首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Specific features of the genesis of chernozem-like, solonetzic chernozem-like soils, and hydromorphic chernozem-like solonetzes were investigated on the southern Tambov Plain. Typical chernozems occupy well drained areas. The yield of cereals is limited by the amount of precipitation. On the flat surface of weakly drained watersheds, deeply gleyed chernozem-like soils are formed under the influence of bicarbonate-calcium ground water and water stagnation on the plow sole. In closed depressions with the 1.5- to 2.0-month long stagnation of surface water on the compact lower horizons, podzolized gleyic chernozem-like soils are formed. They have favorable physical properties, weak eluvial differentiation, and rather high acidity. In humid and moderately humid years, the cereals on these soils are waterlogged; in dry years, their yield increases by 20% as compared to that on the typical chernozem. In the low undrained areas of the watersheds, solonetzic chernozem-like soils and hydromorphic chernozem-like solonetzes are formed under the influence of bicarbonate-sodium water. Despite the unfavorable physical properties of the solonetzic horizons, their better supply with moisture determines the possibility to obtain stable high yields of cereals on the solonetzic chernozem-like soils. The productivity of the gleyic chernozem-like solonetzes is low irrespective of the humidity of the year.  相似文献   

2.
The phosphate status of chernozem-like soils in the northern forest steppe of the Tambov Lowland depends on soil waterlogging and hydrological conditions. Due to surface waterlogging and free effluent seep-age in podzolized, chernozem-like soils of open watershed depressions, the removal of bases and iron decrease the total phosphorus content by 10–15% because of the decrease in active mineral phosphates. Organic matter acts as a buffer preventing phosphorus from leaching. In podzolized, chernozem-like and podzolic, gleyic soils of closed watershed depressions, significant amounts of iron phosphates are accumulated in fine earth and ortsteins due to surface waterlogging and difficult effluent seepage. Under ground waterlogging, calcium phosphates prevail in the composition of active mineral phosphorus in the gleyed, gleyic, and gley chernozem-like soils of above-floodplain terraces.  相似文献   

3.
On the interfluves and in small depressions of the Ryazan forest-steppe, under periodic stagnation of surface water, acid chernozem-like soils with a relatively thick humus horizon, podzolic horizons, and marble-colored gleyed B1 and B2 horizons are formed. The eluvial horizons of these soils contain Mn-Fe nodules, and dark humus coatings occur in the illuvial horizons. In the spring, the eluvial horizons of these soils are excessively moistened and gravitational water stagnates on the soil surface for 3–4 weeks. The formation of the acid light-colored eluvial horizons of the soils on leached rocks is related to gleying under the conditions of the stagnant-percolative regime. Their total thickness is 15–25 cm and more. According to the properties of their solid phase, these horizons are similar to the podzolic horizons of soddy-podzolic gleyed soils. These soils have not been represented in the classification systems of soils of the USSR and Russia. Based on the principles of the substantial-genetic classification, one of the authors of this article [9] referred this soil to gleyed podzolic chernozem-like soils, thus, considering it as an individual genetic soil type. The gleyed podzolic chernozem-like soils differ from the leached chernozems by their low productivity and difficulty of tillage. In humid and moderately moist years, the death of crops or a reduction in yield are probable because of the excess of moisture.  相似文献   

4.
Data on the fractional and group composition of humus in urban soils of Rostov-on-Don are discussed. We have compared the humus profiles of chernozems under tree plantations and those buried under anthropogenic deposits (including sealed chernozems under asphalt). It is shown that the type of humus in these soils remains stable despite a decrease in its total content after the long-term burial under asphalt. Under the impact of the trees, the organic matter of the chernozems acquired some features typical of gray forest soils, i.e., the humate-fulvate type of humus in the humus horizon and the sharp drop in the humus content down the soil profile.  相似文献   

5.
Temporal changes of eroded soils in the southern Cis-Ural region (Republic of Bashkortostan) depending on their agricultural use during the period from 1975 to 2011 were studied. In the northern foreststeppe zone, the development of erosion processes was retarded upon the use of soil-saving management practices and grain-fallow-grass crop rotations. In slightly eroded light gray forest soils (Eutric Retisols (Cutanic)), the thickness of humus-accumulative horizons and the content of humus increased; the conversion of cropland into permanent fallow was found to be the most efficient measure to control soil erosion. In podzolized chernozems (Luvic Greyzemic Chernic Phaeozems) and typical chernozems (Haplic Chernozems) of the Cis-Ural steppe, the content of humus in the plow layer under grain-row crop rotation and classical soil management decreased, especially in moderately eroded soils. The development of water and wind erosion on slopes depended on the slope shape: the texture of soils at different degrees of erosion on slopes with free runoff became coarser by one gradation after 35 years; in the presence of linear obstacles in the lower part of slopes, the content of fine fractions in moderately and strongly eroded soils increased.  相似文献   

6.
Nodules (nodules) forming in the chernozem-like soils of flat-bottomed closed depressions on the northern part of the Tambov Plain differ in their morphology and chemical composition as related to the degree of hydromorphism of these soils. The highest are the coefficients of Mn, P, and Fe accumulation in the nodules from these soils. The Fe to Mn ratio grows with the increasing degree of hydromorphism. Under surface moistening, the maximal amounts of mobile Mn and Fe compounds were extracted from the nodules of the most hydromorphic podzolic chernozem-like soils; under the ground moistening, their greatest amounts were extracted from the least hydromorphic soil—the weakly gley soil. In the first case, the content of organic phosphates in concretions amounted to 30–50%; in the second one, 2–3% of their total content. Under surface moistening, the proportion of active mineral phosphates becomes higher with the increasing hydromorphism: from 30 (podzolized soil) to 70% (gleyic podzolic soil). Under ground moistening, on the contrary, their proportion decreases from 70–89% in the weakly gley soil to 40–50% in the gley chernozem-like soil. The possibility to determine the degree of hydromorphism of chernozem-like soils based on the coefficients of bogging is shown. The expediency of using Schvertmann’s criterion in these studies is assessed.  相似文献   

7.
Pedogenesis of chernozems in the upper river terrace of the Danubian river near Ulm (South West Germany) The “chernozem-like” soils in the upper river terrace of the Danubian river near Ulm (FRG) were examinated. Field analyses as well as soil physical and chemical, clay mineralogical and pollen analyses were carried out. The parent material of the soils was identified as loess, on the basis of its texture, clay mineral composition, structure, carbonate content, the presence of loess molluscs, and the location on an upper river terrace with loess findings in the surrounding. Characteristic pedogenetic processes, such as deliming, silicate weathering, formation of oxides and hydroxides, neoformation of clay minerals and clay translocation prove a non-groundwater-influenced development of the soils within at least the last 8000 years. Therefore an accumulation of organic matter under anaerobic conditions during the peat formation in the lower river terrace nearby was not possible. According to this finding, it can be deducted that the humus accumulation may be due to influences of continental climate and forest steppe during the preboreal period, whereby the humus horizons were formed at deeper horizons through bioturbation. After the groundwater level was raised in boreal age, the steppe stage of the soils had ended and the fluctuating levels of groundwater, rich in carbonates, stabilized humic substances. Thus strong degradation of the soils to date was prevented. Therefore the soils under study could be classified as gleyic Chernozems or luvic Phaeozems.  相似文献   

8.
Chernozem-like soils with light-colored acid eluvial horizons are widespread in the forest-steppe zone of European Russia. Their formation is related to gleying under the conditions of a stagnant-percolative water regime on leached rocks. It is closely associated with the evolution of salinized soils (Gedroits’s scheme). However, these soils have not been included in the soil classifications of the Soviet Union and Russia. Based on the principles of substantial-genetic classification, one of the authors of this article [3–5, 10] referred them to gleyed podzolic chernozem-like soils, which are considered as an individual genetic soil type. With respect to agroecological aspects, they are different from the leached chernozems in their low productivity and difficulty of tillage. This article covers the problems of genesis, classification, and melioration of gleyed podzolic chernozem-like soils in the north of the forest-steppe zone of European Russia and their possible association with dark-colored podbels.  相似文献   

9.
The phenomenon of mineralization (biological mineralization) of organic matter in chernozems has been studied. A decrease in the content of Corg with time can be considered an index of the organic matter mineralization. It is suggested that the humus horizons of modern chernozems contain the pools of organic matter of different ages: easily decomposable organic matter, labile biologically active humus, stable biologically active humus, and relatively inert humus. The composition and mean residence times of these pools and their contribution to the total organic matter content have been estimated. The particular types of the biological mineralization have been determined on the basis of the comparison between the velocities of mineralization (M) and humification (H) processes: total unidirectional mineralization (M ≫ H), equilibrium mineralization (M ∼ H), nonequilibrium mineralization (M> <H), and zero mineralization. The separation of subtypes is based on data on the relative rates (%) of the organic matter mineralization. On the basis of available experimental data on chernozems buried under kurgans and in loess sediments (with the age of up to 800 ka), the quantitative relationship of the humus content in the buried soils on their age has been found; it has an exponential shape. During the first 100 ka after the soil burial, the soil humus content gradually (with a slowing intensity) decreases from 100–75 to 6.5% of its content in the virgin chernozems. Then, 100–1000 ka after the soil burial, the soil humus content remains approximately constant (6.5% of the initial level, or 0.3% of the soil mass). The rates of mineralization have been estimated. It is shown that the elemental composition (C, H, N, O) of humic acids remains relatively stable for a long time due to the regeneration of the chemical structure of humus (matric restoration of humus). It is suggested that several different forms of humus related to pedogenesis should be distinguished in the biosphere. The renewable humus in the equilibrium state with the environment is typical of the open biospheric (soil) systems. The fossil humus, whose content decreases with time, and whose composition remains stable, is typical of the semiclosed and closed systems. With time, it transforms into residual humus, whose content and composition remain stable. The fossilized organic matter in the fossil soils and sediments of the past geological epochs (Mesozoic and Paleozoic) considerably differs from the renewable, fossil, and residual humus.  相似文献   

10.
Original and literature data on the soil-forming conditions and the morphology, physicochemical properties, and bulk chemical and mineralogical composition of mountainous meadow chernozem-like soils of the North Caucasus region indicate that these soils are developed from the coarse-textured pebbly colluvium of calcareous bedrock under the impact of humus accumulation and clay formation. The intensity of these processes is directly related to the activity of soil biota. Suggestions aimed at improving the classification of high-mountain soils are discussed.  相似文献   

11.
The features of ancient periglacial phenomena are widespread in landscapes lying beyond the modern permafrost zone. The specificity of the paleogeographic conditions in the south of the Baikal region resulted in the formation of paleocryogenic landscapes with hummocky-hollow landforms. The paleocryogenic mounds (hummocks) are of rounded or elongated shape, their height is up to 2–3 m, and their width is up to 20–25 m. They are separated by microlows (hollows). This paleocryogenic microtopography favors the differentiation of the pedogenesis on the mounds and in the hollows, so the soil cover pattern becomes more complicated. It is composed of polychronous soils organized in complexes with cyclic patterns. Light gray and gray forest soils and leached and ordinary chernozems are developed on the mounds; gray and dark gray forest soils and chernozems with buried horizons are developed in the hollows. The soils of the paleocryogenic complexes differ from one another in their morphology, physical and chemical properties, elemental composition, and humus composition. For the first time, radiocarbon dates have been obtained for the surface and buried humus horizons in the hollows. The results prove the heterochronous nature of the soils of the paleocryogenic landscapes in the south of the Baikal region.  相似文献   

12.
The ecological features of the humus formation in typical, ordinary, and southern chernozems of the Orenburg Cisural region were considered. The fractional-group composition and amphiphilic properties of the forest-steppe and steppe chernozem subtypes were studied in relation to the dynamics of the hydrothermal regime, the vegetation, and the biological (enzymatic) activity of these zonal soils. The particular properties of the humus in virgin and arable landscapes were established. Arguments were presented for the probable existence of a genetically controlled relationship between the fractional-group composition of the humus and its amphiphilic properties  相似文献   

13.
The influence of bioclimatic conditions related to the elevation above sea level on the quantitative and qualitative parameters of humus in mountain soils has been studied. It is shown that changes in the water and temperature conditions with the altitude do not exert significant effect on the humus content in mountain- forest soils, because the total amount of soil organic matter mainly depends on the composition and state of the vegetation cover. The humus content is the highest in meadow soils formed on mountain plateau with excessive moistening, which determines the formation of dense grass cover and the temperature regime favorable for humification. The percentage of Cha in the composition of Corg and the optical density of humic acids (HAs) are the qualitative parameters of the soil humus status changing with the altitude. The intensity of humus coloring of the soil depends on the content and optical density of HAs. A comparison of color intensity in the mountainous meadow chernozemlike soils and plain chernozems has shown its significant dependence on the hydrothermic conditions.  相似文献   

14.
The humus state of rainfed chernozems affected by local waterlogging was studied. The total humus content in the hydromorphic chernozems increases, as well as the content of fulvic acids, whereas the content of nonhydrolyzable residue (humin) decreases. A significant increase in the portions of the third fractions of humic and fulvic acids is observed. The role of the fine silt and clay fractions in the binding of humic substances increases in the lower horizons of locally hydromorphic soils. The increase in the content of fulvic acids (fulvatization) is mainly due to their predominance in the clay fraction. The latter is specified by the significant narrowing of the Cha-to-Cfa ratio, the lower content of the nonhydrolyzable residue, and the increased content of the clay-bound (3rd fraction) fulvic and humic acids. The composition of the humus in the fine silt fraction of the studied soils is characterized by an increased amount of humic acids of the second fraction with a decrease in the relative content of fulvic acids.  相似文献   

15.
The results of long-term studies of changes in the content and fractional-group composition of humus in leached chernozems (Luvic Voronic Chernozems, WRB 2006) of the Trans-Ural forest-steppe since the beginning of their plowing are considered. These soils are characterized by the high humus pool (up to 500 t/ha in the virgin state and up to 430 t/ha in the plowed state) and the high degree of the organic matter humification. Humus is of the fulvate–humate type in the upper 30 cm and of the humate–fulvate type in the deeper layers. From 1968 to 2006, the total pool of humus in the 1-m-deep soil layer of the plowed chernozems decreased by 8.5% in comparison with the initial virgin soils. The rate of dehumification reached 1.0–1.4 t/ha per year. The long-term plowing of leached chernozems also led to a smaller content of nitrogen in the organic matter (the C/N ratio increased from 11.5 to 13.6). The relative content of free humic acids (HA-1) and humic acids bound to clay minerals (HA-3) increased, whereas the content of calcium humates (HA-2) decreased. The composition of fulvic acids in the plow horizon was characterized by the rise in the content of aggressive (FA-1a) and mobile (FA-1) fractions, while the amount of fulvates bound to calcium (FA-2) decreased.  相似文献   

16.
The technique of separation of the spectral neighborhood of soil line (SNSL) makes it possible to perform quantitative estimates of the intensity of agricultural land use. This is achieved via calculation of the frequency of occurrence of bare soil surface (BSS). It is shown that the frequency of occurrence of BSS in 1984–1994 was linearly related to the soil type within the sequence of soddy strongly podzolic, soddy moderately podzolic, soddy slightly podzolic (Eutric Albic Glossic Retisols (Loamic, Aric, Cutanic, Differentic, Ochric)); light gray forest (Eutric Retisols (Loamic, Aric, Cutanic, Differentic, Ochric)), gray forest (Eutric Retisols (Loamic, Aric, Cutanic, Ochric)), and dark gray forest soils (Luvic Retic Greyzemic Phaeozems (Loamic, Aric)); podzolized chernozems (Luvic Greyzemic Chernic Phaeozems (Loamic, Aric, Pachic)) and leached chernozems (Luvic Chernic Phaeozems (Loamic, Aric, Pachic)). The intensity of exploitation of the least and most fertile soils in this sequence comprised 28 and 48%, respectively. In the next decade (1995–2004) the relationship between the type of soil and the intensity of its exploitation drastically changed; the intensity of exploitation of the leas and most fertile soils comprised 14 and 43%, respectively. Nearly a half of agricultural lands in the zones of soddy-podzolic and gray forest soils were abandoned, because the cultivation of the soils with the natural fertility below that in the podzolized chernozems became economically unfeasible under conditions of the economic crisis of the 1990s. The spatiotemporal relationships between the character of the soil cover and the intensity of exploitation of the agricultural lands manifest themselves by the decreasing frequency of occurrence of BSS from leached chernozems to soddy strongly podzolic soils and from 1985 to 2014.  相似文献   

17.
Data on radiocarbon ages of different fractions of humus (humic acids, fulvic acids, and humin) in the profiles of chernozems are analyzed. A chronoecological grouping of humus in modern and buried (fossil) soils is suggested. An increase in the radiocarbon age of humic substances down the soil profile has a stepwise character. It is shown that the 14C content in chernozems decreases down the soil profile more somewhat slower than the 12C content. The dependence of a decrease in the humus content of buried soils on the age of burying is traced for a time span of 800 ka.  相似文献   

18.
The development of forest-steppe and steppe chernozems on the Dniester-Prut interfluve in the Holocene was studied on the basis of data on the paleosols buried under archaeological monuments of different ages. The parameters of the mathematic models of the development of the soil humus horizons in different subtypes of chernozems were calculated. They were used to determine the rate of this process and the age of the soils formed on the surface of Trajan’s lower rampart. The climate-controlled changes in the character of the soil’s development in the Late Holocene were differently pronounced in the different subtypes of chernozems. The suggested differentiation of the trends in the development of the humus horizon in the studied chernozems corresponds to the differences in the soil-forming potential of particular areas (as judged from the energy consumption for pedogenesis).  相似文献   

19.
The soil cover of Tra-Tau and Yurak-Tau shikhans (monadnocks) has been examined. Leached and typical medium-deep chernozems are developed on colluvial fans on the footslopes and on the lower parts of slopes, whereas typical calcareous thin slightly and moderately gravelly chernozems are developed on the upper and medium parts of slopes. The leached and typical chernozems of the footslopes correspond to zonal soils of the adjacent plain areas, though they have some specific features related to the local topographic conditions. These soils are somewhat thinner than plain chernozems and are characterized by the perfect granular water-stable structure, the high content of humus of the humate type, the high content of exchangeable cations, strong acid-base buffering, and high enzymatic activity. These features predetermine their high tolerance towards technogenic impacts. The concentrations of highly hazardous substances of the first toxicity class (mercury, arsenic, lead, and cadmium) and of moderately hazardous substances of the second toxicity class (copper, zinc, and nickel), as well as the concentrations of low-hazardous elements (manganese and iron) in these soils do not exceed provisional maximum permissible concentrations of these substances in soils irrespectively of the slope aspect. No changes in the physicochemical and biological properties of the soils under the impact of technogenic loads from Sterlitamak industrial center have been identified.  相似文献   

20.
The results of long-term studies (1957–2007) of the changes in the morphology of soil profiles and in the reserves and fractional composition of the humus in the soils of the Ingulets irrigation system are discussed. After 50 years of irrigation, the boundaries of the genetic horizons shifted downward by 15–30 cm. The redistribution of the humus took place: its content decreased to a low level in the plow layer of the irrigated and rainfed soils and significantly increased in the layer of 60–100 cm so that the reserves of humus in the layer of 0–100 cm somewhat increased and corresponded to a moderate level. The distribution of humus in the soil profiles was characterized by the gradual lowering down the soil profile. The concentration of nitrogen in the humus of the irrigated southern chernozems was very low. The degree of humification of the soil organic matter was high. The humus was of the humate type in the upper horizons and of the fulvate-humate type in the lower horizons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号