首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Arbuscular mycorrhizal inoculation and composted residue application are being assayed to aid restoration of desertified areas under Mediterranean climate. The particular objective of the present study was to assess the short-term (8 months) effects on the initial stages of plant performance and on mycorrhizal propagule release, key factors to decide further developments in the restoration process. Mycorrhizal inoculation, with Glomus intraradices, was practised during nursery production of representative shrub species from Mediterranean ecosystems and composted residues were added to soil before transplanting to a desertified area in southern Spain. Pistacia lentiscus, Rhamnus lycioides, Olea europaea subsp. sylvestris and Retama sphaerocarpa, key species from the natural succession in the target area, were the test plants. Mycorrhizal inoculation, and in some cases compost addition, improved the ability for nutrient acquisition by plants upon transplanting in the field. The number of "infective" mycorrhizal propagules was higher in soil around mycorrhiza-inoculated shrubs than that around the corresponding non-inoculated controls. The organic amendment significantly increased propagule production in the rhizosphere of mycorrhiza-inoculated plants. The number of mycorrhizal spores was relatively low in soil around transplants, being hardly affected by treatments. Only three distinguishable glomalean spore morphotypes were found, belonging to the species Glomus geosporum, G. contrictum and Scutellospora calospora, with very few unidentified spores, corroborating the low diversity in degraded ecosystems. An increased development of the extramatrical AM mycelium was found in soil around the roots of the four mycorrhiza-inoculated test plants, probably the main source of AM fungal propagules in the ecosystem at this stage of plant development. In conclusion, the tailored AM inoculation assayed was functioning under field conditions to enhance nutrient acquisition by the target indigenous shrubs and, in interaction with organic amendments, promoted mycorrhizal propagule production in soil, critical factors to benefit further stages of the revegetation process.  相似文献   

2.
The effectiveness of reforestation programs on degraded soils in the Mediterranean region is frequently limited by a low soil availability and a poor plant uptake and assimilation of nutrients. While organic amendments can improve the nutrient supply, inoculation with mycorrhizal fungi can enhance plant nutrient uptake. A pot experiment was conducted in 2004 to study the influence of inoculation with an arbuscular mycorrhizal (AM) fungus (Glomus intraradices Schenck & Smith) or with a mixture of three AM fungi (G. intraradices, G. deserticola Trappe, Bloss. & Menge, and G. mosseae (Nicol & Gerd.) Gerd. & Trappe) and of an addition of composted sewage sludge or Aspergillus niger–treated dry‐olive‐cake residue on plant growth, nutrient uptake, mycorrhizal colonization, and nitrate reductase (NR) activity in shoot and roots of Juniperus oxycedrus L. Six months after planting, the inoculation of the seedlings with G. intraradices or a mixture of three AM fungi was the most effective treatment for stimulating growth of J. oxycedrus. There were no differences between the two mycorrhizal treatments. All treatments increased plant growth and foliar N and P contents compared to the control plants. Mycorrhizal inoculation and organic amendments, particularly fermented dry olive cake, increased significantly the NR activity in roots.  相似文献   

3.
A greenhouse experiment was conducted in a red sandy loam soil (Alfisol) to study the responses of arbuscular mycorrhizal (AM) fungus Glomus intraradices Schenck & Smith inoculated (M+) and uninoculated (M−) maize (Zea mays L) plants exposed to various levels of P (15 and 30 mg kg−1) and Zn (0, 1.25, and 2.5 mg kg−1). Roots and shoots were sampled at 55 and 75 days after sowing and assessed for their nutritional status, root morphology, and root cation exchange capacity (CEC) besides grain quality. Mycorrhizal plants had longer and more extensive root systems than nonmycorrhizal plants, indicating that M+ plants are nutritionally rich, especially with P, which directly assisted in the proliferation of roots. Further, root CEC of M+ plants were consistently higher than those of M− plants, suggesting that mycorrhizal colonization assists in the acquisition of nutrients from soil solution. Mycorrhizal inoculated plants had significantly (P ≤ 0.01) higher P and Zn concentrations in roots, shoots, and grains, regardless of P or Zn levels. The available Zn and P status of AM fungus-inoculated soils were higher than unioculated soils. The data suggest that mycorrhizal symbiosis improves root morphology and CEC and nutritional status of maize plants by orchestrating the synergistic interaction between Zn and P besides enhancing soil available nutrient status that enables the host plant to sustain zinc-deficient conditions.  相似文献   

4.
We compare the effect of arbuscular mycorrhizal (AM) colonization and PO4?3 fertilization on nitrate assimilation, plant growth and proline content in lettuce plants growing under well‐watered (?0.04 MPa) or drought (?0.17 MPa) conditions. We also tested how AM‐colonization and PO4?3 fertilization influenced N uptake (15N) and the percentage of N derived from the fertilizer (% NdfF) by plants under a concentration gradient of N in soil. Growth of mycorrhizal plants was comparable with that of P‐fertilized plants only under well‐watered conditions. Shoot nitrogen content, proline and nitrate reductase activity were greater in AM than in P‐fertilized plants under drought. The addition of 100 μg g?1 P to the soil did not replace the AM effect under drought. Under well‐watered conditions, AM plants showed similar (at 3 mmol N), greater (at 6 mmol N) or lesser (at 9 mmol N) %NdfF than P‐fertilized plants. Comparing a control (without AM inoculation) to AM plants, differences in % NdfF ranged from 138% (3 mmol N) to 22.6% (6 mmol N) whereas no differences were found at 9 mmol N. In comparison with P fertilization, mycorrhizal effects on %NdfF were only evident at the lowest N levels, which indicated a regulatory mechanism for N uptake in AM plants affected by N availability in the soil. At the highest N level, P‐fertilized plants showed the greatest %NdfF. In conclusion, AM symbiosis is important for N acquisition and N fertilizer utilization but this beneficial mycorrhizal effect on N nutrition is reduced under large quantities of N fertilizer.  相似文献   

5.
Arbuscular mycorrhizal fungi influence tomato competition with bahiagrass   总被引:2,自引:0,他引:2  
A strip-tillage production system for tomatoes (Lycopersicon esculentum Mill.) is impacted by nutrient competition from bahiagrass (Paspalum notatum Flügge). Tomato and bahiagrass differ in mycorrhizal responsiveness and our objective was to evaluate the influence of arbuscular mycorrhizal (AM) fungi on the competitive pressure of bahiagrass on growth of tomato. The first experiment evaluated the effect of bahiagrass competition, soil pasteurization, and AM fungal inoculation on tomato growth, P content, and root colonization in a low-P soil. Tomato grown alone was very responsive to mycorrhizal colonization - shoot dry mass of inoculated plants was up to 243% greater than that of noninoculated plants. Tomato grown with bahiagrass had reduced root and shoot growth across all treatments compared with tomato grown alone, but there was an increase in shoot mass following AM fungal inoculation across both pasteurized and nonpasteurized treatments resulting in a >50% increase in shoot dry mass of tomato compared to noninoculated controls. A second experiment was conducted to test bahiagrass competition, soil pasteurization, AM fungal inoculation, and P amendment on tomato growth in a moderate-P soil. With bahiagrass competition and no P addition, inoculation increased root mass by 115% and shoot mass by 133% in pasteurized soil; however, with the application of 32 mg P kg-1 the trend was reversed and inoculated plants were smaller than noninoculated controls. We conclude that the role of mycorrhizae in plant competition for nutrients is markedly impacted by soil nutrient status and reduced P application may allow tomatoes to take advantage of their inherent responsiveness to mycorrhizae in a low to moderate soil-P environment.  相似文献   

6.
To be sustainable, production in the traditional yam cropping system, faced with declining soil fertility, could benefit from yam–arbuscular mycorrhizal (AM) symbiosis, which can improve nutrient uptake, disease resistance, and drought tolerance in plants. However, only limited information exists about AM colonization of yam. A pot experiment was conducted to collect information on the response of two genotypes (Dioscorea rotundata accession TDr 97/00903 and D. alata accession TDa 297) to AM inoculation (with and without) and phosphorus (P) (0, 0.05, 0.5, and 5 mg P kg–1 soil). Factorial combinations of the treatments were arranged in a completely randomized design with four replicates. The percentage of AM colonization was significantly lowered at 5 mg P kg–1 soil rate in mycorrhizal plants of both genotypes. TDr 97/00903 showed more responsiveness to AM inoculation than TDa 297. The greatest AM responsiveness for tuber yield (52%) was obtained at 0.5 mg P kg–1 soil rate for TDr 97/00903. Mycorrhizal inoculation significantly increased root dry weight and tuber yield of TDr 97/00903 with the greatest values obtained at the 0.5 mg P kg–1 soil rate. Arbuscular mycorrhizal inoculation did not lead to significant (P < 0.05) changes in root length and area. Phosphorus application significantly increased the shoot dry weight and root diameter of TDa 297. Uptake of P was greatest at 0.5 mg P kg–1 soil in both genotypes and was significantly influenced by AM inoculation. Nitrogen (N) and potassium (K) uptake were greatest in mycorrhizal plants at 0.05 mg P kg–1 soil for TDr 97/00903 but at 0.5 mg P kg–1 soil of nonmycorrhizal plants of TDa 297. The increased tuber yield and nutrient uptake observed in the mycorrhizal plants indicate the potential for the improvement of nutrient acquisition and tuber yield through AM symbiosis.  相似文献   

7.
ABSTRACT

A pot experiment was conducted out to investigate the yield and pungency of spring onion (Allium fistulosum L.) as affected by inoculation with arbuscular mycorrhizal (AM) fungi and addition of nitrogen (N) and sulfur (S) fertilizers. Plants were inoculated with either Glomus mosseae or Glomus intraradices or grown as uninoculated controls. Two levels of N and S were applied to the soil in factorial combinations of 50 and 250 mg N kg?1 soil and 0 and 60 mg S kg?1 soil. Plants were grown in a greenhouse for 25 weeks and then harvested. Mycorrhizal colonization resulted in increased shoot dry weight, shoot-to-root ratio, shoot length, sheath diameter, and phosphorus (P) concentrations. Shoot dry-matter yield was significantly affected by added N, but not by S. Shoot dry weight increased with increasing N supply (except for non-mycorrhizal controls without additional S fertilizer). Shoot total S concentration (TSC), enzyme-produced pyruvate (EPY), and organic sulfur concentration (OSC) in plants inoculated with Glomus mosseae were significantly lower than those of non-mycorrhizal controls, while these parameters in plants inoculated with Glomus intraradices were comparable to or higher than in the controls. Neither N nor S supply affected shoot EPY or OSC, whereas shoot TSC (except in plants inoculated with Glomus mosseae) and SO4 2? concentrations were usually significantly increased by S supply. In soil of high S and low P availability, mycorrhizal colonization had a profound influence on both the yield and the pungency of spring onion.  相似文献   

8.
Mucuna pruriens was been used to control Imperata cylindrica and improve soil fertility in maize and cassava cropping systems in the derived savanna of the Benin Republic, West Africa. However, field observations showed that Mucuna had poor establishment in some farmers' fields. This could be due in part to the poor symbiotic effectiveness of Mucuna and/or its poor nutrition because of mineral deficiencies in the soil. A short-term survey was carried out in 34 farmers' fields located in four different sites (Zouzouvou, Eglime, Tchi, and Niaouli) in the derived savanna to assess the natural nodulation and mycorrhizal infection of Mucuna. This survey was followed by a nutrient-omission trial conducted in a pot experiment using soil collected from two groups of farmers' fields at Zouzouvou where Mucuna had poor establishment. Mycorrhizal infection ranged from 2 to 31% and correlated positively with nodulation and shoot dry matter production of plants grown only in one site at Zouzouvou. The number of rhizobia ranged between <0.05 (near the detection limit) and 15 cells g-1 soil depending on the plot history and the fields. Nodulation occurred in 79% of the fields with numbers of nodules ranging from 0 to 135 plant-1. The nutrient-omission trial showed that when N and P were absent in the complete fertilizer treatment, biomass production decreased significantly, on average by 69% (N) and 33% (P). Mg, S, K and micronutrient deficiencies did not reduce significantly the biomass production in the two groups. However, N fertilizer applied additionally each week to some treatments drastically reduced Mucuna nodulation. Strategies to enhance Mucuna establishment and growth are discussed.  相似文献   

9.
Five fodder crops, Zea mays, Medicago sativa, Trifolium alexandrinum, Avena sativa, and Sorghum vulgare were inoculated with a consortia of indigenous arbuscular mycorrhizal (AM) fungi in non-sterile PO43- deficient sandy loam soil amended with organic matter under field conditions. Shoot and root dry weights and total uptake of P and N of all the test plants were significantly increased by AM inoculation. Mycorrhizal inoculation increased yield in terms of shoot dry weight by 257% in T. alexandrinum followed by 50% in A. sativa, 28% in Z. mays, 20% in M. sativa and 6% in S. vulgare. Variation in dependence on mycorrhiza was observed among the fodder crops. T. alexandrinum showed a maximum dependence of 72% in contrast to 5.7% dependency in S. vulgare. Plant species showed differences in percentage AM colonization, with a high root infection recorded in Z. mays (76%). Spore production and infectious propagules (IP) were as high as 78 spores/IP g-1 and 103 spores/IP g-1 in S. vulgare. This study clearly indicates the potential of using indigenous AM inoculations in fodder crops grown in marginal soils along with in situ large-scale production of AM inocula.  相似文献   

10.
Lupine (Lupinus albus L.) has been cultivated as a food‐grain legume for more than 3,000 years. Persistent productivity occurs on low fertility soils within regions of drought and unfavorable temperature extremes. Distinctive rhizosphere characteristics of Proteaceae genera include development of determinate rootlet clusters termed proteoids. This unique morphology contributes to adaptive tolerance with soil‐climate duress prohibitive to most food Leguminosae. Objectives of this study were to determine tripartite components for mycorrhizal colonization and effective Rhizobium symbiosis with proteoid nodulation governing productivity, nitrogenase activity and subsequent nitrogen (N) fixation of Lupine. Highest nitrogenase activity levels with largest top growth, nodulation and seed yield resulted with mycorrhizal colonization plus calcium (Ca) treatments. Mycorrhizal colonization without soil fertility amendments resulted in higher yields and nodulation than all phosphorus (P), Ca, and potassium (K) soil fertility treatment combinations without mycorrhizae. Phosphorus+Ca soil additions were greater than either plant nutrient used separately without mycorrhizal colonization. Nodule histological determinants were highly correlated with governing cytosol enzyme activity levels. Nitrate reductase (NR)was significantly lower and phosphoenol‐pyruvate carboxylase (PEPC) was significantly higher with mycorrhizal colonization. Differences were not significant for cytosol components of amine‐amide N, aspartate transaminase (AST), glutamate dehydrogenase (GDH), glutamine syn‐thetase (GS) and glutamate oxoglutarate transaminase (GOGAT).  相似文献   

11.
Harvester ants are important disturbance agents across western North America, but the effects of ant disturbances on soils may vary considerably with topography and land use. We examined how soil properties and arbuscular mycorrhizal (AM) fungi in harvester ant nests varied across spatial scales according to topography, grazing regime and region. Soils from undisturbed areas were compared with nest disturbances created by two species of harvester ants, Pogonomyrmex occidentalis on shortgrass steppe in Colorado and P. rugosus on Chihuahuan desert grassland in New Mexico, in 1996 and 1997. Nests of both ant species were enriched with NO3--N, total P and roots colonized by AM fungi. Soil moisture was higher in P. rugosus' nests and lower in P. occidentalis' nests compared to surrounding areas. Soil pH was consistently lower in ant nests. Broad-scale factors such as grazing, topography and site affected most soil properties in and away from ant nests. Site exerted a strong influence on soil organic matter, pH and moisture. Within sites, topography had a significant affect on pH. Mycorrhizal colonization was influenced by site and topography in 1996 only, a substantially wetter year at both sites. Lastly, nutrient levels were largely determined by the fine-scale effects of ant disturbances. Principal components analysis revealed that, after removing site-level effects, harvester ants have similar functional roles in creating soil heterogeneity in these two different semiarid ecosystems.  相似文献   

12.
ABSTRACT

Arbuscular mycorrhizal (AM) fungi can improve plant phosphorus (P) uptake; however, information about how AM fungi affect rhizosphere organic acid and microbial activity to alleviate citrus low P stress is limited. Here, a pot experiment was conducted to evaluate the effect of AM fungi (Rhizophagus intraradices, Ri) inoculation on rhizosphere organic acid content, microbial biomass (MB) and enzyme activity of trifoliate orange (Poncirus trifoliata L. Raf.) seedlings grown under three low P conditions. The results showed that mycorrhizal seedlings all recorded higher P concentrations, plant biomass and better root morphology with more lateral and fine roots, but lower root mass ratios, irrespective of P conditions. Mycorrhizal P absorption contribution did not differ significantly among three P conditions. Mycorrhizal seedling rhizosphere soil exhibited lower organic acid content, soil organic P content and ratio of MB-carbon (C)/MB-P, but higher MB and enzyme activity. Additionally, the main organic acids showed a negative relationship with mycorrhizal colonization rate and hyphal length; however, phosphatase and phytase activity had a significantly positive relationship with MB. Therefore, the results suggest that AM fungi inoculation may help citrus to efficiently utilize organic P source by improving microbial activity under low available P conditions.  相似文献   

13.
A pot experiment was conducted to investigate the effect of epigeic earthworm (Eisenia fetida) and arbuscular mycorrhizal (AM) fungi (Glomus intraradices) on soil enzyme activities and nutrient uptake by maize, which was grown on a mixture of sterilized soil and sand. Maize plants were grown in pots inoculated or not inoculated with AMF, treated or not treated with earthworms. Wheat straw was added as a feed source for earthworms. Mycorrhizal colonization of maize was markedly increased in AM fungi inoculated pots and further increased by addition of epigeic earthworms. AM fungi and epigeic earthworms increased maize shoot and root biomass, respectively. Soil acid phosphatase activity was increased by both earthworms and mycorrhiza, while urease and cellulase activities were only affected by earthworms. Inoculation with AM fungi significantly (p?<?0.001) increased the activity of soil acid phosphatase but decreased soil available phosphorus (P) and potassium (K) concentrations at harvest. Addition of earthworms alone significantly (p?<?0.05) increased soil ammonium-N content, but decreased soil available P and K contents. AM fungi increased maize shoot weight and root P content, while earthworms improved N, P, and K contents in shoots. AM fungi and earthworm interactively increased maize shoot and root biomass through their regulation of soil enzyme activities and on the content of available soil N, P, and K.  相似文献   

14.
Neem (Azadirachta indica A. Juss) seedlings were inoculated with arbuscular mycorrhizal (AM) fungi, Glomus intraradices Schenck and Smith and G. geosporum (Nicol. and Gerd.) Walker, Azospirillum brasilense, and phosphate-solubilizing bacteria (PSB) individually or in various combinations in unsterile soil under nursery conditions. Seedlings were harvested at 60 and 120 days after transplantation. Microbial inoculation resulted in increased mycorrhizal colonization, greater plant height, leaf area and number, root collar diameter, biomass, phosphorus, nitrogen and potassium content, and seedling quality. Inoculated seedlings also had low root/shoot ratios and low nutrient utilization efficiencies. Populations of PSB declined with seedling growth; contrarily populations of A. brasilense increased. A. brasilense and PSB populations were related to each other and influenced root colonization by AM fungi. Microbial inoculation effects were greatest when seedlings were inoculated with a combination of microbes rather than individually. This clearly indicates that these microorganisms act synergistically when inoculated simultaneously, with maximum response being when both AM fungi were coinoculated with A. brasilense and PSB. The results emphasize the importance of microbial inoculations for the production of robust, rapidly growing seedlings in nurseries and illustrate the advantage of inoculating soils of a low microbial population with indigenous microbes.  相似文献   

15.
A field experiment was carried out to compare the effectiveness of inoculation with three arbuscular mycorrhizal (AM) fungi, namely Glomus intraradices Schenck & Smith, Glomus deserticola (Trappe, Bloss. & Menge) and Glomus mosseae (Nicol & Gerd.) Gerd. & Trappe, and the addition of Aspergillus niger‐treated dry olive cake (DOC) in the presence of rock phosphate, in increasing root nitrate reductase (NR) and acid phosphatase activities, mycorrhizal colonization, plant growth and nutrient uptake in Dorycnium pentaphyllum L. seedlings afforested in a semiarid degraded soil. Three months after planting, both the addition of fermented DOC and the mycorrhizal inoculation treatments had increased root NR activity significantly, particularly the inoculation with G. deserticola (by 75 per cent with respect to non‐inoculated plants), but they had no effect on root acid phosphatase. Mycorrhizal inoculation treatments with G. deserticola or G. mosseae on their own were even more effective than the addition of fermented DOC alone in improving the growth and (NPK) foliar nutrients of D. pentaphyllum plants. The combined treatment involving the application of microbially‐treated agrowastes and mycorrhizal inoculation with AM fungi, particularly with G. mosseae, can be proposed as a successful revegetation strategy for D. pentaphyllum in P‐deficient soils under semiarid Mediterranean conditions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
The aim of this experiment was to evaluate the impact of colonization with arbuscular mycorrhizal (AM) fungus Glomus constrictum on the biomass production, flower quality, chlorophyll content, macronutrients and heavy metals content of marigold (Tagetes erecta L.) planted under uncontaminated soil and watered with various rates of sewage water. Sewage water utilization significantly decreased biomass production, characters of flower, nutrient concentration and rates of mycorrhizal colonization of mycorrhizal (M) and non-mycorrhizal (NM) marigold as compared to control untreated plants especially at the higher rates, but the reduction rate was proportionally higher in non-AM treatments. Mycorrhizal plants had significantly greater yield, relative chlorophyll content, leaf area, flower quality and element (P, N, K and Mg) content compared to non-inoculated marigold plants irrigated with or without sewage water. Furthermore, AM inoculation had highly decreased heavy metal (Zn, Co, Mn, Cu) content in tissues as compared to equivalent non-inoculated plants grown under sewage water application. Growing marigold with AM inoculum can reduce toxicity of heavy metals and enhance biomass production and P uptake. The results support the view that AM have a protective function for the host plant, hence playing a potential function in soil polluted immobilization processes, and thus are of assessing the potential of phytoremediation of heavy metals in sewage water contaminated soil.  相似文献   

17.
The addition of plant residues and the appropriate management of arbuscular mycorrhizal (AM) symbioses have been tested in an acidic soil, an Andisol from Southern Chile, to ascertain whether these agro-technologies help plants to withstand potential mineral deficiency and the toxicities inherent to the low pH conditions. Firstly, the effects of legume (lupine) and non-legume (wheat) crop residues on some key root-soil interface activities (including AM development), on mineral acquisition by the plants, and on the yield of wheat growing in the test Andisol were investigated in a pot experiment under greenhouse conditions. Both lupine and wheat residues were added at a rate equivalent to 300 g m-2 to the natural soil. These organic amendments increased soil pH (wheat more than lupine), P availability and AM development (lupine more than wheat), plant performance and mineral acquisition (wheat more than lupine). Because of an increase in mycorrhizal activity, which appeared to be involved in the effect of the added crop (particularly lupine) residues, the role of the AM symbiosis was further investigated in a tailored inoculation assay, using a selected AM fungus (Glomus etunicatum), in interaction with lupine and wheat residues. A significant effect of AM inoculation on the reduction of Zn and Cu, and Mn and Al acquisition was demonstrated, which could be of interest in acid soils with regard to potential toxicity problems.  相似文献   

18.
Arbuscular mycorrhizas (AM) play an important role in plant P and Zn nutrition; however, relatively few studies have directly investigated the interactive effects of these nutrients on plants. Therefore, we undertook a glasshouse experiment to study the effects of Zn and P on AM formation and functioning. A mycorrhiza defective tomato mutant (rmc) and its mycorrhizal wild-type progenitor (76R) were used in this experiment. Plants were grown in soil amended with five Zn concentrations, ranging from deficient to toxic, and two levels of P addition. The addition of Zn and P to the soil over a range of concentrations had profound effects on plant growth and nutrition and mycorrhizal colonization. Mycorrhizal benefits were the greatest when plants were grown under low soil P and Zn. Furthermore, the effect of soil Zn supply on plant growth, nutrition, and AM colonization was strongly influenced by the concentration of P in the soil. Thus, studies of AM and Zn (or other nutrients of interest) should take into account the impact of soil P concentration on the role of AM in plant Zn acquisition, under both deficient and toxic soil Zn concentrations.  相似文献   

19.
《Applied soil ecology》2007,35(2):423-431
This study investigated how two different N sources used as fertilizer (NO3 or NH4+) interact with an inoculated arbuscular mycorrhizal (AM) fungus (Glomus etunicatum) in an Andisol from southern Chile. The effect of NO3 or NH4+ on mycorrhizal and non-mycorrhizal wheat plants was measured on key root–soil interface activities: pH, acid phosphatase (P-ase) activity and P availability. Root AM colonization, extraradical mycelium length and spore number were also examined at three stages of AM symbiosis development (120, 150 and 240 days after sowing, DAS). The effect of N-source on AM propagule formation was used as an index of the quality and vigor of AM colonization. Mycorrhizal root length was greater with NO3 than with NH4+ at all times. The NO3 source also improved extraradical mycelium density, which reached its maximum at 150 DAS. At each harvest the spore number in the rhizosphere soil was also greater with NO3 fertilization. This NO3 effect on spore formation ranged from 20% at a 120 DAS to 287% at a 240 DAS increase, compared with NH4+. Extraradical mycelium and AM efficiency for P acquisition appeared to be related. The particular fungus/plant metabolism as affected by N sources (NO3 or NH4+) applied did not result in differential plant growth or in changes in N plant acquisition, but affected AM development and activity. Differences in soil pH, available P or P-ase activity in soil seems not to be responsible for the improved physiological status of mycorrhizal development in NO3 fed plants. Mycorrhizal propagule formation in this soil and the high persistence of extraradical mycelium are important factors which may have a strong influence on the next crop, and thus, this aspects should be considered when a cropping system is designed. The influence of N sources on AM performance is of ecological and practical interest in volcanic soils when conventional management is used.  相似文献   

20.
The present study was conducted to investigate the growth response of Ceriops tagal Perr.) C.B. Robinson a mangrove species belonging to the family Rhizophoraceae. Three dominant native arbuscular mycorrhizal (AM) fungal species viz., Rhizophagus clarus, R. intraradices, and Acaulospora laevis were selected. The results revealed that the Mycorrhizal Plant Responsiveness (MGR) was greater in AM inoculated plants compared to control plants. Among AM fungal treatments, plants inoculated with R. clarus recorded significant increase in growth responses compared to remaining AM treatments. The study suggests that R. clarus was the most efficient AM species exhibiting greater influence on growth and biomass. Differences in growth parameters between AM inoculated treatments and control are reasonably linked to colonization levels. The result of the present study indicates that potential native AM fungal species can be use in mangrove reforestation programs as bio-inoculum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号