首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A preliminary nutrient cycling study quantified total and temporal nutrient inputs via litterfall and pruning residues in two agroforestry systems: (1) Coffea arabica (perennial crop)-Erythrina poeppigiana (leguminous shade tree); and (2) C. arabica-E. poeppigiana-Cordia alliodora with emphasis on the effect of the timber tree C. alliodora. The total annual input of litterfall plus pruning residues was similar in both associations. Total annual input from E. poeppigiana was less than half in the association with C. alliodora than without, but the litterfall from this latter species compensated for the loss. Large differences in the total annual nutrient input of K, Ca and Mg was found between associations, but not for N or P. The amount of nutrients recycled by the associated trees reached the recommended level of fertilizer required for coffee production. The inclusion of C. alliodora within the C. arabica-E. poeppigiana association resulted in a more evenly distributed annual nutrient input.  相似文献   

2.
Fine root dynamics of shaded cacao plantations in Costa Rica   总被引:1,自引:0,他引:1  
Root turnover may contribute a significant proportion of recycled nutrients in agroforestry systems and competition between trees and crops for nutrients and water may depend on temporal fine root regrowth patterns. Fine root biomass ( 2 mm) and fine root productivity were measured during one year in plantations of cacao (Theobroma cacao) shaded by Erythrina poeppigiana or Cordia alliodora planted on a deep alluvial soil in Turrialba, Costa Rica. Fine root biomass of approximately 1.0 Mg ha–1 varied little during the year with maximum values at the beginning of the rainy season of 1.85 Mg ha–1 in the cacao-C. alliodora system compared to 1.20 Mg ha–1 for cacao-E. poeppigiana. Fine root productivity of C. alliodora and E. poeppigiana (maximum of 205 and 120 kg ha–1 4 week–1, respectively) was greatest at the end of the rainy season, while for cacao it was greatest at the beginning of the rainy season (34–68 kg ha–1 4 week–1), which suggests that if nutrient competition occurs between the shade trees and the cacao, it could be minimized by early fertilization during the beginning of the rains immediately after pruning the shade trees. Annual fine root turnover was close to 1.0 in both systems. Assuming that fine root biomass in these mature plantations was constant on an annual basis, nutrient inputs from fine root turnover were estimated as 23–24 (N), 2 (P), 14–16 (K), 7–11 (Ca) and 3–10 (Mg) kg ha–1 year–1, representing 6–13% and 3–6% of total nutrient input in organic matter in the C. alliodora and E. poeppigiana systems, respectively.  相似文献   

3.
Predictive models were developed for Cordia alliodora branch and Theobroma cacao branch or leaf biomass,based on branch basal areas (r2 0.79) but the model of C. alliodora leaf biomass, although significant, was of very low accuracy (r2 = 0.09) due to annual leaf fall. At age 10 years, shade tree stem biomass accounted for 80% of the total above-ground biomass of either tree. However, between the ages of 6 and 10 years, the biomass increment of T. cacao branches (3–4t.ha–1.a–1) was similar to that of the shade tree stems. During the same period, the net primary productivity was 35 and 28 t.ha–1.a–1, for the Erythrina poepigiana and and C. alliodora systems, respectively.Cocoa production under either of the shade trees C. alliodora or E. poeppigiana was 1000 kg.ha–1.a–1 (oven-dry; ages 6–10 yr). During the same period, C. alliodora timber production was 9 m3.ha–1.a–1 whilst the leguminous shade tree E. poeppigiana does not produce timber. Litterfall over the same 5 years, including crop and/or shade tree pruning residues, averages 11 and 23 t.ha–1.a–1, respectively. The main difference was due to E. poeppigiana pruning residues (10t.ha–1.a–1).Soil organic material reserves (0–45 cm) increased over 10 years from 198 to 240 t.ha–1 in the E. poeppigiana plots and from 168–184 t.ha–1 in the C. alliodora plots. These values, together with the productivity indices presented, provide evidence that the systems are sustainable.For economic reasons, the use of C. alliodora is recommended under the experimental conditions. however, on less fertile soils without fertilization, the greater biomass and hence nutrient return to the soil surface under E. poeppigiana, might make this the preferable shade tree.  相似文献   

4.
During 7 years (1979–1985) cacao harvests (beans and husks) have been recorded for the agroforestry systems ofTheobroma cacao underCordia alliodora andErythrina poeppigiana shade trees. The mean oven dry cacao yields were 626 and 712 kg.ha−1.a−1 cocoa beans underC. alliodora andE. poeppigiana respectively. Harvests have gradually increased over the years and the plantation has now reached maturity. Annual extraction of N, P, K, Ca and Mg in fruits, which is relatively small, was calculated on the basis of chemical analyses. The following average values were found (kg.ha−1.a−1): At the age of 8 years, theC. alliodora trees have reached 26.7 cm diameter (DBH) and 14.0 m in height. Mean annual growth (from age 5 to 7) is 14.6 m3.ha−1.a−1. Natural plant residue production has been measured for 4 years (Nov. 1981–Oct. 1985). UnderE. poeppigiana it has reached a value of 8.91 t.ha−1.a−1 and underC. alliodora 7.07 t.ha−1.a−1. The shade trees have contributed 57 and 47% respectively. Transference and decomposition rates are high and important in the nutrient cycles. The nutrient content of the litter was analysed and corresponding average yearly transfers were (kg.ha−1.a−1): For part I see Vol. 4, No. 3, 1986. Agroforestry Project, CATIE/GTZ (Tropical Agricultural Research and Training Center/Gesselschaft für Technische Zusammenarbeit), Turrialba, Costa Rica  相似文献   

5.
During 7 years (1979–1985) cacao harvests (beans and husks) have been recorded for the agroforestry systems ofTheobroma cacao underCordia alliodora andErythrina poeppigiana shade trees. The mean oven dry cacao yields were 626 and 712 kg.ha–1.a–1 cocoa beans underC. alliodora andE. poeppigiana respectively. Harvests have gradually increased over the years and the plantation has now reached maturity.Annual extraction of N, P, K, Ca and Mg in fruits, which is relatively small, was calculated on the basis of chemical analyses. The following average values were found (kg.ha–1.a–1): At the age of 8 years, theC. alliodora trees have reached 26.7 cm diameter (DBH) and 14.0 m in height. Mean annual growth (from age 5 to 7) is 14.6 m3.ha–1.a–1.Natural plant residue production has been measured for 4 years (Nov. 1981–Oct. 1985). UnderE. poeppigiana it has reached a value of 8.91 t.ha–1.a–1 and underC. alliodora 7.07 t.ha–1.a–1. The shade trees have contributed 57 and 47% respectively. Transference and decomposition rates are high and important in the nutrient cycles.The nutrient content of the litter was analysed and corresponding average yearly transfers were (kg.ha–1.a–1): For part I see Vol. 4, No. 3, 1986.Agroforestry Project, CATIE/GTZ (Tropical Agricultural Research and Training Center/Gesselschaft für Technische Zusammenarbeit), Turrialba, Costa Rica  相似文献   

6.
Shade management in coffee and cacao plantations   总被引:1,自引:0,他引:1  
Shade trees reduce the stress of coffee (Coffea spp.) and cacao (Theobroma cacao) by ameliorating adverse climatic conditions and nutritional imbalances, but they may also compete for growth resources. For example, shade trees buffer high and low temperature extremes by as much as 5 °C and can produce up to 14 Mg ha-1 yr-1 of litterfall and pruning residues, containing up to 340 kg N ha-1 yr-1. However, N2 fixation by leguminous shade trees grown at a density of 100 to 300 trees ha-1 may not exceed 60 kg N ha-1 yr-1. Shade tree selection and management are potentially important tools for integrated pest management because increased shade may increase the incidence of some commercially important pests and diseases (such as Phythphora palmivora and Mycena citricolor) and decrease the incidence of others (such as Colletotrichum gloeosporioides and Cercospora coffeicola). In Central America, merchantable timber production from commercially important shade tree species, such as Cordia alliodora, is in the range of 4–6m3 ha-1 yr-1. The relative importance and overall effect of the different interactions between shade trees and coffee/cacao are dependent upon site conditions (soil/climate), component selection (species/varieties/provenances), belowground and aboveground characteristics of the trees and crops, and management practices. On optimal sites, coffee can be grown without shade using high agrochemical inputs. However, economic evaluations, which include off-site impacts such as ground water contamination, are needed to judge the desirability of this approach. Moreover, standard silvicultural practices for closed plantations need to be adapted for open-grown trees within coffee/cacao plantations. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
The use of pollarded Erythrina poeppigiana as shade tree in coffee plantations is apparently an old practice in Costa Rica. The tree is not native to this country but was introduced between late 19th and 20th century and was rapidly dispersed in the coffee and cacao areas. Currently, the Erythrina tree is widespread in the Turrialba Valley (elevation 600—1300m) and in the Central Valley (elevation 1200m) where the species is always associated with present or past coffee crops. Pollarding carried out by Costa Rican farmers constitutes a long dated and functional practice, hence the objective of this study was to evaluate the amount of biomass produced by pollarding of Erythrina poeppigiana used as shade in coffee crop planted at a density of 280 trees/hectare under different pollarding frequencies. Results showed that by pollarding once a year, 18,470 kg of dry matter per hectare are produced; with two pollardings per year 11,800 kg/ha are produced and with three pollarding per year 7,850 kg/ha are produced. The total amount of nitrogen removed is very similar for pollarding once and twice a year, but is lower for three times a year. The amount of nitrogen removed was approximately 230 kg/ha/year in the first two cases and 170 kg/ha/year in the last one.The above observations suggest that a considerable supply of nutrients exist in the systems with shade trees, when they are periodically pollarded.Finally some conclusions and follow up activities related to research on the species are suggested, such as higher biomass production techniques, appropriate planting practices, selection of genetic material, nutrient depletion when biomass is harvested, conversion of leaves to marketable feed sources (flour, pellets), alley cropping and green manure production and restoration of degraded areas and improductive savannas by planting large cuttings that would improve the soil by adding biomass and shade out undesirable grasses.This work is part of a Ph.D. Dissertation submitted to the Southeastern University, New Orleans, Lousiana by R.O. Russo.  相似文献   

8.
Models for cycles for organic matter and nutrients element (N, P, K, Ca and Mg) are presented for the agroforestry systems of cacao (Theobroma cacao) withCordia alliodora orErythrina poeppigiana in Turrialba, Costa Rica.For the models, system reserves (soil, humus, vegetation divided into leaves, branches, stems, fine roots, fruits) and transference between compartments (production and decomposition of litter residues) inputs (fertilizer, rainfall) and outputs (harvests) of the system are considered.The implications of the models are discussed in detail.Aspects of net primary production in the systems studied are considered.N fixation is calculated on the basis of balances. Analysis of soil water showed high variations that coincided with rainfall patterns and pruning of theE. poeppigiana.For part I see Vol. 4, No. 3, 1986 For part II see this issueAgroforestry Project, CATIE/GTZ (Tropical Agricultural Research and Training Center/Gesellschaft für Technische Zusammenarbeit), Turrialba, Costa Rica  相似文献   

9.
Models for cycles for organic matter and nutrients element (N, P, K, Ca and Mg) are presented for the agroforestry systems of cacao (Theobroma cacao) withCordia alliodora orErythrina poeppigiana in Turrialba, Costa Rica. For the models, system reserves (soil, humus, vegetation divided into leaves, branches, stems, fine roots, fruits) and transference between compartments (production and decomposition of litter residues) inputs (fertilizer, rainfall) and outputs (harvests) of the system are considered. The implications of the models are discussed in detail. Aspects of net primary production in the systems studied are considered. N fixation is calculated on the basis of balances. Analysis of soil water showed high variations that coincided with rainfall patterns and pruning of theE. poeppigiana. For part I see Vol. 4, No. 3, 1986 For part II see this issue Agroforestry Project, CATIE/GTZ (Tropical Agricultural Research and Training Center/Gesellschaft für Technische Zusammenarbeit), Turrialba, Costa Rica  相似文献   

10.
Both model and field estimations were made of the damage inflicted to coffee plants due to the harvest of timber shade trees (Cordia alliodora) in coffee plantations. Economic analyses were made for different coffee planting densities, yields, and both coffee and timber prices.Damage due to tree felling and log skidding should not be a major limitation to the use of timber shade trees in coffee plantations. The timber price that would balance all discounted losses and benefits to zero, for scenarios with and without trees ranged between 8–20 US $/m3 (current overbark log volume at the saw mill yard is US$ 66/m3). There will be lower margins for coffee damage in high yielding plantations, specially in years of good coffee prices. Nevertheless, the use of timber shade trees is recommended even in these scenarios.  相似文献   

11.
The agroforestry systems of cacao (Theobroma cacao) under laurel (Cordia alliodora) and cacao under poro (Erythrina poeppigiana) were studied at CATIE, Turrialba, Costa Rica. An inventory was taken of the organic matter and nutrients (N, P, K, Ca, and Mg) separating the species into their compartments (leaves, branches, trunks and roots). Studies of the litter and of the mineral soil (0–45 cm) yielded these results: Patterns of nutrient accumulation are discussed in relation to the characteristics of these agroforestry systems.  相似文献   

12.
Coffee (Coffea canephora var robusta) is grown in Southwestern Togo under shade of native Albizia adianthifolia as a low input cropping system. However, there is no information on carbon and nutrient cycling in these shaded coffee systems. Hence, a study was conducted in a mature coffee plantation in Southwestern Togo to determine carbon and nutrient stocks in shaded versus open-grown coffee systems. Biomass of Albizia trees was predicted by allometry, whereas biomass of coffee bushes was estimated through destructive sampling. Above- and belowground biomass estimates were respectively, 140 Mg ha−1 and 32 Mg ha−1 in the coffee–Albizia association, and 29.7 Mg ha−1 and 18.7 Mg ha−1 in the open-grown system. Albizia trees contributed 87% of total aboveground biomass and 55% of total root biomass in the shaded coffee system. Individual coffee bushes consistently had higher biomass in the open-grown than in the shaded coffee system. Total C stock was 81 Mg ha−1 in the shaded coffee system and only 22.9 Mg ha−1 for coffee grown in the open. Apart from P and Mg, considerable amounts of major nutrients were stored in the shade tree biomass in non-easily recyclable fractions. Plant tissues in the shaded coffee system had higher N concentration, suggesting possible N fixation. Given the potential for competition between the shade trees and coffee for nutrients, particularly in low soil fertility conditions, it is suggested that the shade trees be periodically pruned in order to increase organic matter addition and nutrient return to the soil. An erratum to this article can be found at  相似文献   

13.
We compared how management approaches affected shade tree diversity, soil properties, and provisioning and carbon sequestration ecosystem services in three shade coffee cooperatives. Collectively managed cooperatives utilized less diverse shade, and pruned coffee and shade trees more intensively, than individual farms. Soil properties showed significant differences among the cooperatives, with the following properties contributing to differentiation: N, pH, P, K, and Ca. Higher tree richness was associated with higher soil pH, CEC, Ca, and Mg, and lower K. Higher tree densities were associated with lower N, K, and organic matter. Although we found differences in the incidence of provisioning services (e.g., fruit), all plantations generated products other than coffee. No differences were observed between C-stocks. The history and institutional arrangements of cooperatives can influence management approaches, which affect ecosystem properties and services. Our study corroborates that interdisciplinary investigations are essential to understand the socio-ecological context of tropical shade coffee landscapes.  相似文献   

14.
Natural abundance of 15N was sampled in young and mature leaves, branches, stem, and coarse roots of trees in a cacao (Theobroma cacao) plantation shaded by legume tree Inga edulis and scattered non-legumes, in a cacao plantation with mixed-species shade (legume Gliricidia sepium and several non-legumes), and in a tree hedgerow bordering the plantations in Guácimo, in the humid Caribbean lowlands of Costa Rica. The deviation of the sample 15N proportion from that of atmosphere (δ15N) was similar in non-legumes Cordia alliodora, Posoqueria latifolia, Rollinia pittieri, and T. cacao. Deep-rooted Hieronyma alchorneoides had lower δ15N than other non-N2-fixers, which probably reflected uptake from a partially different soil N pool. Gliricidia sepium had low δ15N. Inga edulis had high δ15N in leaves and branches but low in stem and coarse roots. The percentage of N fixed from atmosphere out of total tree N (%Nf) in G. sepium varied 56–74%; N2 fixation was more active in July (the rainiest season) than in March (the relatively dry season). The variation of δ15N between organs in I. edulis was probably associated to 15N fractionation in leaves. Stem and coarse root δ15N was assumed to reflect the actual ratio of N2 fixation to soil N uptake; stem-based estimates of %Nf in I. edulis were 48–63%. Theobroma cacao below I. edulis had lower δ15N than T. cacao below mixed-species shade, which may indicate direct N transfer from I. edulis to T. cacao but results so far were inconclusive. Further research should address the 15N fractionation in the studied species for improving the accuracy of the N transfer estimates. The δ15N appeared to vary according to ecophysiological characteristics of the trees.  相似文献   

15.
Somarriba  E.  Beer  J.  Muschler  R. G. 《Agroforestry Systems》2001,53(2):195-203
This paper reviews the research themes and methodologies used by CATIE in agroforestry research with shade trees over coffee (Coffea arabica) and cacao (Theobroma cacao) during the past 20 years. Initially research focused on characterization and production studies (of crop and timber including border areas) of traditional systems using temporary and permanent sample plots on private farms. The assessment area of traditional shade-coffee (or cacao) systems should be the whole plot, including the border areas, and not some subjectively selected central area which supposedly represents unit area productivity. Uncontrolled crop, tree, and management heterogeneity limited extrapolation of early on-farm research results to other farmers' fields. Replicated case studies of best bet technologies (traditional or experimental) on different farms are often preferable to the use of formal experimental designs. On-station research included the use of systematic spacing designs to test extreme shade tree density treatments of coffee. Most nutrient cycling studies were also carried out on-station, using service and timber shade species over coffee and cacao to evaluate the ability of these agroforestry systems to maintain nutrient reserves and diversify production. Plot size (even 36 × 36 m) was limiting for long term research because of inter-plot interference, both below- and above ground, when using fast growing, tall timber trees as shade. These experiences suggest a minimum plot size of 2,500 m2. Individual tree designs and tree-crop interface studies (e.g. regression analysis of data taken along transects) are promising experimental/sampling approaches that need further development. The principal research thrusts proposed for the next five years are bio-physical process research on coffee responses to shade and competition with trees (growth, carbon allocation, phenology, disease-pest tolerance, yields and coffee quality effects) and socioeconomic analyses of both traditional and new or improved shade – coffee combinations vs. monocultures. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Coffee and cocoa are the main cash crops of Côte d'Ivoire. They are mainly produced by small farmers in a rather extensive way. The shade trees used are mostly wild forest species yielding many different products. In the Baoulé region, an inventory of those trees and their, often multiple, uses was established. Of the 41 tree species, 22 are used as firewood and 16 as timber for local constructions. Nineteen furnish pharmaceutical products for traditional medicine and 15 have edible parts (fruits, leaves, flowers, palm wine). Those products are essential in daily life and play an important role in the local economy. The plantations can therefore be considered as agroforestry systems. Part of the world-wide research on coffee and cocoa should be reoriented to such systems, adapted to small farmer holdings, where few inputs are available and conditions of production are less favourable.Translated with modifications from: Les arbres d'ombrage et leurs utilisations dans les plantations de café et de cacao dans le sud du V-Baoulé, Côte d'Ivoire, J. For. Suisse 143(2): 149–165, 1992.  相似文献   

17.
Sap flows of coffee (Coffea arabica L. cv ‘Costa Rica 95’) and associated timber trees (Eucalyptus deglupta or Terminalia ivorensis) or leguminous tree (Erythrina poeppigiana) were measured simultaneously during 12 months in 4-year-old coffee agroforestry systems in sub-optimal ecological conditions of Costa Rica. In the wet period, coffee and shade tree transpiration followed the daily patterns of photosynthetic photon flux density (PPFD) and reference evapotranspiration (ETo) while their transpiration was restricted at higher air VPD values (>1.5 kPa) registered during the dry period. Coffee transpired more per unit leaf area in full sun than under shade, an indication of higher environmental coffee stress in non shaded conditions. Nonetheless, coffee daily water consumption per hectare was generally higher under shade than in full sun due higher vegetative growth of shade-grown coffee plants. Minimum and maximum daily transpiration were 0.74 and 4.08 mm for coffee, 0.35 and 1.06 mm for E. deglupta, 0.70 and 2.10 mm for T. ivorensis and 0.13 and 0.79 mm for E. poeppigiana. Estimation of the annual combined water transpiration by coffee and shade trees was 20–250% higher than that of coffee grown in full sun. Nevertheless, there was no evidence that water use by associated trees decreased soil water availability for coffee and hence limited coffee transpiration in the dry season due to its relatively short length (3 months) and the high annual rainfall (over 3100 mm). In the sub-optimal, low altitude conditions of this experiment, E. deglupta was the optimum shade species as it maintained a more constant shade level throughout the year and ensured a better protection to coffee underneath than T. ivorensis and E. poeppigiana which underwent a complete defoliation during the adverse meteorological conditions of the dry period.  相似文献   

18.
The impact of Erythrina poeppigiana on soil characteristics, at three different positions relative to the shade tree and from three different soil depths, was evaluated in pairs of comparable Costa Rican coffee farms (organic and conventional) in 2000 and 2004. In the conventional system at 0–5 cm, higher C and N concentrations were found close to the shade tree versus the positions 2 m from the trunk (5.04 vs. 4.18%). This positive effect could influence only 20% of the farm area when high population of E. poeppigiana were used. This finding highlighted the importance of E. poeppigiana in maintaining SOM levels. In contrast, the organic system showed similar C and N concentrations for all positions probably due to an even distribution of pruning residues and to the use of organic amendments. A trend to higher total C and N concentrations for organic farms in comparison to conventional farms was found. No significant temporal changes in soil C or N concentrations were found between 2000 and 2004.  相似文献   

19.
Tree retention is understood as a key practice in creating complexity, leading to heterogeneity in resources and habitats in managed stands. In this article, we clarify the long-term effects of tree retention on stand structure and tree-species composition in a 60-year-old Larix kaempferi plantation in central Japan. In our study plot (1.5 ha) there were 18 stems/ha of retained trees (determined by tree-ring analysis), mostly Quercus crispula. We conducted spatial analyses and tested the hypothesis that tree abundance, size structure, and species composition and diversity change with distance from the retained trees. Near the retained trees, L. kaempferi showed a reduction of 40%–60% in basal area, due presumably to the shading effect. In contrast, the nearby area showed greater species diversity in the canopy layer. The retained trees created patches of different species composition in the understory. The spatial gradient of shade and colonization opportunity provided by retained trees greatly affect the distribution of the colonized species, according to their shade tolerance and seed-dispersal ability, which resulted in the stand structure with a heterogeneous shrub-layer vegetation. Retention proved particularly important for the enhancement and long-term maintenance of structural and compositional complexity in L. kaempferi plantations.  相似文献   

20.
In alley cropping systems, fast growing leguminous trees are pruned to reduce competition with crops for light and to provide organic inputs for crop nutrition. Tree regrowth depends on non-structural carbohydrate reserves in the remaining tree parts. In this study, the dynamics of starch and soluble carbohydrates in roots and stems of completely pruned (all shoots removed), partially pruned (one branch retained on the pruned stump) and unpruned Erythrina poeppigiana (Walp.) O.F. Cook and Gliricidia sepium (Jacq.) Kunth ex Walp. trees were studied under humid tropical conditions in Turrialba, Costa Rica. Measurements on starch and soluble carbohydrates in roots and stems were made at 0, 2, 6 and 12 weeks after pruning during both a “rainy” and a “dry” season. In general, the dynamics of non-structural carbohydrates in roots and stems of pruned E. poeppigiana and G. sepium trees were similar. Starch concentration was highest in unpruned trees and higher in roots than in stems of pruned trees. The effect of pruning intensity was first observed in stems, and starch reserves were more depleted in stems than in roots, an effect more evident during the “dry” season. The critical tree regrowth stage for starch mobilisation was that of vigorous sprout development at six or four weeks after pruning particularly in completely pruned trees. At this time, fine root biomass and length and nodule biomass in pruned trees decreased. Survival of fine roots and nodules was greater in partially pruned than in completely pruned trees. Starch accumulation in roots recommenced at 12 weeks after pruning in G. sepium, and later than 12 weeks after pruning in E. poeppigiana roots. This study showed that E. poeppigiana responded better to pruning regimes than G. sepium. Recovery of trees after pruning is better when trees are partially pruned than when completely pruned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号