首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We assessed the mycelial growth rate of Hymenoscyphus fraxineus, the causal agent of ash dieback, on agar media containing leaf extracts of seven common Mediterranean species of the Oleaceae (Fraxinus excelsior, F. angustifolia, F. ornus, Ligustrum vulgare, Olea europaea, Phyllirea latifolia and Syringa vulgaris). The pathogen grew on all media, but growth rates showed significant differences among media and H. fraxineus isolates. Growth rates were highest on media containing F. excelsior and F. angustifolia, intermediate on media containing O. europaea and P. latifolia and lowest on those containing F. ornus and L. vulgare.  相似文献   

2.
The presumed resistance of individual ash trees to ash dieback caused by invasive pathogen Hymenoscyphus fraxineus is an important issue for the maintenance of ash in European forests. All known studies regarding the resistance of ash trees to ash dieback were conducted in plantations and stands of F. excelsior; however, no such data exist for F. angustifolia. Crown damage assessments were performed over four consecutive years between 2009 and 2012 at a F. angustifolia clonal plantation in Hra??ica, Slovenia. Inoculation of H. fraxineus into the branches of the most and least damaged clones of F. angustifolia and leaf phenology assessments was performed to verify the presence of defence mechanisms that limit fungal growth or promote disease escape. Additionally, root collars of selected clones were inspected for fungal infections. The crown damage assessments showed considerable differences among F. angustifolia clones, indicating genetic variability in susceptibility to ash dieback. Crown dieback progressed significantly over the 4‐year time period; the mean crown damage of individual clones in 2012 varied between 16.7% and 83.8%. Significant differences among F. angustifolia clones were found in the inoculation trials and leaf phenology assessments. However, defence mechanisms such as early leaf flushing, early leaf shedding and the ability to inhibit pathogen growth in host tissues were not confirmed. High frequency of Armillaria spp. and H. fraxineus root collar infection demonstrated the need for whole tree inspection to determine causal agent of damages on individual ash trees. Armillaria spp. may be highly associated with ash decline epidemiology.  相似文献   

3.
European ash (Fraxinus excelsior) trees currently face the major threat of ash dieback caused by an invasive fungus, Hymenoscyphus fraxineus. Collar rots in F. excelsior have been increasingly associated with infections by this pathogen. However, the aetiology of the collar rots is still unclear and remains heavily debated. In contrast to most studies of this kind, entire rootstocks of four diseased ash trees were dug out to examine necrotic tissues in these rootstocks and stem bases in detail and to sample necrotic wood for fungal isolation. With the aid of morphological and molecular identification techniques, five to twelve fungal taxa were detected per tree. Members of the Nectriaceae family and Botryosphaeria stevensii, the causal agent of stem and branch cankers on many tree species, were frequently isolated from outer xylem. In contrast, H. fraxineus was the dominating species in interior wood layers. Microsatellite genotyping of 77 H. fraxineus isolates helped to identify up to six different genotypes per tree. The role of H. fraxineus and other isolated fungi in the aetiology of ash collar rots are discussed.  相似文献   

4.
We describe a method for inoculating rachises of Fraxinus excelsior (European or common ash) with Hymenoscyphus fraxineus, which is faster than previous methods and allows associated foliar symptoms to be assessed on replicate leaves. A total of ten ash seedlings were inoculated with five isolates of H. fraxineus and lesion development assessed over four weeks. A five‐point disease progress scale of symptom development was developed from no lesion (0), lesion on rachis (1), “pre‐top dead,” with curling of distal leaflets and bending of the rachis (2), top dead, with wilting and death of distal leaflets (3) to leaf abscission (4). The method revealed variation in aggressiveness of H. fraxinus isolates and may be suitable for assessing the resistance of F. excelsior and other Fraxinus species to dieback. The in vitro growth rate of H. fraxineus isolates was highly correlated with both disease progress and the length of rachis lesions on susceptible plants, indicating that it can be used as a preliminary step in selecting isolates with high aggressiveness for use in resistance screening.  相似文献   

5.
Hymenoscyphus fraxineus, the causal agent of common ash dieback, possesses a low level of genetic diversity in Europe. The introduction of novel strains of this fungus must be prevented, due to the possible emergence of new virulence alleles, which could result in the infestation of the small proportion of hitherto resistant or tolerant ash trees. More comprehensive knowledge of the host spectrum of H. fraxineus is necessary for preventing further introductions. It is possible that H. fraxineus manifests itself in hosts beyond the genus Fraxinus, though this proposition has received little attention thus far. Two in vitro experiments were set up to investigate whether privet (Ligustrum vulgare) could serve as a host: germination rate of fresh H. fraxineus ascospores and colony growth of H. fraxineus were tested on agar media containing leaf extracts of privet, common ash (Fraxinus excelsior) and manna ash (Fraxinus ornus). Two different media with leaf extracts were tested, one with high (60%) and one with low (12%) extract content. Barely any significant differences were recorded in the case of the media with low extract content. Significant effects occurred only at the higher extract content level: germination was completely inhibited on the privet medium. Mycelial growth on the privet medium was slower than on both the common ash and manna ash media and, in addition, one of the three H. fraxineus strains was completely inhibited. These observations indicate the presence of inhibitors in privet. It is therefore unlikely to be a suitable host for H. fraxineus.  相似文献   

6.
During the monitoring of the mycological complex on different forest tree species in the Biogradska Gora National Park in north‐east Montenegro, symptoms indicative of ash dieback caused by Hymenoscyphus fraxineus were observed on young Fraxinus excelsior trees in the protected virgin forest, including dieback of plants and branches, wilting of leaves and shoots leading to a “flag‐like” habitus, premature shedding of leaves and longitudinal bark necroses. Using standard isolation methods, slow‐growing cultures with numerous phialides, typical of the asexual phase of the ash dieback fungus, were obtained. In addition, petioles with numerous characteristic apothecia were also recorded. This is the first report of H. fraxineus on common ash in Montenegro. Possible pathways of introduction and implications of the findings are discussed.  相似文献   

7.
Ten saplings of European ash (Fraxinus excelsior L.) naturally infected by the invasive ash dieback pathogen Hymenoscyphus fraxineus were collected in Ukraine and Norway and examined for bark necrosis and extension of discoloration in sapwood and pith in a stem region. Tissue‐specific colonization profiles were determined by spatial analyses of symptomatic and visually healthy stem tissues using a H. fraxineus‐specific qPCR assay and light microscopy. Our data suggest that hyphal growth in the starch‐rich perimedullary pith is of particular importance for both axial and radial spread of H. fraxineus, but that most of its biomass accumulates in sapwood parenchyma. The study confirms the results from earlier work and presents new information that refines the current stem invasion model.  相似文献   

8.
The ash dieback pathogen Hymenosycphus fraxineus can form ascocarps on pseudosclerotial leaf rachises of Fraxinus excelsior not only in the year after leaf fall but also on older rachises, at least up to five growing seasons after the leaves have been shed. The significance of this finding for the epidemiology of ash dieback is discussed.  相似文献   

9.
In addition to Hymenoscyphus fraxineus, two fungi identified as Diaporthe eres aff. and Fusarium sambucinum aff. were also isolated from necrotic bark lesions on declining one‐year‐old Fraxinus excelsior in a forest stand in Montenegro. To examine their involvement in ash decline, a pathogenicity test was performed using under bark inoculations on one‐year‐old Fraxinus excelsior. Hymenoscyphus fraxineus was included as comparison. All three fungal species proved highly pathogenic towards one‐year‐old seedlings although lesion sizes differed significantly between the different species. Hymenoscyphus fraxineus was most aggressive, followed by F. sambucinum aff., while D. eres aff. caused the smallest lesions. This study demonstrates for the first time the ability of isolates in the D. eres and F. sambucinum species complexes to cause decline on one‐year‐old common ash seedlings.  相似文献   

10.
Ash dieback, caused by the fungus Hymenoscyphus fraxineus, has been observed in Europe for several years. In Belgium, the disease was first reported in 2010. Besides crown defoliation and dieback, collar lesions have sometimes been reported. To evaluate the prevalence and the progression of collar lesions and crown defoliation in ash dieback‐affected stands of various ages, a survey was conducted in 2013 and 2014 on 268 ash trees (Fraxinus excelsior) originating from 17 Walloon forest stands. The results showed that the proportion of trees with collar lesions greatly increased between June 2013 and September 2014 and that there appeared to be no significant link between a tree's diameter‐at‐breast height (DBH) and collar lesion occurrence. The mean percentage of defoliation increased in each forest stand across time, with observations conducted in September 2013 and 2014 showing a positive correlation with the mean percentage of trees with collar lesions. Molecular tests were carried out on 103 additional trees originating from 12 of the 17 stands to evaluate the occurrence of H. fraxineus and Armillaria spp. at the collar level. Most of the trees (98%) were infected by H. fraxineus. In contrast, only 41% of the samples were infected with Armillaria spp., most commonly A. gallica and A. cepistipes. This study discusses the role of Armillaria spp. and the rapid increase in the number of trees with collar lesions within the context of the evolution of ash dieback in Europe.  相似文献   

11.
Hymenoscyphus fraxineus, the causal agent of ash dieback, was inoculated onto intact, unwounded current‐year shoots and leaf scars of 4‐year‐old, potted Fraxinus excelsior seedlings. Pieces of ash wood colonized by the fungus were used as inoculum. Three of 25 (12%) of the inoculated intact shoots and nine of 25 (36%) of the inoculated leaf scars were infected by H. fraxineus and developed typical symptoms of ash dieback, including necrotic lesions on the shoot surface and wood discoloration as well as shoot and leaf wilting distal to the inoculation site. No symptoms occurred on control seedlings, which had been inoculated in the same way but with sterile wood pieces. Visible necrotic lesions on shoots and wood discoloration were statistically significantly longer in proximal than in distal direction from the inoculation site, a pattern which resembles symptoms after natural infection. The ash dieback pathogen was re‐isolated from nine of 12 (75%) of the symptomatic seedlings. These results provide indirect supportive evidence that the fungus infects shoots via leaves and shows that it is able, under experimental conditions using a massive mycelial inoculum, to directly infect intact, unwounded current‐year shoots of its main host in Europe.  相似文献   

12.
We investigated the transmission of Hymenoscyphus fraxineus from infested seed to germinating seedlings of common ash (Fraxinus excelsior) in order to determine the potential risk associated with intra‐ and intercontinental movement of seed. Neither fungal isolations from necrotic or healthy embryos nor PCR testing with H. fraxineus‐specific primers detected the pathogen. Similarly, H. fraxineus was not detected in axenically grown seedlings generated from infested seed lots. The results help clear up prior confusion of the pathogen being seed‐borne. Any remaining surface contamination by pathogen spores could be washed off seeds as a quarantine measure.  相似文献   

13.
Ash dieback is an emerging disease caused by the fungus Chalara fraxinea that severely affects Fraxinus excelsior and F. angustifolia stands in Europe. Previous studies have shown that this pathogen prefers temperatures around 20°C, while its growth in pure cultures at 30°C proved to be very limited. The purpose of this study was to determine the effects of temperature on the development and growth of C. fraxinea in pure cultures and in plant tissues, as well as to test the heat tolerance of F. excelsior saplings. The sensitivity of fungus to heat in ash tissues was higher than in pure cultures. Low isolation success rate from diseased ash tissue after a five‐hour hot water treatment at 36°C and the relatively high survival rate of ash saplings after hot water treatments at 36°C and 40°C indicate possibilities for the development of a C. fraxinea eradication method in ash saplings. Field monitoring showed that in hot weather periods, thermal conditions inside the ash tissues can be extreme enough to markedly decrease the viability of C. fraxinea in infected plant tissues.  相似文献   

14.
Ash dieback, caused by the pathogen Hymenoscyphus pseudoalbidus, is an emerging lethal disease of Fraxinus excelsior in large parts of Europe. To develop a method for the early detection of Hpseudoalbidus, we designed primers for 46 microsatellites (simple sequence repeats, SSRs) of the pathogen. Seven pairs of primers (SSR38, SSR58, SSR114, SSR198, SSR206, SSR211 and SSR212) were found to bind only to the genome of H. pseudoalbidus, but not to the genome of H. albidus or to 52 different fungal endophytes isolated from F. excelsior and F. angustifolia. Using these seven primer pairs, H. pseudoalbidus was identified in fruiting bodies and different types of ash tissues including dead leaves, dead petioles and discoloured or non‐discoloured wood. Along one twig, H. pseudoalbidus was detected at different levels of intensity, which depended on the distance from symptomatic tissue. The detection limit was 0.9–1.8 pg of genomic DNA per PCR. Of 50 analysed commercially available seedlings, six were infected with H. pseudoalbidus. Two SSR loci (SSR198 and SSR211) showed fragment length polymorphism. Our results showed that the new primers not only provide an easy and inexpensive means of detecting H. pseudoalbidus in ash tissues, but can also provide information on the genetic heterogeneity of the species.  相似文献   

15.
Ash dieback caused by the pathogenic fungus Hymenoscyphus fraxineus [previously known as H. pseudoalbidus (sexual stage) and Chalara fraxinea (asexual stage)] is a widespread problem in Europe. Here, we assess crown damage from natural infection and necrosis development following artificial controlled inoculations on full‐sib and half‐sib progeny from Danish Fraxinus excelsior clones with contrasting and well‐characterized levels of susceptibility to the disease. The inoculation assay was performed on a total of 123 offspring, and necrosis development monitored over two years. The offspring from low susceptible mother clones developed smaller necroses when compared to offspring from susceptible clones. Their crown damage due to natural infections was also significantly less. The correlation coefficient between average crown damages of mother clones and the average of their progeny was 0.85 (natural infections), while the correlation between crown damage of mother clones and the average necrosis development in their progeny after controlled inoculation was 0.73. The correlation between resistance of parent trees and crown damage/necrosis development on their offspring confirms the presence of heritable resistance and indicates that a bioassay based on controlled inoculations has the potential of becoming a fast and cost‐effective tool for estimation of dieback susceptibility in breeding programmes for resistance in ash trees.  相似文献   

16.
Ash dieback caused by the mitosporic ascomycete Chalara fraxinea is a novel disease of major concern affecting Fraxinus excelsior and Fraxinus angustifolia in large parts of Europe. Recently, its teleomorph was detected and assigned to Hymenoscyphus albidus, which has been known from Europe since 1851. In this study, we present molecular evidence for the existence of two morphologically very similar taxa, H. albidus, which is lectotypified and Hymenoscyphus pseudoalbidus sp. nov. Differences were found between the species in the loci calmodulin, translation elongation factor 1‐α and the internal transcribed spacers of the rDNA genes, and strong differentiation was obtained with ISSR markers. It is likely that H. albidus is a non‐pathogenic species, whereas H. pseudoalbidus is a virulent species causing ash dieback. Genotyping herbarium specimens showed that H. pseudoalbidus has been present in Switzerland for at least 30 years prior to the outbreak of the epidemic.  相似文献   

17.
18.
The occurrence of Chalara fraxinea, the fungus responsible for dieback of European ash (Fraxinus excelsior), was investigated in the current and previous seed years collected from symptomatic trees in Latvia and Sweden using molecular techniques (DNA extraction, ITS‐PCR, Sanger sequencing). Molecular analysis of seeds revealed the presence of 30 different fungal taxa. Chalara fraxinea was detected in 8.3% of seeds tested from the current year originating from Latvia. The presence of C. fraxinea in seeds of F. excelsior is of great concern to phytosanitary protection authorities in countries outside the current zone of infestation.  相似文献   

19.
Severe dieback symptoms were observed in a 490‐ha moist ash (Fraxinus angustifolia) lowland forest stand, comprising trees over 100 years old and in 100 ha of newly planted F. angustifolia near Sinop, in Turkey. Five of the 10 soil samples collected around stem bases of the diseased trees were baited using ash leaves and yielded a Phytophthora sp. This heterothallic species produced non‐caducous, non‐papillate sporangia in non‐sterile soil extract, and fluffy, even growth on corn meal and potato dextrose agars, and suppressed, even growth on grated carrot agar. Isolates were identified as Phytophthora taxon salixsoil based on internal transcribed spacer DNA sequences. This species has been recently redesignated as P. lacustris. Three isolates were found to be pathogenic when inoculated on the stem bases of three‐year‐old F. angustifolia saplings.  相似文献   

20.
In recent years, Common ash (Fraxinus excelsior) throughout Europe has been severely impacted by a leaf and twig dieback caused by the hyphomycete Chalara fraxinea. The reasons for its current devastating outbreak, however, still remain unclear. Here, we report the presence of four Phytophthora taxa in declining ash stands in Poland and Denmark. Phytophthora cactorum, Phytophthora plurivora, Phytophthora taxon salixsoil and Phytophthora gonapodyides were isolated from rhizosphere soil samples and necrotic bark lesions on stems and roots of mature declining ash trees in four stands. The first three species proved to be aggressive to abscised roots, twigs and leaves of F. excelsior in inoculation experiments. Soil infestation tests also confirmed their pathogenicity towards fine and feeder roots of ash seedlings. Our results provide first evidence for an involvement of Phytophthora species as a contributing factor in current decline phenomena of F. excelsior across Europe. Specifically, they may act as a predisposing factor for trees subsequently infected by C. fraxinea. Phytophthora species from ash stands also proved to be aggressive towards a wide range of tree and shrub species commonly associated with F. excelsior in mixed stands. Although damage varied considerably depending on the Phytophthora species/isolate–host plant combination, these results show that many woody species may be a potential source for survival and inoculum build‐up of soilborne Phytophthora spp. in ash stands and forest ecosystems in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号