首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 265 毫秒
1.
通过盆栽试验,以两个硝态氮含量差异显著的菠菜品种为供试材料,在不同生长时期,测定了叶柄、叶片干重、水分含量、硝态氮含量及叶片内源和外源硝酸还原酶活性,研究菠菜硝态氮累积和硝酸还原酶活性的动态变化及其与植株生长变化的关系。结果表明,随生长期后移,叶柄、叶片及地上部干重和水分含量先增加而后降低,硝态氮含量则持续降低,低硝态氮累积品种S9的下降更为明显,出苗后52d和62d地上部分别降低了100%和89.7%;叶片内源和外源酶活性则随植株生长量增加而增加,高硝态氮累积品种S4增加(379%和199%)更明显,之后该品种酶活性随植株生长量降低而显著下降,品种S9却显著增加,分别为121%和288%。生长前期,品种S4硝态氮含量、干重增长速率及内源、外源酶活性均显著高于品种S9,内源/外源酶活性比值却明显低于后者;生长后期,除外源酶活性和内源/外源酶活性比值外,品种间差异均不明显。因此,生长前期高累积品种硝态氮含量降低较少,主要原因可能是其内源/外源酶活性比值(70.7%)较低,生长后期该品种的内源/外源酶活性比值(98.2%)显著增加后,硝态氮含量迅速下降进一步证明了这一推测。综合上述结果可知,内源/外源酶活性比值更能揭示植株生长变化引起的品种间硝态氮含量变化差异。  相似文献   

2.
温室盆栽试验研究了我国北方不同菠菜品种叶柄和叶片的硝态氮含量及其与植株生长的关系。结果表明,30个菠菜品种地上部分的生长量和硝态氮含量存在显著差异。叶柄和叶片在反映品种间生长量和硝态氮含量变异方面的作用并不相同。叶片占植株地上部鲜重的比例高于叶柄,品种间叶片生长量的差异亦大于叶柄,叶片与植株生长量的正相关关系更为显著。但与生长量的情况不同,叶柄的硝态氮含量、累积总量均显著高于叶片,是菠菜累积硝态氮的主要器官。叶柄硝态氮含量的品种间差异远大于叶片,与植株地上部硝态氮含量的正相关性更为显著。菠菜不同品种之间,叶柄硝态氮含量与地上部鲜重、干重及水分均表现出显著的正相关关系,而叶片硝态氮含量与植株生物量及其各组分之间却无这种关系。  相似文献   

3.
蔬菜不同器官的硝态氮与水分、全氮、全磷的关系   总被引:80,自引:7,他引:80  
在亩施12kg氮素的肥沃菜园红油土上分别种植菠菜、小白菜和莴笋等3种蔬菜,并于翌年3月施肥10天后分3次采样测定不同器官的硝态氮和水分、全氮、全磷含量,研究硝态氮分布与后三者之间的关系。结果表明,3种蔬菜的硝态氮含量因器官而异,根、茎和叶柄的的含量最高(557.8~1196.7g/g,鲜重),外围叶片次之(213.5~551.8g/g,鲜重),心叶叶片最低(120.6~198.3g/g,鲜重)。蔬菜各器官的水分、全氮和全磷含量存在明显差异。茎、叶柄、外围和心叶叶片的硝态氮含量与其中的水分含量呈显著正相关(r=0.910~0.956),与其中的全氮、全磷含量呈显著负相关(r=-0.733~-0.951)。根系与这一趋势不符。  相似文献   

4.
不同氮肥用量对蔬菜硝态氮累积的影响   总被引:126,自引:13,他引:113  
利用盆栽试验,研究了氮肥用量对蔬菜硝态氮累积的影响。结果表明,施用氮肥使蔬菜的生长量提高1.1~6.1倍,但增长并不与氮肥用量同步。氮肥用量较高时,蔬菜生长受到抑制,生长量有降低趋势;硝态氮含量却随氮肥用量增加而不断升高,两者呈显著正相关(r=0.933~0.957)。蔬菜各器官、部位的硝态氮含量存在明显差异。不施氮肥时,根的硝态氮含量大于茎叶,茎又大于叶;施氮后根的含量小于茎叶,茎小于叶;无论施氮与否,叶柄的含量均高于叶片。把蔬菜的生长、硝态氮吸收及还原转化联系起来分析,可以看出,增加氮肥用量虽然提高了硝酸还原酶活性,但硝态氮的还原作用仍小于吸收,从而导致蔬菜体内出现硝态氮累积。而且,随氮肥用量增加,硝态氮累积量的增加远超过了生长量的提高,使硝态氮含量迅速升高。  相似文献   

5.
采用盆栽试验研究了肥料(氮、钾、钼)互作对菠菜不同生长阶段硝态氮积累的影响。结果表明,施肥对菠菜硝态氮积累的影响整体表现为:柄叶,老叶新叶;与生长前期相比,收获期各部位中硝态氮含量均有下降趋势。不施氮条件下,施钼极显著或显著地降低了菠菜生长前期和收获期叶片中硝态氮含量,降幅分别为19.3%和21.4%;施氮条件下,施钼仅显著降低了菠菜生长前期叶片中硝态氮含量,降幅达21.2%。在本试验条件下,单施钼比钼钾配施更有利于降低菠菜叶片中硝态氮的含量;钾与钼营养的相互效应,以及钾与钼之间如何平衡,似乎是影响施钼效果的关键。  相似文献   

6.
  目的  探讨宁夏引黄灌区日光温室集约种植区地下水硝态氮污染现状及其与土壤硝态氮含量之间的关系,为有效防治地下水硝态氮污染及土壤盐渍化提供理论依据。  方法  通过抽样调查方法,采集7个典型日光温室集约种植区不同时期的214个地下水样及102个0 ~ 20 cm土壤样品,分析了地下水和土壤的硝态氮含量及电导率等。  结果  地下水样本硝态氮含量超过Ⅲ类水标准的达53.3%;近80%的土壤样本呈现出不同程度的盐渍化,其中中度盐化土占57%。当地下水硝态氮含量大于40 mg L?1时,地下水电导率、土壤电导率和土壤硝态氮含量均随地下水硝态氮浓度增加而急剧增加。土壤电导率与土壤硝态氮含量之间呈极显著线性函数关系,决定系数达0.376。土壤硝态氮含量与地下水硝态氮含量之间呈极显著的指数函数关系,土壤电导率与地下水电导率之间呈极显著的线性函数关系。  结论  宁夏典型日光温室集约种植区的地下水硝态氮污染和次生盐渍化严重,并与土壤硝态氮含量和盐渍化密切相关。  相似文献   

7.
以两种氮效率不同的油菜品种X-13和X-29为材料,在严格控制氮营养水平的砂培条件下,研究了不同施氮水平下两个品种油菜硝态氮累积量、硝酸还原酶活性、氮素吸收量、籽粒产量、氮效率等指标的差异特征。结果表明,与氮低效品种X-29相比,氮高效品种X-13的硝态氮累积量多,硝态氮再利用量大,叶片硝酸还原酶活性高,其氮素累积量也多,籽粒产量和氮效率也高,品种间差异显著。供氮水平提高,两品种的硝态氮累积量和再利用量都增大,叶片硝酸还原酶活性增强,氮素随着累积量增加,籽粒产量升高,而氮效率则下降。  相似文献   

8.
为了探明控释尿素(CRU)提高氮肥利用率并减少土壤中硝态氮累积的作用机理,通过田间试验,研究了控释尿素对水稻氮代谢关键酶活性、氮肥利用率及土壤硝态氮含量的影响。结果表明,控释尿素能显著提高齐穗期和乳熟期叶片中的硝酸还原酶活性,特别是乳熟期最为明显;能显著增强水稻叶片谷氨酰胺合成酶和谷氨酰胺转化酶活性,且增强作用可持续到蜡熟期,其增强效果在齐穗期最为明显;还能显著提高乳熟期和蜡熟期叶片的蛋白水解酶活性。其中,以处理4(CRU60%+PU40%)最为明显。控释尿素还能显著增强籽粒中的谷氨酰胺合成酶和谷氨酰胺转化酶活性活性,并能显著提高水稻的产量及氮肥利用率,也是以处理4增强效果最为明显。控释尿素还明显增加了蛋白质的含量,在一定程度上改善了稻米品质。同时,控释尿素还可明显降低水稻土壤中硝态氮的含量,减少硝态氮向土壤深层渗漏数量,以减轻对地下水污染风险。  相似文献   

9.
通过室内培养,研究了不同亚硝态氮浓度对铜绿微囊藻(Microcystis aeruginosa)生长的影响和藻对亚硝态氮的利用,实验分析了水体中亚硝态氮、硝态氮和铵态氮浓度的变化,测定了铜绿微囊藻的生长曲线、藻细胞内亚硝态氮含量和藻亚硝酸氧化酶(NOR)。结果显示,在10mgNO^-2-N·L^-1的处理组中,培养基中亚硝态氮和硝态氮浓度同时减少,说明铜绿微囊藻可以同时利用亚硝态氮和硝态氮;在20和30mgNO^-2-N·L^-1的处理组中,随着藻的生长培养基中亚硝态氮的浓度减少,硝态氮浓度增加,而且电泳实验显示此培养条件下铜绿微囊藻能产生亚硝酸氧化酶,表明培养基中的亚硝态氮被亚硝酸氧化酶氧化为硝态氮。本实验也表明高浓度的亚硝态氮(大于10mgNO^-2-N·L^-1)能够抑制藻的生长。  相似文献   

10.
冬小麦对铵态氮和硝态氮的响应   总被引:2,自引:0,他引:2  
在陕西省永寿县和河南省洛阳市分别设置了11和7处大田试验,分5层采集0~100 cm土壤样品并测定其起始硝态氮含量。永寿试验设7个处理,分别为不施氮,硝态氮、铵态氮品种、硝态氮与铵态氮2∶1组合各2个处理;洛阳试验设6个处理(硝态氮肥只有1个品种),施氮处理均施N 150 kg hm-2,研究小麦对铵态氮和硝态氮肥响应的差异及其与不同深度土层硝态氮累积量的关系。试验表明,同一形态不同氮肥品种之间的增产差异显著低于不同形态之间的差异。比较不同形态氮肥的小麦产量、增产量和增产率的平均值,硝态氮肥最高,硝态氮、铵态氮组合次之,铵态氮最低。氮肥增产量和增产率随土壤累积硝态氮量增加而显著下降;累积量越低,氮肥增产效果越突出,硝态氮的效果也越显著。由此可见,土壤累积的硝态氮量是决定氮肥肥效的主要因子,也是决定不同形态氮素效果的主要因子。只有在硝态氮累积量低的土壤上,氮肥才能充分发挥作用,硝态氮也才能表现出明显的优势。  相似文献   

11.
A pot experiment was carried out, with 30 spinach cultivars to determine nitrate accumulation in leaf blade and petiole, and its relationship to biomass and water in plants. Results showed that the fresh weight proportion of blade to shoot was higher than that of petiole. Furthermore, a higher positive correlation was found between fresh weights of blades and shoots than that of petioles and shoots. Unlike biomass, nitrate-nitrogen (N) concentration and total amount of nitrate-N accumulated in petiole were significantly higher than those in blade, and petiole was obviously the main organ for nitrate accumulation. Differences of nitrate-N concentration in petiole and the observed positive correlation between nitrate-N concentrations in petioles and shoots were more significant than that in blades and shoots. Nitrate-N concentration in petiole was also significantly correlated with fresh and dry shoot weight and total amount of water in shoots. However, this relationship was not found for blade.  相似文献   

12.
(pp. 25–32)

The effectiveness of drip fertigation, which is known to control fertilizer application, for reducing nitrate in spinach and for improving the other qualities of spinach was investigated. Fertilizer application can be controlled effectively by drip fertigation. In 2002 and 2003, two spinach cultivars were grown in a plastic greenhouse with 4, 8 or 12 g N m?2 of fertilizer application by drip fertigation, and with 8, 12 or 16 g N m?2 of fertilizer application as a basal application. Nitrate concentration of petiole sap extracted by a garlic squeezer was significantly correlated with the water-extractable nitrate concentration. Nitrate concentrations of petiole sap extracted from plants treated with 12, 8 and 4 g N m?2 of fertilizer by drip fertigation were constant, gradually decreased and significantly decreased, respectively, during the last 2 weeks. When nitrate concentration decreased during the last week, nitrate concentration in spinach at harvest was less than 3,000 mg kg?1 FW. Thus it was thought that the pattern of the time course of nitrate in petiole xylem sap is a good indicator for getting spinach with low nitrate. The sugar concentration was negatively correlated with applied nitrogen quantity and the nitrate concentration. The total oxalic acid concentration in spinach treated by drip fertigation was significantly lower than that in spinach treated by basal application, independent of the amount of applied nitrogen. Thus drip fertigation is advantageous for improving crop quality.  相似文献   

13.
光质对菠菜草酸、单宁及硝酸盐积累效应的影响   总被引:7,自引:0,他引:7  
用彩色荧光灯得到红光、蓝光和黄光,以白光为对照,研究不同光质对菠菜产量,草酸、单宁及硝酸盐积累的影响。结果表明,处理间的菠菜叶柄和叶片硝酸盐和草酸含量的变化不同,但地上部生长量的变化趋势相同。叶片占植株地上部鲜质量的比例高于叶柄。不同处理叶片和叶柄鲜质量依次为白光(对照)>黄光>红光>蓝光。红光处理有利于干物质和碳水化合物的形成与积累。菠菜叶柄的硝酸盐含量显著高于叶片,是积累硝酸盐的主要场所,并且各处理间叶片硝酸盐和单宁含量的差异远大于叶柄。白光和黄光处理下,菠菜叶片草酸含量大于叶柄,而红光和蓝光处理则相反,其中红光处理草酸含量最低。菠菜在红光处理下生物量虽不高,但可极大地降低硝酸盐和草酸含量,提高菠菜品质。  相似文献   

14.
(pp. 9–16)

Nitrate is a major form of uptake and storage of nitrogen for upland plants. However, nitrate is harmful to human health · ingestion of a large quantity can lead to cancer or methemoglobinemia. The effectiveness of drip fertigation for reducing nitrate in spinach was investigated in this study. Fertilizer application can be controlled effectively by drip fertigation. Field experiments were conducted in September 2002 and June 2003 at the National Agricultural Research Center for Hokkaido Region. Two spinach cultivars were grown in each cultivation in a plastic greenhouse, and the plants were treated with 4, 8 or 12 g N m?2 of fertilizer applied by drip fertigation, and with 8, 12 or 16 g N m?2 of fertilizer applied as basal application. The nitrogen was applied at the rate of 0.15 g m?2 per day for the first 15 days, and 0.25 g m?2 for the following 23 days in 8 g N m?2 treatment of drip fertigation.

The rate of growth and nitrogen absorption of spinach in the early growth stages was very slow, but they increased quickly from around day 23 after sowing. The amount of nitrogen absorbed by spinach was close to the amount applied in 8 g N m?2 treatment. This treatment resulted in spinach with a low nitrate concentration without reduction in yield. Although the same results were obtained by treatment with 8 g N m?2 of fertilizer by basal application, there was a tendency for nitrate concentration to fall further with drip fertigation. The rate of nitrate-nitrogen to total-nitrogen rose sharply when the total-nitrogen concentration was higher than 42 g kg?1 DW in leaf blade and 18 g kg?1 DW in leaf petiole. The total-nitrogen concentration was lowered a little and for that reason the rate of nitrate-nitrogen to total-nitrogen was lower in spinach treated with 8 g N m?2 of drip fertigation than in spinach treated with 8 g N m?2 of basal application. Thus, drip fertigation was considered to reduce nitrate more stably.  相似文献   

15.
(pp. 25–32)
The effectiveness of drip fertigation, which is known to control fertilizer application, for reducing nitrate in spinach and for improving the other qualities of spinach was investigated. Fertilizer application can be controlled effectively by drip fertigation. In 2002 and 2003, two spinach cultivars were grown in a plastic greenhouse with 4, 8 or 12 g N m−2 of fertilizer application by drip fertigation, and with 8, 12 or 16 g N m−2 of fertilizer application as a basal application. Nitrate concentration of petiole sap extracted by a garlic squeezer was significantly correlated with the water-extractable nitrate concentration. Nitrate concentrations of petiole sap extracted from plants treated with 12, 8 and 4 g N m−2 of fertilizer by drip fertigation were constant, gradually decreased and significantly decreased, respectively, during the last 2 weeks. When nitrate concentration decreased during the last week, nitrate concentration in spinach at harvest was less than 3,000 mg kg−1 FW. Thus it was thought that the pattern of the time course of nitrate in petiole xylem sap is a good indicator for getting spinach with low nitrate. The sugar concentration was negatively correlated with applied nitrogen quantity and the nitrate concentration. The total oxalic acid concentration in spinach treated by drip fertigation was significantly lower than that in spinach treated by basal application, independent of the amount of applied nitrogen. Thus drip fertigation is advantageous for improving crop quality.  相似文献   

16.
Kentucky bluegrass (Poapratensis L.) is a major C3‐type forage and turfgrass, but it is less efficient than many grasses in utilizing nitrogen(N). To determine how this grass can accommodate its greater N need, diurnal patterns of nitrate reductase activity (NRA) and nitrite reductase activity (NiRA) in its leaves and roots were examined and compared with those in barley (Hordeum vulgare L.). Plants were grown under greenhouse or growth room conditions and assayed for NRA and NiRA by optimized in vivo methods. The diurnal patterns of NRA and NiRA indicated that Kentucky bluegrass could assimilate nitrate during the night at rates greater than or similar to those during the day. Leaf NRA of Kentucky bluegrass was minimal approximately 4 and 10 h after illumination commenced and increased at night. The diurnal pattern of leaf NRA among Kentucky bluegrass cultivars did not differ significantly. In roots, NRA of Kentucky bluegrass was high in the morning and decreased sharply during the afternoon and evening, but increased again late at night. Unlike Kentucky bluegrass, barley exhibited greater leaf NRA during the day than during the night and exhibited the greatest activity 6 or 10 h after illumination commenced. In both species, the equilibrium leaf nitrate pool was 20 to 30 times larger than the ammonium pool and 3, 000 to 13, 000 times larger than the nitrite pool. Leaf nitrate pool size showed a diurnal pattern complementary to that of leaf NRA. Our results suggest that a nighttime N use strategy might exist in Kentucky bluegrass.  相似文献   

17.
Studies were conducted to determine relationships among nitrate reductase activity (NRA), dry weight (DW), nitrogen (N) uptake, and N concentration in soft red winter wheat (Triticum aestivwn L.). Data were collected for three growing seasons from field plots grown on a silt loam and one growing season on a sandy loam. Ten cultivars were measured under field conditions with plant samples taken at Feekes Growth Stages 6, 10, 10.5, and 11.1. NRA was measured using an in vivo assay method on fully expanded leaves representing the upper most part of the canopy. Results indicated that N uptake was highest during Stages 10.5 to 11.1, although not significantly different for all cultivars. Few differences were found among cultivars for N concentration. The NRA measured under field conditions was more stable at Growth Stage 6. Path coefficients between NRA and DW, N uptake, and N concentration varied considerably depending on the growth stage, indicating that selection for N utilization using one or more of the measurements evaluated in this study should consider the stage of growth.  相似文献   

18.
硝化抑制剂对小白菜内源硝酸盐代谢的影响   总被引:1,自引:0,他引:1  
为了提高蔬菜体内硝态氮的代谢有效利用性,采用土培盆栽试验方法,以NO3-N︰NH4+-N为2︰3的处理(以S1表示)为对照,研究在对照基础上分别添加3种硝化抑制剂(即,双氰胺、咪唑、吡啶,分别以S2、S3、S4表示)对小白菜内源硝酸盐代谢的影响。结果表明:3种硝化抑制剂的添加可提高小白菜产量6.06%~28.55%,增加植株氮吸收量2.38%~38.42%,降低蔬菜硝酸盐含量2.69%~19.66%,分别提高小白菜叶片硝酸还原酶活性、叶肉细胞硝态氮的代谢库大小和贮藏库大小24.28%~77.32%、29.45%~272.17%和2.78%~17.38%,并增加代谢库与贮藏库的比值0.04%~0.59%,从而提高了小白菜内源硝酸盐的有效利用性。其中,以S2处理对提高小白菜内源硝酸的有效利用性相对最佳,植株产量和植株氮吸收量相对最高,分别为56.72 g.盆1和0.156 g.盆1;植株硝酸盐含量较低,为1 749 mg·kg-1;而叶片的硝酸还原酶活性和叶肉细胞硝态氮代谢库相对最高,分别为1.90μg(NO2-N).30 min-1·g-1(FW)和0.33μg(NO2-N)·g-1(FW)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号