首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of EDTA on lipid oxidation in sugar beet pectin-stabilized oil-in-water emulsions (pH 6, 15% oil, wet basis), prepared from fish oil (FO) and fish oil-extra virgin olive oil (FO-EVOO) (1:1 w/w), as well as the spray-dried microcapsules (50% oil, dry basis) prepared from these emulsions, was investigated. Under accelerated conditions (80 °C, 5 bar oxygen pressure) the oxidative stability was significantly (P < 0.05) higher for FO and FO-EVOO formulated with EDTA, in comparison to corresponding emulsions and spray-dried microcapsules formulated without EDTA. The EDTA effect was greater in emulsions than in spray-dried microcapsules, with the greatest protective effect obtained in FO-EVOO emulsions. EDTA enhanced the oxidative stability of the spray-dried microcapsules during ambient storage (~25 °C, a(w) = 0.5), as demonstrated by their lower concentration of headspace volatile oxidation products, propanal and hexanal. These results show that the addition of EDTA is an effective strategy to maximize the oxidative stability of both FO emulsions and spray-dried microcapsules in which sugar beet pectin is used as the encapsulant material.  相似文献   

2.
Lipid oxidation in emulsions is influenced by the ability of transition metals to associate with emulsion droplets. The oxidative stability of 5% salmon oil-in-water emulsion was influenced by surfactant type, with oxidation rates being greatest in emulsions stabilized by anionic sodium dodecyl sulfate (SDS) followed by nonionic Tween 20 and cationic dodecyltrimethylammonium bromide (DTAB). EDTA inhibited lipid oxidation in all the emulsions, and apo-transferrin inhibited oxidation in the Tween 20-stabilized emulsions at pH 7.0, suggesting that continuous-phase iron was an active prooxidant. Iron associated with Tween-20 stabilized hexadecane emulsion droplets could be partitioned into the continuous phase by lowering the pH to 相似文献   

3.
The effect of selected phenolic compounds, namely, gallic acid, cyanidin-3-glucoside, (+)-epicatechin, chlorogenic acid, genistein and rutin (50 and 200 microM), and alpha-tocopherol (50 microM) against the oxidation of oil-in-water emulsions (37 degrees C/10 days) containing 1% myofibrillar proteins (MPs), was investigated. Emulsions containing 1% bovine serum albumin (BSA) were also prepared for comparative purposes. Protein oxidation was assessed by measuring the loss of natural tryptophan fluorescence and the protein carbonyl gain by using fluorescence spectroscopy. Lipid oxidation was concurrently analyzed by measuring the increase of conjugated dienes (CDs) and hexanal. Proteins inhibited lipid oxidation in oil-in-water emulsions, and MPs showed a more intense antioxidant activity than BSA. MPs were also more resistant to oxidative deterioration than BSA. The different antioxidant capacity of MPs and BSA and their susceptibility to suffer oxidative reactions might be derived from their different amino acid composition and three-dimensional structures. The addition of the phenolic compounds resulted in a variety of effects, including both antioxidant and pro-oxidant effects. Gallic acid, cyanidin-3-glucoside, and genistein were the most efficient inhibitors of lipid and protein oxidation. The chemical structure of the phenolic compounds as well as the nature and conformation of the proteins were greatly influential on the overall effect against oxidative reactions.  相似文献   

4.
The oxidative stability of long-chain polyunsaturated fatty acid (PUFA) and docosahexaenoic acid (DHA)-containing fish and algae oils varies widely according to their fatty acid composition, the physical and colloidal states of the lipids, the contents of tocopherols and other antioxidants, and the presence and activity of transition metals. Fish and algal oils were initially much more stable to oxidation in bulk systems than in the corresponding oil-in-water emulsions. The oxidative stability of emulsions cannot, therefore, be predicted on the basis of stability data obtained with bulk long-chain PUFA-containing fish oils and DHA-containing algal oils. The relatively high oxidative stability of an algal oil containing 42% DHA was completely lost after chromatographic purification to remove tocopherols and other antioxidants. Therefore, this evidence does not support the claim that DHA-rich oils from algae are unusually stable to oxidation. Addition of ethylenediaminetetraacetic acid (EDTA) prevented oxidation of both fish and algal oil emulsions without added iron and at low iron:EDTA molar concentrations. EDTA, however, promoted the oxidation of the corresponding emulsions that contained high iron:EDTA ratios. Therefore, to be effective as a metal chelator, EDTA must be added at molar concentrations higher than that of iron to inhibit oxidation of foods containing long-chain PUFA from either fish or algae and fortified with iron.  相似文献   

5.
Virgin olive oil is valued for its flavor, but unacceptable off-flavors may develop on storage in food products containing this oil due to oxidation. The oxidative stability of oil-in-water emulsions containing bovine serum albumin (BSA) and virgin olive oil phenolic compounds was studied. Four oil-in-water emulsions with and without BSA and phenols isolated from virgin olive oil were prepared. These model systems were stored at 60 degrees C to speed up lipid oxidation. Primary and secondary oxidation products were monitored every three days. Peroxide values and conjugated diene contents were determined as measures of the primary oxidation products. p-Anisidine values and volatile compounds were determined as measures of the secondary oxidation products. This latter determination was carried out by headspace solid-phase microextraction coupled with gas chromatography. Although olive oil phenolic compounds and BSA contributed some antioxidant activity when present as individual additives, the combination of BSA with phenols in an emulsion showed 58-127% synergy, depending on which analytical method was used in the calculation. The emulsion containing phenolic compounds and BSA showed a low level of deterioration after 45 days of storage at 60 degrees C.  相似文献   

6.
This paper is devoted to the application of front-surface fluorescence to the study of aging and oxidation of oil-in-water emulsions. Emulsions with two oil droplet sizes were stabilized with bovine serum albumin (BSA) and stored at 37 or 47 degrees C. Lipid oxidation was demonstrated by measurement of hydroperoxides and headspace pentane. Front-surface fluorescence spectra (excitation wavelength = 355 nm) revealed gradual formation of oxidized lipid-protein adducts during the 4 weeks of storage. Fluorescence (excitation = 290 nm) of BSA tryptophanyl residues (Trp) declined during the first day of aging and then decreased slightly and linearly. Fourth-derivative Trp spectra exhibited peaks at 316 and 332 nm. Their evolution indicated that the ratio of Trp in hydrophobic environments to total Trp increased in small droplet emulsions. This suggests that, during lipid oxidation, the adsorbed and nonadsorbed protein underwent various degrees of Trp degradations, polymerization, and aggregation. Thus, front-surface fluorescence makes it possible to evaluate, noninvasively, protein modification and lipid oxidation end-products during processing and storage of food emulsions.  相似文献   

7.
The ability of rapeseed oil and/or different antioxidants (alpha- and gamma-tocopherol mixture, ascorbyl palmitate, and EDTA) to protect fish-oil-enriched milk emulsions against oxidation was investigated. Tocopherol isomers in concentrations similar to those found in natural rapeseed oil were added to rapeseed oil stripped of natural tocopherols. The rapeseed oil with added tocopherols significantly inhibited oxidation in the fish-oil-enriched milk emulsions. In contrast, the emulsions with only fish oil and added alpha- and gamma-tocopherol were less stable than the emulsions with fish oil alone. When added individually, the gamma-tocopherol seemed to inhibit oxidation more efficiently than alpha-tocopherol. Ascorbyl palmitate (AP) almost completely retarded oxidation in the fish-oil-enriched milk emulsions, as determined by PV, volatile oxidation products, and sensory evaluation. AP also prevented the otherwise prooxidant effect of tocopherols added to fish oil before emulsification. No interactions between AP, tocopherols, and EDTA were observed, and EDTA added alone to fish oil did not show antioxidant properties in the milk emulsions. Overall, the results showed that addition of AP or rapeseed oil containing natural tocopherols to fish oil was equally efficient in inhibiting oxidation in the fish-oil-enriched milk emulsions.  相似文献   

8.
Metal-catalyzed oxidation of a structured lipid model emulsion   总被引:5,自引:0,他引:5  
The effects of temperature, time, metal, citric acid, and tocopherol contents on the oxidation stability of a model oil-in-water emulsion prepared with enzymatically synthesized menhaden oil-caprylic acid structured lipid were evaluated by response surface methodology. The emulsions were stabilized by whey protein isolate. Oxidation was monitored by measuring lipid hydroperoxides and thiobarbituric acid reactive substances (TBARS). Cupric sulfate and ferrous sulfate were used to study the effect of metal concentration and type. A statistical model was developed to determine the relationships between all variables considered. The relationships differed depending on the type of metal catalyst used. For both metal types, the metal concentration had the highest positive effect on peroxide value. Citric acid had the highest negative effect on peroxide value for iron-containing emulsions, while tocopherol had the highest negative effects for copper-containing emulsions. Results from the TBARS test did not vary significantly enough to yield an acceptable model.  相似文献   

9.
The purpose of this research was to examine the influence of the physical state of lipids on iron-promoted oxidation of methyl linolenate in octadecane oil-in-water emulsions. Octadecane and methyl linolenate oil-in-water emulsions were prepared that contained droplets having the octadecane as either liquid or solid. The physical state of the octadecane was confirmed by a differential scanning calorimeter (DSC). The effect of the physical state of the lipid on oxidation rates was determined as a function of iron concentration (80 and 160 microM), pH (3.0 or 7.0), emulsifier type, and cooling rate. Oxidation of methyl linolenate was determined by lipid hydroperoxides and thiobarbituric acid reactive substances (TBARS). Emulsions containing solid octadecane had higher rates of lipid hydroperoxide and TBARS formation than those containing liquid octadecane. The rate at which the emulsions were cooled had no influence on oxidation rates. Oxidation rates in both emulsions increased with increasing iron concentration and decreasing pH. Oxidation rates were lowest in emulsions with cationic droplet membranes (dodecyl trimethylammonium bromide-stabilized), presumably due to the repulsion of iron from the oxidizable methyl linolenate in the emulsion droplet core. These results suggest that upon crystallization of octadecane, the liquid methyl linolenate migrated to the emulsion droplet surface, where it was more prone to oxidation because it was in closer contact with the iron ions in the aqueous phase.  相似文献   

10.
omega-3 Fatty acids have numerous health benefits, but their addition to foods is limited by oxidative rancidity. Spray-drying tuna oil-in-water emulsion droplets with a coating of lecithin and chitosan multilayer system could produce emulsion droplet interfacial membranes that are cationic and thick, both factors that can help control lipid oxidation. Physicochemical and oxidative stability of the spray-dried emulsions were determined as a function of storage temperature and relative humidity (RH). The combination of ethylenediaminetetraacetic acid (EDTA) and mixed tocopherols was able to increase the oxidative stability of dried emulsions. Lipid oxidation was more rapid during storage at low relative humidity (11% and 33% compared to 52% RH). At high moisture, physical modifications in the sample were observed, including reduced dispersibility and formation of brown pigments. Sugar crystallization or Maillard products produced at the higher humidities may have inhibited oxidation. Overall, spray-dried tuna oil-in-water emulsions stabilized by lecithin-chitosan membranes were more oxidatively stable than bulk oils and thus have excellent potential as an omega-3 fatty acid ingredient for functional foods.  相似文献   

11.
The purpose of this research was to better understand the mechanisms by which proteins affect the rates of lipid oxidation in order to develop protein-stabilized emulsion delivery systems with maximal oxidative stability. This study evaluated the affect of pH and emulsifier concentration on the stability of cumene hydroperoxide in hexadecane-in-water emulsions stabilized by beta-lactoglobulin (beta-Lg). Emulsions prepared with 0.2 wt % beta-Lg (at pH 7.0) showed a 26.9% decrease in hydroperoxide concentrations 5 min after 0.25 mM ferrous ion was added to the emulsion. EDTA, but not continuous phase beta-Lg, could inhibit iron-promoted lipid hydroperoxide decomposition. Lipid hydroperoxides were more stable to iron-promoted degradation at pH values below the pI of beta-Lg, where the emulsion droplet would be cationic and thus able to repel iron away from the lipid hydroperoxides. Heating the beta-Lg-stabilized emulsions to produce a cohesive protein layer on the emulsion droplet surface did not alter the ability of iron to decompose lipid hydroperoxides. These results suggest that proteins at the interface of emulsion droplets primarily stabilize lipid hydroperoxides by electrostatically inhibiting iron-hydroperoxide interactions.  相似文献   

12.
Omega-3 Fatty acids have numerous health benefits, but their addition to foods is limited by oxidative rancidity. Engineering the interfacial membrane of oil-in-water emulsion droplets to produce a cationic and/or thick interface is an effective method to control lipid oxidation. Cationic and thick emulsion droplet interfacial membranes can be produced by an electrostatic layer-by-layer deposition technique resulting in droplets that are coated by multiple layers of emulsifiers. Tuna oil-in-water emulsion droplets coated by lecithin and chitosan produce cationic emulsion droplets that are more oxidatively stable than emulsions coated by lecithin alone. Ethylenediaminetetraacetic acid (EDTA) was able to increase the oxidative stability of emulsions stabilized with lecithin and chitosan more effectively than mixed tocopherols. The combination of EDTA and mixed tocopherols was not more effective than EDTA alone suggesting that control of prooxidant metals was the most important antioxidant technology. The production of emulsion droplets coated with lecithin and chitosan could be an excellent technology for stabilization of oxidatively unstable lipids for use in a variety of food products.  相似文献   

13.
Oxidation of oil-in-water emulsion droplets is influenced by the properties of the interfacial membrane surrounding the lipid core. To evaluate how surfactant headgroup size influences lipid oxidation rates, emulsions were prepared with polyoxyethylene 10 stearyl ether (Brij 76) or polyoxyethylene 100 stearyl ether (Brij 700), which are structurally identical except for their hydrophilic headgroups, with Brij 700 containing 10 times more polyoxyethylene groups than Brij 76. Fe(2+)-promoted decomposition of cumene hydroperoxide was lower in Brij 700-stabilized than in Brij 76-stabilized hexadecane emulsions. Fe(2+)-promoted alpha-tocopherol oxidation rates were similar in hexadecane emulsion regardless of surfactant type. Brij 700 decreased production of hexanal from methyl linoleate and the formation of lipid peroxides and propanal from salmon oil compared to emulsions stabilized by Brij 76. These results indicate that emulsion droplet interfacial thickness could be an important determinant in the oxidative stability of food emulsions.  相似文献   

14.
Inclusion of liposoluble bioactive compounds in fortified foods represents a complex challenge due to the labile nature of such compounds and the instability of oil-in-water emulsion-based delivery systems. In the present study, dispersions prepared with 10% (w/w) sunflower oil (SO) or hydrogenated palm kernel oil (HPKO) containing 0.05% (w/w) β-carotene were stabilized by various concentrations of whey protein isolate (WPI) or sodium caseinate (NaCas) (0.1 to 2.0% w/w) in 30% (w/w) sucrose aqueous solutions. Physicochemical characterization of emulsions was done considering the particle size, the particle surface protein coverage, and the physical state of continuous and dispersed phases. Physical stability of the systems and their protection properties on β-carotene were compared. The lipid carrier type and interfacial structure were investigated as the two key factors which regulate the stability of labile lipophilic bioactive molecules in food model systems. Our results showed high β-carotene stability when O/W systems were stable (protein concentration ≥0.8% w/w.) A (partially) solid lipid carrier (HPKO) enhanced protection compared to the liquid carrier (SO) as the bioactive molecules were entrapped in isolated domains within the solid lattice and kept apart from reactive species in the surroundings. NaCas provided a better barrier than WPI due to the different amino acid composition and interface structure which significantly reduced β-carotene degradation rate.  相似文献   

15.
The effects of riboflavin photosensitization on the oxidative stability of oil-in-water (O/W) emulsions were determined using lipid hydroperoxides and headspace volatile analyses. The influences of a metal chelator, sodium azide, and superoxide dismutase (SOD) on oxidation pathways were tested to gain a better understanding of the role of transition metals, singlet oxygen, and superoxide anion, respectively. Emulsions with riboflavin and visible light irradiation had significantly higher lipid hydroperoxides and volatiles (p < 0.05) as compared to samples without light irradiation or riboflavin. The addition of ethylenediammetetraacetic acid (EDTA) decreased the formation of lipid hydroperoxides, hexanal, 2-heptenal, and 1-octen-3-ol in a concentration-dependent manner. Sodium azide, a singlet oxygen physical quencher, only inhibited the formation of 2-heptenal and 1-octen-3-ol. Overall, photosensitized riboflavin participated in both type I and type II pathways in O/W emulsions, and these pathways enhance the prooxidant activity of metals through their ability to produce lipid hydroperoxides and superoxide anion.  相似文献   

16.
The nonenzymatic oxidation of polyphenols bearing di- and trihydroxyphenol groups results in the generation of hydrogen peroxide (H?O?), a reactive oxygen species that can potentially compromise the oxidative stability of foods and beverages. An investigation of the factors that promote the oxidation of a model polyphenol, (-)-epigallocatechin-3-gallate (EGCG), was undertaken in a model lipid-based food system. Factors affecting oxidative stability, such as exogenous iron chelators (ethylenediaminetetraacetic acid; EDTA and 2,2-bipyridine; BPY) and pH (3 and 7) were evaluated in hexadecane and flaxseed oil-in-water (o/w) emulsions. At neutral pH, H?O? levels were observed to rise rapidly in hexadecane emulsions except for EDTA-containing treatments. However, EDTA-containing samples showed the highest rate of EGCG oxidation, suggesting that H?O? was rapidly reduced to hydroxyl radicals (HO?). Conversely, at pH 3, H?O? concentrations were lower across all treatments. EDTA conferred the highest degree of EGCG stability, with no loss of the catechin over the course of the study. In order to assess whether or not the H?O? production seen in oxidatively stable hexadecane emulsions translated to pro-oxidant activity in an oxidatively labile food lipid system, the effect of EGCG on the stability of flaxseed o/w emulsions was studied. EGCG displayed antioxidant activity at pH 7 throughout the study; however at pH 3, pro-oxidant activity was seen in EGCG-containing emulsions, with and without BPY. This study attempts to provide a mechanistic understanding of the conditions wherein polyphenols simultaneously exert pro-oxidant and antioxidant behavior in lipid dispersions.  相似文献   

17.
The effects of the emulsifiers lecithin, Tween 20, whey protein isolate, mono-/diacylglycerols, and sucrose fatty acid ester on oxidation stability of a model oil-in-water emulsion prepared with enzymatically synthesized menhaden oil-caprylic acid structured lipid were evaluated. Oxidation was monitored by measuring lipid hydroperoxides, thiobarbituric acid reactive substances, and the ratio of combined docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) contents to palmitic acid in the emulsion. After high-pressure homogenization, all emulsions, except those prepared with lecithin, had similar droplet size distributions. All structured lipid emulsions, except for the lecithin-stabilized emulsions, were stable to creaming over the 48-day period studied. Emulsifier type and concentration affected oxidation rate, with 0.25% emulsifier concentration generally having a higher oxidation rate than 1% emulsifier concentration. Overall, oxidation did not progress significantly enough in 48 days of storage to affect DHA and EPA levels in the emulsion.  相似文献   

18.
Surimi containing omega-3 fatty acids from algal oil was prepared by the addition of oil-in-water emulsions or bulk oil. Emulsion and bulk oil were added separately to surimi to provide approximately 500 mg of omega-3 fatty acids per serving of surimi (85 g). Addition of the emulsion had no effect on surimi gel strength, whereas bulk oil decreased gel strength an average of 31%. All surimi treatments containing algal oil increased in Hunter b values due to the presence of carotenoids in the oil. Among cryoprotectants, sodium tripolyphosphate was the major surimi additive responsible for retarding the formation of lipid hydroperoxides and thiobarbituric acid reactive substances (TBARS). Lipid hydroperoxide and TBARS formation was lower in surimi containing bulk oil compared to surimi with emulsified oil. Both EDTA and lipid soluble antioxidants were able to decrease lipid oxidation in surimi fortified with omega-3 fatty acids. This suggests that surimi containing nutritionally beneficial omega-3 fatty acids could be developed with good oxidative stability and gel strength.  相似文献   

19.
Oxidation of oil-in-water emulsion droplets is influenced by the properties of the interfacial membrane surrounding the lipid core. Previous work has shown that an important factor in the oxidation of oil-in-water emulsions is surfactant properties that impact interactions between water-soluble prooxidants and lipids in the emulsion droplet. The purpose of this research was to study the impact of surfactant hydrophobic tail group size on lipid oxidation in oil-in-water emulsions stabilized by polyoxyethylene 10 lauryl ether (Brij-lauryl) or polyoxyethylene 10 stearyl ether (Brij-stearyl). The ability of iron to decompose cumene peroxide was similar in hexadecane emulsions stabilized by Brij-stearyl and Brij-lauryl. Oxidation of methyl linoleate in hexadecane emulsions containing cumene peroxide was greater in droplets stabilized by Brij-lauryl than in those stabilized by Brij-stearyl at pH 3 with no differences observed at pH 7.0. Oxidation of salmon oil was greater in emulsions stabilized by Brij-lauryl than in those stabilized by Brij-stearyl as determined by both lipid peroxides and headspace propanal. These results suggest that surfactant hydrophobic tail group size may play a minor role in lipid oxidation in oil-in-water emulsions.  相似文献   

20.
The purpose of this research was to determine how surfactant micelles influence iron partitioning and iron-promoted lipid oxidation in oil-in-water emulsions. Lipids containing ferric ions were used to produce oil-in-water emulsions, and continuous-phase iron concentrations in emulsions were measured as a function of varying continuous-phase polyoxyethylene 10-lauryl ether (Brij) concentrations. Continuous-phase iron concentrations increased with increasing surfactant micelle concentrations (0.1-2.0%) and storage time (1-7 days). At pH 3.0, the concentration of continuous-phase iron was higher than at pH 7.0. Similar trends in iron solubilization by Brij micelles were observed when either hexadecane or corn oil was used as the lipid phase. Lipid oxidation rates, as determined by the formation of lipid hydroperoxides and headspace hexanal, in corn oil-in-water emulsions containing iron decreased with increasing surfactant concentrations (0.5-2.0%). These results indicate that surfactant micelles could alter the physical location and prooxidant activity of iron in oil-in-water emulsions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号