biomass C content in soil and generated invertase activity above the level of FYM. Hot-water-soluble C content, hydrophobic organic components of SOM and urease activity were positively correlated with total organic C and N content (R = 0.58–0.98; p < 0.05). Addition of mineral NPK to both the straw and FYM emphasized the effect of organic fertilization in most of monitored characteristics.  相似文献   

14.
长期有机培肥模式下黑土碳与氮变化及氮素矿化特征   总被引:21,自引:3,他引:18  
土壤氮的矿化是土壤氮素肥力的重要指标,是影响作物产量至关重要的因素。本研究依托黑土长期定位试验,通过取样分析研究了32 a不同培肥模式下黑土碳、 氮及主要活性组分的变化,采用淹水培养法研究了不同施肥模式下黑土氮素的矿化特征。结果表明,施肥显著提高黑土可溶性碳(DOC)、 氮(DON)的含量及其比例。在氮、 磷、 钾化肥的基础上配施有机肥,显著降低了土壤微生物量氮(SMBN)占土壤总氮的比例,提高了土壤微生物量的C/N比值(SMBC/SMBN),促进了土壤氮的生物固持。施肥32 a后,单施常量和高量有机肥处理的土壤氮的矿化量(Nt)显著提高,分别相当于不施肥的8.2倍和10.2倍,而单施氮或氮磷钾化肥对黑土氮素矿化量无明显影响。施用有机肥显著提高了土壤氮素的矿化率(Nt/TN),但有机肥配施化肥(氮或氮磷钾)的处理与单施有机肥相比,黑土氮的矿化率显著降低,降低幅度分别为23.5%~32.1% 和14.1%~17.8%。土壤氮素矿化量与土壤有机质、 全氮储量、 活性碳、 氮组分均呈极显著线性相关,但氮素的矿化率随着有机质和全氮含量的提高而提高至0.4% 后基本稳定。表明尽管土壤氮的矿化与有机质的含量直接相关,但土壤有机质的品质同样决定着土壤氮素的矿化能力。施有机氮是提高土壤供氮能力的重要途径。  相似文献   

15.
《Soil biology & biochemistry》2001,33(7-8):1011-1019
Soil management practices that result in increased soil C also impact soil microbial biomass and community structure. In this study, the effects of dairy manure applications and inorganic N fertilizer on microbial biomass and microbial community composition were determined. Treatments examined were a control with no nutrient additions (CT), ammonium nitrate at 218 kg N ha−1 (AN), and manure N rates of 252 kg manure-N ha−1 (LM) and 504 kg manure-N ha−1 (HM). All plots were no-till cropped to silage corn (Zea mays, L. Merr) followed by a Crimson clover (Trifolium incarnatum, L.)/annual ryegrass (Lolium multiflorum, Lam.) winter cover crop. Treatments were applied yearly, with two-thirds of the N applied in late April or early May, and the remainder applied in September. Soil samples (0–5, 5–10, and 10–15 cm) were taken in March 1996, prior to the spring nutrient application. Polar lipid fatty acid (PLFA) analysis was used to assess changes in microbial biomass and community structure. Significantly greater soil C, N and microbial biomass in the 0–5 cm depth were observed under both manure treatments than in the CT and AN treatments. There was also a definable shift in the microbial community composition of the surface soils (0–5cm). Typical Gram-negative bacteria PLFA biomarkers were 15 and 27% higher in the LM and HM treatments than in the control. The AN treatment resulted in a 15% decrease in these PLFA compared with the control. Factor analysis of the polar lipid fatty acid profiles from all treatments revealed that the two manure amendments were correlated and could be described by a single factor comprised of typical Gram-negative bacterial biomarkers. The AN treatments from all three depths were also correlated and were described by a second factor comprised of typical Gram-positive bacterial biomarkers. These results demonstrate that soil management practices, such as manuring, that result in accumulations of organic carbon will result in increased microbial biomass and changes in community structure.  相似文献   

16.
不同施肥措施对白土腐殖质组成的影响   总被引:3,自引:0,他引:3  
吴萍萍  王家嘉  李录久 《土壤》2016,48(1):76-81
以白土稻区4年大田定位试验为基础,设置2种翻耕深度(10 cm、20 cm,分别标记为T10、T20)和4种施肥措施(单施化肥、化肥+畜禽粪肥、化肥+秸秆还田、化肥+绿肥,分别标记为F、F+M、F+S、F+G),通过腐殖质组成修改法分别提取表层土壤水溶性物质、胡敏酸、富里酸和胡敏素,研究不同施肥措施对白土腐殖质各组分碳含量的影响。结果表明:单施化肥措施下,翻耕20 cm处理(T20+F)土壤总有机碳和腐殖质各组分碳含量均低于翻耕10 cm处理(T10+F),但差异未达显著水平。在翻耕20 cm的基础上增施有机肥能显著提高土壤总有机碳和腐殖质各组分碳含量,增施畜禽粪(T20+F+M)、秸秆还田(T20+F+S)和增施绿肥(T20+F+G)3处理的土壤总有机碳、胡敏酸、富里酸和水溶性物质碳含量较T20+F处理分别提高14.57%~30.64%、10.36%~30.57%、0.74%~12.31%和14.25%~26.80%。增施有机肥显著提高胡敏素碳含量,T20+F+M、T20+F+S和T20+F+G处理较T20+F处理提高18.87%~35.78%。4年不同翻耕与施肥措施对白土腐殖质性质未产生显著影响。增施有机肥能一定程度上提高土壤PQ值、胡富比、E4/E6值和色调系数。相关性分析表明,胡敏素、胡敏酸、富里酸碳含量与总有机碳含量间均存在显著或极显著正相关,与水溶性物质碳含量间无明显相关性。  相似文献   

17.
To assess the effect of long-term fertilization on labile organic matter fractions, we analyzed the C and N mineralization and C and N content in soil, particulate organic matter (POM), light fraction organic matter (LFOM), and microbial biomass. Results showed that fertilizer N decreased or did not affect the C and N amounts in soil fractions, except N mineralization and soil total N. The C and N amounts in soil and its fractions increased with the application of fertilizer PK and rice straw. Generally, there was no significant difference between fertilizer PK and rice straw. Furthermore, application of manure was most effective in maintaining soil organic matter and labile organic matter fractions. Soils treated with manure alone had the highest microbial biomass C and C and N mineralization. A significant correlation was observed between the C content and N content in soil, POM, LFOM, microbial biomass, or the readily mineralized organic matter. The amounts of POM–N, LFOM–N, POM–C, and LFOM–C closely correlated with soil organic C or total N content. Microbial biomass N was closely related to the amounts of POM–N, LFOM–N, POM–C, and LFOM–C, while microbial biomass C was closely related to the amounts of POM–N, POM–C, and soil total N. These results suggested that microbial biomass C and N closely correlated with POM rather than SOM. Carbon mineralization was closely related to the amounts of POM–N, POM–C, microbial biomass C, and soil organic C, but no significant correlation was detected between N mineralization with C or N amounts in soil and its fractions.  相似文献   

18.
Inga edulis Mart and Inga samanensis Uribe are promising yet little studied legume trees for use in agroforestry on acidic soils. The objective of this study was to analyze the decomposition and N release processes of green mulch from these species. Litterbags filled with leaves from each species were placed on the ground in an organic maize (Zea mays L.) alley-cropping experiment at the time of maize sowing and collected every 2 weeks over a 20 week period, and measured for dry matter, N, hemicellulose, cellulose, and lignin content. Three types of models were applied to the data, according to the characteristics of each component, to analyze the decomposition dynamics of whole leaves and leaf components: a negative exponential decay function, an inverted Michaelis-Menten function, and a linear regression. Initial decay of I. samanensis mulch was faster than I. edulis mulch. However, the recalcitrant fraction was about half of the initial litter mass in both Inga spp. Hemicellulose disappeared almost completely from the litter during the 20-week incubation period, while no significant lignin decay occurred. After a slow start, cellulose partially decayed following linear kinetics. The half-life of labile N, estimated as a Michaelis-Menten parameter, was 10 weeks in I. samanensis and ca. 24 weeks in I. edulis litter. Polyphenol content was significantly higher in I. edulis. Litter of I. edulis and I. samanensis may be classified as ‘low-quality’ and ‘medium-quality’ mulch, respectively. Due to the relatively large recalcitrant mulch fraction, both Inga spp. may promote C sequestration and long-term N accumulation in soil.  相似文献   

19.
华北地区施用有机肥对土壤氮组分及农田氮流失的影响   总被引:7,自引:0,他引:7  
为研究有机肥施入土壤后引起的土壤氮组分含量变化对农田氮流失的影响,采用小区试验,并结合田间原位模拟降雨试验,分析施用的有机肥中氮组分的量、土壤氮含量、农田氮素流失浓度及流失量三者间的关系。结果表明:有机肥中酸解氨基酸氮、酸解铵态氮含量占全氮比例分别为28.6%~40.6%,21.3%~33.2%,平均为35.4%、26.4%,是有机肥氮的主要组分;随着单位面积施入农田的有机肥中酸解氨基酸氮、酸解铵态氮(均为可矿化氮)的量增加,0~20 cm土层土壤可矿化氮含量也增加,二者呈极显著正相关;随着耕层土壤中可矿化氮含量增加,农田渗漏液中总氮、水溶性总氮、硝态氮浓度增高,二者呈显著或极显著正相关;随着施用有机肥中可矿化氮的量增多,径流液中总氮、水溶性总氮流失量增加,渗漏液中总氮、水溶性总氮、硝态氮浓度及流失量增高,分别呈显著和极显著正相关。因此,农田中高量施入有机肥,可造成土壤可矿化氮含量增加,农田氮素流失风险也随之增大。  相似文献   

20.
Co‐digestion of crop biomass improves the traditional manure‐based biogas yield due to an increased content of easily degradable carbon compounds. In this study, the methane potential of three perennials (grass, legumes, and grass+legume) was determined using various amounts together with animal manure. The nitrogen (N) mineralization dynamics in soil and the N‐fertilizer value of the derived digestates were subsequently tested in both a soil incubation study and a pot experiment with spring barley. Digestion of all tested perennials together with a manure‐based inoculum increased the cumulative methane yield four to five times compared to digestion of the inoculum alone, with the highest increases observed with pure grass. However, the methane potential decreased along with increasing grass biomass concentration. In the plant pot experiment, all tested digestates increased barley shoot biomass by 40–170%, to an extent statistically comparable to mineral N fertilizer. However, the application of the digestate originating from fermentation with pure grass resulted in lower plant growth and a more fluctuating soil mineral N content throughout the incubation study compared to the other digestates. Considering the high dry matter and methane yield ha?1, the possibility to substitute mineral N fertilizer inputs by leguminous biological N2 fixation capacity, and the digestate fertilizer value, the integration of grass–legume mixtures or sole legumes into anaerobic digestion systems as co‐substrate for manure seems to be promising. This could furthermore contribute to the diversification of cropping systems for bioenergy production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号