首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The effects of estradiol-17beta (E-17beta) or estradiol benzoate (EB) on gonadotrophin release, estrus and ovulation in beef cattle were evaluated in two experiments. In experiment 1, 16 ovariectomized cows received a previously used CIDR insert from days 0 to 7 and 1mg of EB on day 8; they also received 5mg of E-17beta on days 0 or 1, or 5mg of E-17beta+100mg of progesterone on day 0. There was only an effect of time (P<0.0001) on plasma concentrations of progesterone, estradiol, FSH, and LH. Following treatment with E-17beta, plasma FSH concentrations were suppressed for approximately 36 h, whereas plasma LH concentrations were reduced (P<0.05) for 6 h, but surged within 24 h. Injecting 1mg of EB 24 h after CIDR removal decreased (P<0.02) plasma LH concentrations for 6h, followed by an LH surge at 18 h. In experiment 2, ovary-intact heifers (n=40) received a used CIDR and 5mg of E-17beta+100mg of progesterone on day 0. On day 7, CIDR were removed, PGF given, and heifers received nothing (control) or 1mg of EB 12, 24, or 36 h later. In these groups, plasma LH peaked (mean+/-SEM) 78.0+/-23.0, 37.8+/-8.5, 44.4+/-10.3, and 51.0+/-5.1 h after CIDR removal (means, P<0.001; variances, P<0.001) and intervals from CIDR removal to ovulation were 102.0+/-6.7, 63.6+/-3.6, 81.6+/-3.5, and 78.0+/-4.1h (P<0.05). The interval from CIDR removal to ovulation was shorter and less variable in EB-treated groups; the interval from EB to ovulation was shortest (P<0.05) in the 12-h group. In summary, E-17beta or EB decreased both FSH and LH, but LH increased after 6h (despite elevated progesterone concentrations). Following CIDR removal, 1mg of EB effectively synchronized LH release, and ovulation (in intact cattle), but the interval from CIDR removal to EB treatment affected the time of ovulation.  相似文献   

2.
Ovarian follicular dynamics and estrous synchronization after Gonadotropin-releasing hormone (GnRH) treatment at Controlled Internal Drug Releasing device (CIDR) insertion were investigated in Japanese Black cows. CIDR was inserted for eight cows at 7 days after estrus. Cows were allocated to either Group A: 8-day CIDR insertion with GnRH treatment on d 0 (n=4, d 0=CIDR insertion) or Group B: 8-day CIDR insertion (n=4). Both groups were injected with prostaglandin F2alpha (PGF2alpha) on d 7. Ultrasonography and blood sampling were performed twice daily. Intensive sampling was performed every 15 min for 8 hr to determine the pulsatile release of LH on d -1, d 5 and d 10. Three of four cows showed intermediate ovulation within 2 days after GnRH treatment during CIDR insertion in Group A, whereas no ovulation was found in Group B. Three of four cows in Group A and all four cows in Group B ovulated after CIDR removal. Plasma progesterone concentrations from d 3 to d 7 in three intermediate ovulatory cows in Group A (8.4 +/- 1.6 ng/ml) was significantly higher than those in Group B (4.1 +/- 1.2 ng/ml; 4 cows) during CIDR insertion (P<0.01). Interval to estrus and ovulation after CIDR removal was observed at 60.0 +/- 12.0 hr and 76.0 +/- 6.9 hr in three cows in Group A, and 75.0 +/- 15.1 hr and 93.0 +/- 20.5 hr in Group B, respectively. There was a significant increase in LH pulse frequency on d 10 compared on d -1 or d 5 in both groups (P<0.05), in addition those on d 10 in Group A tended to be higher than in Group B. As a result, GnRH treatment at CIDR insertion at 7 days after estrus induced intermediate ovulation with formation of corpus luteum (CL) and rather synchronized emergence of ovulatory follicle during CIDR insertion. These induced CL increased plasma progesterone concentrations and contributed to precise synchronization.  相似文献   

3.
Two experiments were designed to investigate the administration of intravaginal progesterone in protocols for oestrus and ovulation synchronization in beef heifers. In Experiment 1, cyclic Black Angus heifers (n = 20) received an Ovsynch protocol and were randomly assigned to receive (CIDR‐Ovsynch) or not (Ovsynch) a progesterone device between Days 0 and 7. Treatment with a controlled internal drug release (CIDR) device significantly increased the size of the dominant follicle prior to ovulation (12.8 ± 0.4 CIDR‐Ovsynch vs 11.4 ± 0.4 Ovsynch) (p < 0.02). Plasma progesterone concentrations throughout the experiment were affected by the interaction between group and day effects (p < 0.004). In Experiment 2, cyclic Polled Hereford heifers (n = 382) were randomly assigned to one of the six treatment groups (3 × 2 factorial design) to receive a CIDR, a used bovine intravaginal device (DIB), or a medroxiprogesterone acetate (MAP) sponge and GnRH analogues (lecirelin or buserelin). All heifers received oestradiol benzoate plus one of the devices on Day 0 and PGF on Day 7 pm (device withdrawal). Heifers were detected in oestrus 36 h after PGF and inseminated 8–12 h later, while the remainder received GnRH 48 h after PGF and were inseminated on Day 10 (60 h). The number of heifers detected in oestrus on Day 8 and conception rate to AI on Day 9 were higher (p < 0.01) in the used‐DIB than in the CIDR or MAP groups, while the opposite occurred with the pregnancy rate to FTAI on Day 10 (p < 0.01). There was no effect of progesterone source, GnRH analogue or their interaction on overall pregnancy rates (64.9%). Progesterone treatment of heifers during an Ovsynch protocol resulted in a larger pre‐ovulatory follicle in beef heifers. Progesterone content of intravaginal devices in synchronization protocols is important for the timing of AI, as the use of low‐progesterone devices can shorten the interval to oestrus.  相似文献   

4.
We investigated whether CIDR-based ovulation-synchronization protocols inhibit secretion of prostaglandin (PG) F2alpha from the uterus in the following luteal phase in non-cycling beef cows. Ten early (a month) postpartum non-cycling Japanese Black beef cows were treated with (1) Ovsynch (GnRH analogue on Day 0, PGF2alpha analogue on Day 7, and GnRH analogue on Day 9; n=3), (2) Ovsynch+CIDR (Ovsynch protocol plus a CIDR for 7 days from Day 0; n=4), or (3) estradiol benzoate (EB) Ovsynch+CIDR (EB on Day 0 in lieu of the first GnRH treatment followed by the Ovsynch+CIDR protocol; n=3). An oxytocin challenge was administered on Day 24 to examine uterine PGF2alpha secretion. Plasma concentrations of 13,14-dihydro-15-keto- PGF2alpha were lower at 30-120 min after oxytocin administration in the Ovsynch+CIDR group and 75 min after administration in the EB Ovsynch+CIDR group than in the Ovsynch group (P<0.05). Plasma progesterone concentrations were higher from Days 1 to 7 in the Ovsynch+CIDR group and from Days 1 to 5 in the EB Ovsynch+CIDR group than in the Ovsynch group (P<0.05). The progesterone concentrations were higher on Days 27 and 29 in both CIDR-treated groups than in the Ovsynch group (P<0.05). In conclusion, in non-cycling beef cows, CIDR-based ovulation-synchronization protocols inhibit uterine PGF2alpha secretion in the following luteal phase and prevent premature luteolysis as is seen with the Ovsynch protocol.  相似文献   

5.
We compared synchronization and pregnancy rates, and the increase in blood progesterone concentrations during luteal development, between (1) Ovsynch plus an intravaginal controlled internal drug release (CIDR) device protocol followed by timed embryo transfer (timed ET), and (2) a conventional estrus synchronization method using PGF(2 alpha) and ET in suckled postpartum Japanese Black beef cows. Cows in the PGF group (n=18) received a PGF(2 alpha) analogue when a CL was first palpated per rectum at 10-d intervals after 1 to 2 month postpartum. Cows (n=11), which showed estrus (Day 0) within 5 d of the PGF(2 alpha), and had a CL on Day 7, received ET. Cows in the Ovsynch+CIDR group (n=19) underwent the Ovsynch protocol plus a CIDR for 7 d (GnRH analogue and CIDR on Day-9, PGF(2alpha) analogue with CIDR removal on Day-2, and GnRH analogue on Day 0), with ET on Day 7. The ovulation synchronization (100%) and embryo transfer (100%) rates in the Ovsynch+CIDR group were greater (P<0.01) than the estrus synchronization (66.7%) and the embryo transfer (61.1%) rates in the PGF group. The postpartum interval at ET in the Ovsynch+CIDR group (62.5 +/- 2.5 d) was shorter (P<0.01) than in the PGF group (74.9 +/- 3.9 d). The pregnancy rate in the Ovsynch+CIDR group (57.9%) did not differ significantly from that in the PGF group (50.0%). Plasma progesterone concentrations were not significantly different in the two groups on Days 0, 1, 2, 5, 7, 14 and 21. In summary, higher synchronization and transfer rates, and shorter postpartum interval to ET, can be achieved with timed ET following the Ovsynch plus CIDR protocol than after estrus with the single PGF(2 alpha) treatment followed by ET in suckled postpartum recipient beef cows. Pregnancy rates were similar. Also, the increase in blood progesterone concentrations during luteal development following ovulation synchronized by the Ovsynch plus CIDR protocol was similar to that after estrus induced by the PGF(2 alpha) treatment.  相似文献   

6.
Ovsynch is a program developed to synchronize ovulation for timed breeding. In this paper, the authors investigate whether controlled internal drug release (CIDR)-based protocols prevent premature ovulation before timed-artificial insemination (AI) when Ovsynch is started a few days before luteolysis in cycling beef cows. Nine beef cows at 16 days after oestrus were treated with (1) Ovsynch, i.e. gonadotropin releasing hormone (GnRH) analogue on day 0, prostaglandin (PG) F(2alpha) analogue on day 7 and GnRH analogue on day 9 with timed-AI on day 10, (n=3); (2) Ovsynch+CIDR (Ovsynch protocol plus a CIDR for 7 days from day 0, n=3), or (3) oestradiol benzoate (OB)+CIDR+GnRH (OB on day 0 in lieu of the first GnRH treatment, followed by the Ovsynch+CIDR protocol, n=3). In the Ovsynch group (1) plasma progesterone concentrations fell below 0.5 ng/mL earlier (day 5) than in both CIDR-treated groups (2) and (3), where this occurred on day 8. Plasma oestradiol-17beta concentrations peaked on day 8 in the Ovsynch group and on day 9 in both CIDR-treated groups. The dominant follicle ovulated on day 10 in the Ovsynch group and on day 11 in both CIDR-treated groups. Thus, both CIDR-based protocols prevented premature ovulation before timed-AI in Ovsynch when the protocol was started a few days before luteolysis. This reflects the fact that progesterone levels remained high until the beef cattle were treated with PGF(2alpha).  相似文献   

7.
At the initiation of most controlled internal drug-releasing (CIDR) device protocols, GnRH has been used to induce ovulation and reset follicular waves; however, its ability to initiate a new follicular wave is variable and dependent on stage of the estrous cycle. The objectives of the current studies were to determine 1) if inducing luteal regression before the injection of GnRH at time of insertion of a CIDR resulted in increased control of follicular development, and 2) if removing endogenous progesterone by inducing luteal regression before insertion of the CIDR decreased variation in LH pulse frequency. In Exp. 1 and 2, Angus-cross cycling beef heifers (n = 22 and 38, respectively) were allotted to 1 of 2 treatments: 1) heifers received an injection of PGF(2α) on d -3, an injection of GnRH and insertion of a CIDR on d 0, and a PGF(2α) injection and CIDR removal on d 6 (PG-CIDR) or 2) an injection of GnRH and insertion of a CIDR on d 0 and on d 7 an injection of PGF(2α) and removal of CIDR (Select Synch + CIDR). In Exp. 3, Angus-cross beef heifers (n = 15) were assigned to 1 of 3 treatments: 1) PG-CIDR; 2) PGF(2α) on d -3, GnRH on d 0, and PGF(2α) on d 6 (PG-No CIDR); or 3) Select Synch + CIDR. Follicular development and ovulatory response were determined by transrectal ultrasonography. Across all experiments, more (P = 0.02) heifers treated with PG before GnRH initiated a new follicular wave after the injection of GnRH compared with Select Synch + CIDR-treated heifers. In Exp. 1, after CIDR removal, interval to estrus did not differ (P = 0.18) between treatments; however, the variance for the interval to estrus was reduced (P < 0.01) in PG-CIDR heifers compared with Select Synch + CIDR heifers. In Exp. 3, there was a tendency (P = 0.09) for LH pulse frequency to be greater among PG-CIDR and PG-No CIDR compared with the Select Synch + CIDR, but area under the curve, mean LH concentrations, and mean amplitude did not differ (P > 0.76). In summary, induction of luteal regression before an injection of GnRH increased the percentage of heifers initiating a new follicular wave. Removal of endogenous progesterone tended to increase LH pulse frequency, and the modified treatment increased the synchrony of estrus after CIDR removal.  相似文献   

8.
We examined the relations between plasma insulin-like growth factor (IGF) -I concentrations during treatment with CIDR-based or Ovsynch protocol for timed AI and conception and plasma steroid concentrations in early postpartum Japanese Black beef cows. Cows in the control group (Ovsynch; n = 21) underwent Ovsynch protocol (GnRH analogue on Day 0, PGF(2alpha) analogue on Day 7, and GnRH analogue on Day 9), with AI on Day 10, approximately 20 h after the second GnRH treatment. Cows in the Ovsynch+CIDR group (n = 22) received Ovsynch protocol plus a CIDR for 7 days (starting on Day 0). Cows in the further treatment group (EB+CIDR+GnRH; n = 22) received 2 mg of estradiol benzoate (EB) on Day 0 in lieu of the first GnRH treatment, followed by the same treatment as in the Ovsynch+CIDR protocol. Plasma IGF-I concentrations were determined on Days -7, 0, 7, 9 and 17. Conception rates were improved in the CIDR-combined groups (both CIDR-treated groups were combined) relative to Ovsynch group (P < 0.05) for cows with low IGF-I concentrations (<1,000 ng/ml) on Days -7, 0, and 7, but improved conception rate produced by the CIDR-based protocols did not occur in cows with a high IGF-I concentration (> or =1,000 ng/ml). Plasma estradiol-17beta concentrations increased from Day 0 to 7 (P < 0.05) and were unchanged from Day 7 to 9 in the Ovsynch group with low IGF-I concentrations on Day 0, while they were unchanged from Day 0 to 7 and increased from Day 7 to 9 (P < 0.05) in the Ovsynch group with high IGF-I concentrations on Day 0 and in the CIDR-combined group. Plasma progesterone concentrations in the Ovsynch group with low IGF-I concentrations on Day 0 were higher on Day 14 than in the Ovsynch group with high IGF-I concentrations on Day 0 and in the CIDR-combined group (P < 0.05). In conclusion, CIDR-based protocols may improve conception relative to Ovsynch in early postpartum beef cows with lower plasma IGF-I concentrations at the start of the protocols. This improvement is probably due to prevention of premature increases of estradiol-17beta and progesterone concentrations, which occurred in cows with low IGF-I concentrations treated with Ovsynch, by the CIDR treatment.  相似文献   

9.
The objective of the experiment was to compare follicular dynamics, ovulatory response to GnRH, and synchrony of estrus and ovulation among estrous-cycling and prepubertal beef heifers synchronized with a controlled internal drug-release (CIDR)- based or GnRH-PGF(2alpha) (PG) protocol. Estrous-cycling beef heifers were randomly assigned to 1 of 4 treatments (C1, C2, C3, C4), and prepubertal beef heifers were randomly assigned to 1 of 2 treatments (P1, P2) by age and BW. Blood samples were taken 10 and 1 d before treatment to confirm estrous cyclicity status (progesterone > or =0.5 ng/mL estrous cycling). The CIDR Select (C1, n = 12; P1, n = 14)-treated heifers received a CIDR insert (1.38 g of progesterone) from d 0 to 14, GnRH (100 microg, i.m.) on d 23, and PG (25 mg, i.m.) on d 30. Select Synch + CIDR (C2, n = 12; P2, n = 11)-treated heifers received a CIDR insert and GnRH on d 23 and PG at CIDR removal on d 30. The CIDR-PG (C3, n = 12)-treated heifers received a CIDR insert on d 23 and PG at CIDR removal on d 30. Select Synch (C4, n = 12)-treated heifers received GnRH on d 23 and PG on d 30. HeatWatch transmitters were fitted at CIDR removal (C1, C2, C3, P1, and P2) or at GnRH administration (C4) for estrus detection. Ultrasound was used to determine the response to GnRH and the timing of ovulation after estrus. Among the estrous-cycling heifers, ovulatory response to GnRH and estrous response did not differ (P > 0.05). Among the prepubertal heifers, more (P = 0.02) P1 heifers responded to GnRH than P2 heifers, but estrous response did not differ (P > 0.05). Among the estrous-cycling heifers, variance for interval to estrus after PG was reduced (P < 0.05) for C1 compared with each of the other treatments, and C3 [corrected] was reduced (P < 0.05) compared with C2 [corrected] Variance for interval to ovulation after PG was reduced (P < 0.05) for C1 compared with each of the other treatments. Among the prepubertal heifers, there was no difference (P > 0.05) in variance for interval to estrus or ovulation. Results from C1 and P1 (T1) and C2 and P2 (T2) were combined to compare T1 and T2 among mixed groups of estrous-cycling and prepubertal heifers. Response to GnRH was greater (P < 0.01; 81% T1 and 39% T2), and variances for interval to estrus and ovulation for T1 were reduced (P < 0.01) compared with T2. In summary, CIDR Select improved (P < 0.01) the synchrony of estrus and ovulation compared with Select Synch + CIDR.  相似文献   

10.
The objectives of this study were 1) to determine the effects of adding a CIDR to the Ovsynch protocol on plasma concentrations of estradiol-17β and progesterone and conception in dairy cows with cystic ovarian diseases and 2) to examine associations among the estradiol-17β and progesterone concentrations and conception. Cows were diagnosed as having cystic ovarian diseases if they were found to have a cystic follicle (diameter ≥25 mm) without a corpus luteum by two palpations per rectum with an interval for 7 to 14 days. They were treated with either the Ovsynch (GnRH on Day 0, PGF(2α) on Day 7 and GnRH on Day 9, with AI on Day 10; n=15) or Ovsynch+CIDR protocol (Ovsynch protocol plus a CIDR from Day 0 to Day 7; n=23). Plasma estradiol-17β concentrations were determined on Days 0, 7 and 9, and plasma progesterone concentrations were determined on Days 0, 7, 9 and 17. The plasma estradiol-17β and progesterone concentrations at all of the days examined and conception rates did not differ significantly between the two timed AI protocols. The progesterone concentrations on Day 17 and conception rates were lower (P<0.05) for cows with low concentrations of estradiol-17β (<2 pg/ml) on Day 9 than for cows with high concentrations of estradiol-17β (≥2 pg/ml). The present study suggests that, in dairy cows with cystic ovarian diseases, addition of a CIDR to the Ovsynch protocol had no remarkable effects on plasma estradiol-17β and progesterone concentrations during and after the treatments or on conception after timed AI. This study indicates that the low plasma estradiol-17β concentration at the second administration of GnRH in the protocols can be a predictor for impaired luteal formation and lower likelihood of pregnancy in dairy cows with cystic ovarian diseases.  相似文献   

11.
The COSynch protocol has been used to synchronize ovulation and facilitate fixed-time AI in beef cattle. Establishment and maintenance of pregnancy was negatively affected, in previous studies, by GnRH-induced ovulation of small dominant follicles (/=10 mm) and increased ovulatory response after GnRH 2.  相似文献   

12.
The objective was to determine luteinizing hormone (LH) secretion and follicular dynamics in cattle following administration of 3 gonadorelin formulations that are commercially available in Canada. In experiment 1, nonlactating Holstein cows (n = 4 per group) were randomly assigned to receive 100 micrograms gonadorelin diacetate tetrahydrate, intramuscularly (C; Cystorelin, or FE; Fertagyl). Blood samples (for LH analysis) were collected 0, 1, 2, and 4 hours after treatment. In experiment 2, nonlactating Holstein cows (n = 10 per group) were randomly allocated to receive 100 micrograms gonadorelin, intramuscularly as follows: 2 mL of C; 1 mL of FE; or 2 mL of Factrel (FA, gonadorelin hydrochloride). Gonadorelin treatment was done on days 6 or 7 after ovulation and blood samples for LH analysis were collected at 0, 1, 2, 4, and 6 hours after treatment. Ovaries were examined by ultrasonography, twice daily, to detect ovulation. A replicate was conducted using only C (n = 10) or FE (n = 10); blood samples were collected at 0, 1, 2, 3, and 4 hours. In experiment 3, beef heifers (n = 10 per group) were randomly assigned to receive 1 of 3 GnRH gonadorelin treatments (as in the first phase of experiment 2) on days 6 or 7 after ovulation and blood samples were collected at 0, 0.5, 1, 1.5, 2, and 4 hours. In experiments 2 and 3, both mean and mean peak plasma LH concentrations were higher (P < 0.05) in cattle treated with C. The proportion of dominant follicles that ovulated was higher (P < 0.02) in Holstein cows treated with C than in those treated with FE or FA (18/19, 11/19, and 4/7, respectively), but there was no significant difference among the products in beef heifers (6/10, 6/10, and 4/10, respectively). No significant differences were found in the interval from treatment to the emergence of the next follicular wave. In summary, C induced a greater LH release and this resulted in a higher ovulatory rate in Holstein cows but not in beef heifers.  相似文献   

13.
Applicability of ovulation synchronization protocol using GnRH and PGF(2alpha) (PGF) injection to anestrous beef cows remains controversial. We compared the effectiveness of the protocol in the anestrous stage of the beef cow with that in the cycling stage using the same animals. Ovaries of five Japanese Black and three Japanese Shorthorn cows were ultrasonographically examined, and blood samples were collected daily for hormonal analyses. Each animal received the protocol twice (Day -6 to -8: GnRH, Day 0: PGF, Day 2: GnRH). Additional blood samples were taken before and after GnRH injection for LH and FSH measurements to evaluate the pituitary function. For the ovarian status at the onset of the protocol cows were divided into anestrous (n=8) and cycling (n=8) stages. There was no significant difference in size of the dominant follicle at the first and second GnRH injections, and in the magnitude of the pituitary response to GnRH between the two stages. However, the size of the corpus luteum and progesterone concentrations at the PGF injection in the anestrous stage were significantly smaller and lower (P<0.01), respectively, and ovulation synchronization rate in the anestrous stage was significantly lower (P<0.05) than in the cycling stage. In conclusion, ovulation synchronization protocol in anestrous beef cows has limited effectiveness.  相似文献   

14.
We studied the effects of administering estradiol benzoate (EB) plus progesterone (P4) as part of a CIDR-based protocol during the growth or static phases of dominant follicle development on follicular wave emergence, follicular growth, synchrony of ovulation and pregnancy rate following CIDR withdrawal, treatment with PGF(2alpha) and GnRH, and fixed-time artificial insemination (TAI). Forty-one previously synchronized lactating Holstein dairy cows were randomly allocated to three treatment groups. The control group (n=14) received a CIDR on the third day after ovulation only (Day 0). The two treatment groups were administered CIDRs comprising 2 mg EB and 50 mg P4 either on the third (T1, n=14) or eighth day (T2, n=13) after ovulation (Day 0). All cows received PGF(2alpha) after CIDR removal on Day 7, GnRH on Day 9, and TAI 16 h after GnRH treatment. The proportion of cows with follicular wave emergence within 8 days of treatment differed (P<0.01) among the control (14.3%), T1 (85.7%), and T2 groups (92.9%). However, the mean intervals between treatment and wave emergence were not significantly different. There were significant differences in the diameters of the dominant follicles on Day 7 (P<0.01) and in preovulatory follicles on Day 9 (P<0.01), with the largest follicles observed in the control group and the smallest follicles observed in the T2 group. In contrast, the numbers of cows showing synchronous ovulation after GnRH treatment (92.9 to 100.0%) and pregnancy following TAI (46.2 to 50.0%) were similar between the treatment groups. The results showed that, irrespective of the phase (growth or static) of the dominant follicle, administration of 2 mg EB plus 50 mg P4 to CIDR-treated lactating dairy cows induced consistent follicular wave emergence and development, synchronous ovulation after GnRH administration, and similar pregnancy rates following TAI.  相似文献   

15.
The objective was to test the efficacy of an intravaginal progesterone insert and injection of PGF2alpha for synchronizing estrus and shortening the interval to pregnancy in cattle. Cattle were assigned to one of three treatments before a 31-d breeding period that employed artificial insemination. Control cattle were not treated, and treated cattle were administered PGF2alpha or an intravaginal progesterone-releasing insert (CIDR) for 7 d and treated with PGF2alpha on d 6. The treatments were applied in one of three experiments that involved postpartum beef cows (Exp. 1; n = 851; 56+/-0.6 d postpartum), beef heifers (Exp. 2; n = 724; 442.5+/-2.8 d of age), and dairy heifers (Exp. 3; n = 260; 443.2+/-4.5 d of age). Luteal activity before treatment was determined for individual cattle based on blood progesterone concentrations. In Exp. 1, there was a greater incidence of estrus during the first 3 d of the breeding period in CIDR+PGF2alpha-treated cows compared with PGF2alpha-treated or control cows (15, 33, and 59% for control, PGF2alpha, and CIDR+PGF2alpha, respectively; P < 0.001). The improved estrous response led to an increase in pregnancy rate during the 3-d period (7, 22, and 36% for control, PGF2alpha, and CIDR+PGF2alpha, respectively; P < 0.001) and tended to improve pregnancy rate for the 31-d breeding period for cows treated with CIDR+PGF2alpha, (50, 55, and 58% for control, PGF2alpha, and CIDR+PGF2alpha, respectively, P = 0.10). Improvements in rates of estrus and pregnancy after CIDR+PGF2alpha, were also observed in beef heifers. Presence of luteal activity before the treatment period affected synchronization and pregnancy rates because anestrous cows (Exp. 1) or prepubertal heifers (Exp. 2) had lesser synchronization rates and pregnancy rates during the first 3 d of the breeding period as well as during the entire 31-d breeding period. The PGF2alpha, and CIDR+PGF2alpha but not the control treatments were evaluated in dairy heifers (Exp. 3). The CIDR+PGF2alpha-treated heifers had a greater incidence of estrus (84%) during the first 3 d of the breeding period compared with the PGF2alpha-treated heifers (57%), but pregnancy rates during the first 3 d or during the 31-d breeding period were not improved for CIDR+PGF2alpha compared with PGF2alpha-treated heifers. In summary, the concurrent treatment of CIDR and PGF2alpha improved synchronization rates relative to PGF2alpha alone or control. Improved estrus synchrony led to greater pregnancy rates for beef cows and beef heifers but failed to improve pregnancy rates for dairy heifers.  相似文献   

16.
Induced ovulation of small dominant follicles (SF, < 12 mm; CO-Synch protocol) in postpartum beef cows resulted in formation of corpora lutea (CL) that exhibited a delayed rise in progesterone (P4) compared with CL from large dominant follicles (LF, > 12 mm). Experiment 1 characterized P4 concentrations from ovulation to subsequent estrus among GnRH-induced or spontaneously ovulated SF (or= 12 mm) to determine if P4 secretion by CL formed from GnRH-induced SF remains lower postovulation in nonlactating beef cows. Nonlactating beef cows were induced to ovulate 48 h after PGF(2alpha) (CO-Synch; GnRH on d - 9, PGF(2alpha) on d - 2, and GnRH on d 0) or exhibited estrus and spontaneously ovulated after PGF(2alpha). Follicle size was measured at the second GnRH in cows induced to ovulate or approximately 3 h after the onset of estrus for cows that ovulated spontaneously. Cows were classified into 1 of 4 groups: 1) GnRH-induced ovulation-SF (or= 12 mm; Ind-LF; n = 16); 3) spontaneous ovulation-SF (or= 12 mm; Spon-LF; n = 22). Serum concentrations of P4 from d 3 to 15 were reduced in the Ind-SF compared with the Ind-LF (P = 0.05), Spon-SF (P = 0.07), and Spon-LF (P = 0.03). Experiment 2 characterized P4 concentrations (0 to 60 d postAI) among GnRH-induced or spontaneously ovulated SF (or= 13 mm) to determine if P4 secretion by CL formed from GnRH-induced SF remained lower during early gestation. Ovulation was induced with GnRH 48 h after PGF(2) (CO-Synch) or occurred spontaneously, and ovulatory follicle size was measured at AI. Lactating cows were classified into 1 of 3 groups: 1) GnRH-induced ovulation-SF (or= 13 mm; Ind-LF; n = 43); or 3) spontaneous ovulation-LF (>or= 13 mm; Spon-LF; n = 27). The increase in P4 concentrations was greater (P = 0.06) in pregnant (d 2 to 12) compared with nonpregnant cows. Also, the increase in P4 from d 2 to 12 was greater (P = 0.01) in the Ind-LF compared with the Ind-SF groups, but there was no difference (P = 0.94) among groups in P4 from d 14 to 60 in pregnant cows. Follicle size at AI influenced the increase in P4 in cows that failed to conceive (P = 0.007), but not among cows that became pregnant (P = 0.32) to AI. In summary, P4 secretion after GnRH-induced ovulation of SF was decreased from d 2 to 12 compared with that of LF, but was similar among pregnant cows from d 14 to 60 postAI (d 0).  相似文献   

17.
Application of AI in extensive beef cattle production would be facilitated by protocols that effectively synchronize ovarian follicular development and ovulation to enable fixed-time AI (TAI). The objectives were to determine whether use of a controlled internal drug release (CIDR) device to administer progesterone in a GnRH-based estrous synchronization protocol would optimize blood progesterone concentrations, improve synchronization of follicular development and estrus, and increase pregnancy rates to TAI in beef cows. Beef cows (n = 1,240) in 6 locations within the US Meat Animal Research Center received 1 of 2 treatments: 1)?an injection of GnRH [100 μg intramuscularly (i.m.)] followed by PGF(2α) (PGF; 25 mg i.m.) 7 d later (CO-Synch), or 2) CO-Synch plus a CIDR during the 7 d between GnRH and PGF injections (CO-Synch + CIDR). Cows received TAI and GnRH (100 μg i.m.) at 60 h after PGF. Progesterone was measured by RIA in blood samples collected 2 wk before and at initiation of treatment (d 0) and at PGF injection (d 7). Estrous behavior was monitored by Estrotect Heat Detectors. Pregnancy was diagnosed by ultrasonography 72 to 77 d after TAI. Plasma progesterone concentrations did not differ (P > 0.10) between synchronization protocols at first GnRH injection (d 0), but progesterone was greater (P < 0.01) at PGF injection (d 7) in cows receiving CO-Synch + CIDR vs. CO-Synch as a result of fewer CIDR-treated cows having progesterone ≤1 ng/mL at PGF (10.7 vs. 29.6%, respectively). A greater (P < 0.01) proportion of CO-Synch + CIDR vs. CO-Synch cows were detected in estrus within 60 h after PGF (66.7 vs. 57.8 ± 2.6%, respectively) and a greater (P < 0.01) proportion were pregnant to TAI (54.6 vs. 44.3 ± 2.6%, respectively). For both synchronization protocols, cows expressing estrus within 60 h before TAI had a greater pregnancy rate than cows without estrus. For cows with plasma progesterone ≤1 ng/mL at PGF injection, CO-Synch + CIDR increased pregnancy rate (65.2 ± 5.9 vs. 30.8 ± 3.4% with vs. without CIDR), whereas pregnancy rates did not differ (P > 0.10) between protocols (52.1 ± 2.1 vs. 50.0 ± 2.4%, respectively) when progesterone was >1 ng/mL (treatment × progesterone; P < 0.01). Inclusion of a CIDR in the synchronization protocol increased plasma progesterone concentration, proportion of cows detected in estrus, and pregnancy rate; however, the increase in pregnancy rate from inclusion of the CIDR was primarily in cows with decreasing or low endogenous progesterone secretion during treatment.  相似文献   

18.
This study compared two types of controlled internal drug release (CIDR)-based timed artificial insemination (TAI) protocol for treatment of repeat breeder dairy cows. In the first trial of the experiment, 55 repeat breeder cows were randomly assigned to the following two treatments. (1) In the EB group, a CIDR device was inserted into the cows, and then the cows were administered an injection of 1 mg estradiol benzoate (EB) plus 50 mg progesterone (P4; Day 0). On Day 7, they were given an injection of PGF(2alpha) and the CIDR device was removed. The cows were given an injection of 1 mg EB on Day 8 and were subjected to TAI 30 h later (n=27). (2) In the gonadotrophin releasing hormone (GnRH) group, a CIDR device was inserted into the cows, and then the cows were administered an injection of 250 microg gonadorelin (GnRH; Day 0). On Day 7, they were given an injection of PGF(2alpha) and the CIDR device was removed. The cows were given an injection of 250 microg GnRH on Day 9 and were subjected to TAI 17 h later (n=28). In the second trial, 41 repeat breeder cows that were confirmed as not pregnant in the first trial were randomly assigned to the same two treatments used in the first trial (an EB group of 20 cows and a GnRH group of 21 cows). The ovaries of 15 cows from each group were examined by transrectal ultrasonography in order to observe the changes in ovarian structures, and blood samples were collected for analysis of serum P4 concentrations. The pregnancy rates following TAI in the first (18.5 vs. 32.1%) and second (40.0 vs. 38.1%) trials and the combined rates (27.7 vs. 34.7%) did not differ between the EB and GnRH groups. The proportions of cows with follicular wave emergence within 7 days did not differ between the EB (12/15) and GnRH groups (13/15). The interval to wave emergence was shorter (P<0.01) in the GnRH group than in the EB group, but there was no difference in the mean diameters of dominant follicles on Day 7 between the groups. Moreover, the proportions of cows with synchronized ovulation following a second EB or GnRH treatment did not differ between the groups. In conclusion, treatment with either EB or GnRH in a CIDR-based TAI protocol results in synchronous follicular wave emergence, follicular development, synchronous ovulation, and similar pregnancy rates for TAI in repeat breeder cows.  相似文献   

19.
The objective was to optimize rebreeding of nonpregnant, previously inseminated beef cattle. In Experiment 1, 43 cows received a used intravaginal progesterone-releasing insert (IVPRI; Days 0-7) 12.3 d after ovulation and received concurrently no treatment, 100 microg gonadotropin releasing hormone (GnRH), 1 mg estradiol cypionate (ECP), or 150 mg progesterone. Emergence of a new ovarian follicular wave was most synchronous (P < 0.0001) in the GnRH group. In Experiment 2, 675 heifers were given GnRH or no treatment on Day 0, fed melengestrol acetate (MGA; 0.5 mg/head/d) from Days 0-5 (Day 0 = 13-14 d after timed insemination; TAI), given 0.5 mg ECP or nothing on Day 7, and reinseminated 6-12 h after onset of estrus. Estrus was more synchronous (P < 0.05) in heifers given GnRH versus no treatment on Day 0. In Experiment 3, 317 TAI heifers were resynchronized with either MGA or a used IVPRI with or without ECP on Day 7; estrus was more synchronous (P < 0.05) and pregnancy rates were higher (54.1% versus 39.2%, P < 0.05) in heifers given a used IVPRI than those fed MGA. For resynchronization of heifers, pregnancy rates were not significantly improved with GnRH treatment, but were higher with a used IVPRI than with MGA.  相似文献   

20.
We examined whether progesterone (P4)-induced suppression of LH release in cattle can be overcome by an increased dose of exogenous gonadotropin-releasing hormone (GnRH) or pretreatment with estradiol (E2). In Experiment 1, postpubertal Angus-cross heifers (N = 32) had their 2 largest ovarian follicles ablated 5 d after ovulation. Concurrently, these heifers were all given a once-used, intravaginal P4-releasing insert (CIDR), and they were randomly assigned to be given either prostaglandin F (Low-P4) or no treatment (High-P4) at follicle ablation, and 12 h later. Six days after emergence of a new follicular wave, half of the heifers in each group (n = 8) were given either 100 or 200 μg of GnRH i.m. Plasma luteinizing hormone (LH) concentrations were higher in the Low- vs High-P4 groups, and in heifers given 200 vs 100 μg of GnRH (mean ± SEM 15.4 ± 2.2 vs 9.1 ± 1.2, and 14.8 ± 2.1 vs 9.8 ± 1.4 ng/mL, respectively; P ≤ 0.01). Ovulation rate was higher (P = 0.002) in the Low-P4 group (15/16) than in the High-P4 group (6/16), but it was not affected by GnRH dose (P = 0.4). In Experiment 2, heifers (n = 22) were treated similarly, except that 5.5 d after wave emergence, half of the heifers in each group were further allocated to be given either 0.25 mg estradiol benzoate i.m. or no treatment, and 8 h later, all heifers were given 100 μg GnRH i.m. Both groups treated with E2 (Low- and High-P4) and the Low-P4 group without E2 had higher peak plasma LH concentrations compared to the group with high P4 without E2 (12.6 ± 1.8, 10.4 ± 1.8, 8.7 ± 1.3, and 3.9 ± 1.2 ng/mL, respectively; (P < 0.04)). However, E2 pretreatment did not increase ovulation rates in response to GnRH (P = 0.6). In summary, the hypotheses that higher doses of GnRH will be more efficacious in inducing LH release and that exogenous E2 will increase LH release following treatment with GnRH were supported, but neither significantly increased ovulation rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号