首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six dryland pastures were established at Lincoln University, Canterbury, New Zealand, in February 2002. Production and persistence of cocksfoot pastures established with subterranean, balansa, white or Caucasian clovers, and a perennial ryegrass‐white clover control and a lucerne monoculture were monitored for nine years. Total annual dry‐matter (10.0–18·5 t DM ha?1) and sown legume yields from the lucerne monoculture exceeded those from the grass‐based pastures in all but one year. The lowest lucerne yield (10 t ha?1 yr?1) occurred in Year 4, when spring snow caused ungrazed lucerne to lodge and senesce. Cocksfoot with subterranean clover was the most productive grass‐based pasture. Yields were 8·7–13·0 t DM ha?1 annually. Subterranean clover yields were 2·4–3·7 t ha?1 in six of the nine years which represented 26–32% of total annual production. In all cocksfoot‐based pastures, the contribution of sown pasture components decreased at a rate equivalent to 3·3 ± 0·05% per year (R= 0·83) and sown components accounted for 65% of total yield in Year 9. In contrast, sown components represented only 13% of total yield in the ryegrass‐white clover pastures in Year 9, and their contribution declined at 10·1 ± 0·9% per year (R= 0·94). By Year 9, 79% of the 6.6 t ha?1 produced from the ryegrass‐white clover pasture was from unsown species and 7% was dead material. For maximum production and persistence, dryland farmers on 450–780 mm yr?1 rainfall should grow lucerne or cocksfoot‐subterranean clover pastures in preference to ryegrass and white clover. Inclusion of white clover as a secondary legume component to sub clover would offer opportunities to respond to unpredictable summer rainfall after sub clover has set seed.  相似文献   

2.
Five binary perennial grass/white clover (Trifolium repens, cv. Menna) mixtures were evaluated over a 3-year period under continuous sheep stocking together with the imposition of a rest period for either an early or a late conservation cut; the experiment with plot sizes of 0·16 ha was replicated three times. The grass species and cultivars used were Merlinda tetraploid and Magella diploid perennial ryegrass (Lolium perenne), Prairial cocksfoot (Dactylis glomerata), Rossa meadow fescue (Festuca pratensis) and Goliath timothy (Phleum pratense). The greatest total lengths of white clover stolon developed in the meadow fescue (171·6 m m?2) and timothy (151·9 m m?2) associations compared with those in tetraploid perennial ryegrass (98·6 m m?2), diploid perennial ryegrass (91·9 m m?2) and cocksfoot (74·6 m m?2) (s.e.d. 16·4, P < 0·001). On average, the proportion of white clover stolon that was buried was between 0·86 and 0·89 and this was more abundant in late than early season. Whereas timothy persisted, the persistence of meadow fescue was low under any of the managements tested and this was markedly reduced by the third grazing season. In the diploid perennial ryegrass sward, a late June to early August rest period for conservation enhanced white clover stolon length. An early April to late May rest period greatly reduced total white clover stolon length in both diploid perennial ryegrass and tetraploid perennial ryegrass associations (diploid perennial ryegrass-unrested 89 m m?2, early rest 56·1 m m?2, late rest 130·7 m m?2; tetraploid perennial ryegrass - unrested 125·1 m m?2, early rest 71 m m?2, late rest 99·7 m m?2; s.e.d. 19·19, P < 0·001). The numbers of white clover stolon growing points per unit stolon length were greatest when the sward was rested during late June to early August ?55·9 m?1 stolon length compared with 45·7 m?1 for an April to late May rest and 46 m?1 in the absence of a rest (s.e.d. 2·59, P < 0·001). Likewise, the percentage of stolon above ground was greatest with the late June to early August rest ?15·78% compared with 10·61% for the April to late May rest and 7·69% for no rest (s.e.d. 1·569, P < 0·001). The complementary percentages of buried stolon indicate the important role this fraction has and the need to study stolon behaviour in grazing studies generally. It is concluded that, in relation to perennial ryegrass as a companion grass, meadow fescue and timothy allow better white clover development and cocksfoot less. However, other attributes have to be considered, for example the poor persistence of meadow fescue and the slower regrowth of timothy, both of which allow the invasion of weed grasses, or the lower acceptability of cocksfoot to livestock. The timing of the rest period before the conservation cut can influence white clover development considerably, but the effects differed with different companion grasses.  相似文献   

3.
The high nutritive value and persistence under a wide range of climatic and soil fertility conditions make Caucasian clover a potentially useful forage legume but there is little information about the performance of livestock grazing Caucasian clover/grass swards. This study compared liveweight gains of lambs grazing Caucasian clover/perennial ryegrass and white clover/perennial ryegrass swards on high fertility (Olsen P 20 mg L?1, SO4‐S 12 mg kg?1) and low fertility (Olsen P 11 mg L?1, SO4‐S 7 mg kg?1) soils from 1998 to 2001 in the South Island of New Zealand. Mean annual liveweight gains were 1178 kg ha?1 for Caucasian clover/perennial ryegrass and 1069 kg ha?1 for white clover/perennial ryegrass swards at high fertility compared with 1094 kg ha?1 and 1015 kg ha?1, respectively, at low fertility. There was a higher mean proportion of clover in Caucasian clover/perennial ryegrass (0·19) than white clover/perennial ryegrass (0·11) swards, but there were no differences in total herbage production between the two clover/perennial ryegrass swards. The mean concentration of crude protein in the herbage of Caucasian clover (302 g kg DM?1) was higher than that in white clover (287 g kg DM?1) and grass herbage (227 g kg DM?1). Estimated mean metabolizable energy concentrations in the herbage were 12·5 MJ kg DM?1 for the two clovers and 11·6 MJ kg DM?1 for grass herbage. The difference in liveweight gain between swards on soils of high and low fertility was associated with an increase in total herbage production of similar composition and nutritive value, giving a greater number of grazing days for the swards on soils of high than low fertility.  相似文献   

4.
Seedling competition for resources during establishment affects the potential success of individual species within a pasture. Germination, emergence and leaf expansion are key characteristics that contribute to the competitive ability of species. In this study, development and growth characteristics of Caucasian clover, white clover and perennial ryegrass (PRG) seedlings were quantified. A base temperature of <4°C and an optimum temperature of ~27°C were found for development in each species. Thermal time (Tt) requirements for 75% of final germination were lower for Caucasian clover (46°C d) and white clover (40°C d) than for PRG (76°C d), but Tt requirements for 50% of final emergence were similar (~110°C d). The phyllochron (°C d leaf?1) for primary stem leaves was slower for Caucasian clover (109°C d) than for white clover (94°C d) and PRG (101°C d). Appearance of the first PRG tiller, which indicates the initiation of secondary leaf development, occurred after 373°C d, compared with 532°C d for the first white clover stolon. Caucasian clover crown shoots did not develop until >1180°C d. Consequently, white clover and PRG had more leaves (~15 plant?1) and faster shoot relative growth rates (~0·062 mg mg?1 d?1) than Caucasian clover (5 leaves plant?1, 0·049 mg mg?1 d?1).  相似文献   

5.
Results for years 4–8 of a long-term grazing experiment on swards of a diploid perennial ryegrass (Lolium perenne), var. Contender (D swards), a tetraploid ryegrass, var. Condesa (T swards) and Condesa with S184 white clover (Trifolium repens) (TC swards), direct sown in May 1987, are presented. The swards were continuously stocked with sheep from 1988 to 1990, as previously reported, and for a further 5 years, 1991–95, at a target sward surface height (SSH) of 4–6 cm. Control of sward height was successfully achieved by variable stocking, except in 1993 when paddocks were set stocked and the resulting mean SSH was 9·3 cm. Grass swards received on average 160 kg N ha?1 year?1; grass/clover swards were mainly not fertilized with N with the exception that they were given 30 kg N ha?1 as a remedial mid-summer application during a period of low herbage mass on offer in 1994 and 1995. Mean white clover content of the swards fell from 18·2% of herbage dry-matter (DM) in 1992 to 8·5% in 1993, whereas stolon lengths fell from 120 to 58 m m?2. A return to lower sward heights in 1994–95 resulted in an increase in white clover content to 12·8% by the final sampling in August 1995. Perennial ryegrass content of the grass swards remained high throughout (mean 96·7% in 1995). Perennial ryegrass tiller densities recorded in August 1991, 1993 and 1994 showed consistently significant (P < 0·001) sward differences (3-year mean 16 600, 13 700 and 10 100 perennial ryegrass tillers m?2 for the D, T and TC swards). In 1994, the year after lax grazing, a low perennial ryegrass tiller density (9100 m?2) and low white clover content (mean 4·3%) in the TC swards resulted in a much lower herbage bulk density than in the grass swards (April–July means 72, 94 and 44 kg OM ha?1 cm?1 for the D, T and TC swards). There was a consistent 40 g d?1 increase in lamb liveweight gain on the TC swards over the T swards, except in 1994. In that year there was a reduction in lamb liveweight gain of 33 g d?1 on the TC swards and a significant increase in ewe liveweight loss (117 g d?1) associated with low herbage bulk density despite optimal sward height. Lamb output (kg liveweight ha?1) on TC swards reflected white clover content, falling from a similar output to that produced from grass given 160 kg N ha?1, at 18% white clover DM content, down to 60% of grass + N swards with around 5% clover. A 6% greater output from the T than the D swards was achieved mainly through higher stocking rate. The experiment demonstrated a rapid, loss in white clover under lax grazing, and showed that the relationship between performance and sward height is also dependent on herbage density. High lamb output from a grass/clover sward was only achieved when the clover content was maintained at 15–20% of the herbage DM.  相似文献   

6.
The combined benefits of a high crude protein concentration, and possible protein protection and growth‐promoting properties, make forage legumes potentially attractive as a natural means of increasing liveweight gain and time to slaughter of lambs in lamb finishing systems. An experiment was conducted to compare the production performance and meat quality of grazing lambs finished on red clover (Trifolium pratense), lucerne (Medicago sativa) or perennial ryegrass (Lolium perenne) swards. Replicate (n = 2) swards of red clover, lucerne and perennial ryegrass were rotationally grazed by ten ram lambs and ten ewe lambs from weaning until selection for slaughter at UK fat class 3L. Lambs grazing the red clover sward had a significantly higher liveweight gain and required significantly fewer days to slaughter than lambs grazing the lucerne sward (305 g d?1 vs. 243 g d?1; 38 d vs. 50 d), which in turn had a higher liveweight gain and required fewer days to slaughter than lambs grazing the perennial ryegrass sward (184 g d?1; 66 d). Lambs grazing the red clover and lucerne swards had significantly higher herbage intakes than those grazing the perennial ryegrass sward (2·06, 1·72 and 1·16 kg DM d?1 respectively), but in vivo digestibility of herbage was similar. Lambs grazing the red clover and lucerne swards also had significantly higher serum urea concentrations than those grazing ryegrass (12·5, 11·1 and 6·2 mmol L?1 respectively). Killing‐out percentage was significantly higher for lambs grazing the red clover sward than for lambs grazing the perennial ryegrass sward (48% vs. 46%). There were no significant effects of finishing system on meat flavour, but meat from lambs finished on the lucerne sward was oxidatively less stable than that from lambs finished on the perennial ryegrass sward. Grazing the forage legume swards significantly increased the proportion of linoleic and linolenic acid in muscle tissue, and therefore the proportion of unsaturated to saturated fatty acids (0·19, 0·16 and 0·12 for the red clover, lucerne and perennial ryegrass swards respectively). However, the n?6/n?3 ratio was significantly lower for the muscle of lambs grazing the perennial ryegrass sward compared with those grazing the forage legume swards (1·13, 1·08 and 0·98 for the red clover, lucerne and perennial ryegrass swards respectively). The results indicate that by grazing lambs on forage legume swards it is possible to increase individual lamb performance without compromising meat quality.  相似文献   

7.
Berseem clover (Trifolium alexandrinum L.) was sown as an intercrop with oats (Avena sativa L.) at 0, 30, 60, 90 and 240 oats plants m?2 in May in 1999 and 2000 in Alberta, Canada. Forage yield and quality were measured at 10‐d intervals between 35 and 88 d after planting (DAP). Yield is defined as the biomass above 6 cm of the soil surface. The dry‐matter (DM) yield of berseem clover in sole crops increased by 5–10 g m?2 d?1 between 35 and 55 DAP and then increased by 21–28 g m?2 d?1 between 55 and 75 DAP. The DM yields of oats sown at 240 plants m?2 increased by 26–28 g m?2 d?1 over the whole period from 35 to 75 DAP. Oats were the dominant component in the intercrops, even at low densities of oats. Berseem clover grown with 60 oats plants m?2 received only 0·24 of the incident light when shading by oats peaked at 65 DAP. DM yields of berseem clover in intercrops with 60 oats plants m?2 averaged 0·14–0·32 of the yields of berseem clover sole crops. Between 35 and 88 DAP in 2000, the crude protein (CP) concentration of berseem clover sole crops declined linearly from 310 to 180 g kg?1 DM, and the CP concentration of oats exhibited a quadratic response, declining from 350 g kg?1 DM at tillering to 110 g kg?1 DM at the soft dough stage. The mean CP concentration of berseem clover in intercrops with 60 oats plants m?2 was 25 g kg?1 less than in berseem clover sole crops, indicating that competition by oats reduced the CP concentration of berseem clover. At later sampling dates, CP and DM yields of intercrops with oats at 60 plants m?2 equalled those with oats at 240 plants m?2. The addition of berseem clover to oats in intercrops at 60 oats plants m?2 reduced the neutral‐detergent fibre concentration by 30 g kg?1 DM compared with oats alone. Oats were very competitive as a companion crop for berseem clover. Adding berseem clover to oats increased forage quality and may provide for increased intake and digestibility of forage to support higher livestock productivity.  相似文献   

8.
To investigate the effect of sward height on liveweight change in goats grazing grass/white clover swards, an experiment was conducted from mid-August to mid-November with groups of non-lactating female cashmere goats that continuously grazed perennial ryegrass (Lolium perenne)/white clover (Trifolium repens) swards. Three replicated different sward height treatments — 10–8 cm (high), 7–5 cm (medium) and 5–3 cm (low) — were used to examine the effects on the competitive ability of grass and clover components within the sward canopy and their effect on liveweight. The pasture after grazing by goats had relatively higher ryegrass leaf (+0·26, high; +0·32, medium; and +0·18, low) and lower dead ryegrass proportions (?0·28, high; ?0·23, medium; and ?0·18, low) than at the beginning of the experiment, whereas the white clover fraction in the sward remained constant (+0·04, high; ?0·02, medium; and +0·03, low). Higher proportions of the white clover leaf lamina and petiole were found near the top of the sward canopy and were negatively correlated with the rate of liveweight gain by goats (P < 0·05). Goats gained 50·2 g Live weight (LW) d?1 on the tallest treatment (high) but lost 0·01 and 42·3 g LW d?1 on the medium and low sward height treatments respectively (s.e.d. 13·21, P < 0·001). Liveweight changes that occurred between sampling periods were also correlated (R2= 0·858, P < 0·001) with changes in the mean sward height and proportion of white clover lamina-petiole at the sward surface in relation to the proportion found within the whole sward. These results suggest that goat liveweight gains would be increased if another species was introduced to reduce the white clover proportion in the surface horizon.  相似文献   

9.
Nitrogen (N), accumulating in stubble, stolons and roots, is an important component in N balances in perennial ryegrass–white clover swards, and the effects of cutting frequency on the biomass of above‐ and below‐harvest height were studied during two consecutive years. Total dry matter (DM) and total N production, and N2 fixation, were measured at two cutting frequencies imposed in the summers of two years either by cutting infrequently at monthly intervals to simulate mowing or by frequent cutting at weekly intervals to simulate grazing. Total DM production harvested was in the range of 3000–7000 kg DM ha?1 with lower DM production associated with the frequent cutting treatment, and it was significantly affected by the different weather conditions in the two years. The higher cutting frequency also reduced the biomass below harvest height but the different weather conditions between years had less effect on stubble and, in particular, biomass of roots. The biomass of roots of white clover was significantly lower than that of roots of perennial ryegrass and remained at a relatively constant level (200–500 kg DM ha?1) throughout the experiment, whereas the biomass of perennial ryegrass roots increased from 2400 kg DM ha?1 in the year of establishment to 10 200 kg DM ha?1 in the infrequent cutting treatment and 6650 kg DM ha?1 in the frequent cutting treatment by the end of the experiment, giving shoot:root ratios of 4·7–16·6 and 0·5–1·6 for white clover and perennial ryegrass respectively. Annual N2 fixation was in the range of 28–214 kg N ha?1, and the proportion of N fixed in stolons and roots was on average 0·28. However, as weather conditions affect the harvested DM production and the shoot:root ratio, care must be taken when estimating total N2 fixation based on an assumed or fixed shoot:root ratio.  相似文献   

10.
The n-alkane technique for estimating herbage intake and diet selection in dairy cows fed perennial ryegrass (Lolium perenne)/white clover (Trifolium repens) herbages was evaluated. Pairs of animals were offered either 8, 10, 12 or 14 kg dry matter (DM) d?1 of herbage alone or with 2 kg DM d?1 of barley. Fresh herbage was cut daily from a perennial ryegrass/white clover sward and the appropriate amount was fed in four feeds during the day. Individual intakes and the white clover proportion of the diet were estimated during a 12-d period using the n-alkane technique. Animals were dosed twice daily with paper pellets containing dotriacontane (C32-alkane). Faecal grab samples were collected after the morning and afternoon milking. Three least-squares optimization methods were compared in calculating the white clover proportion in the diet; then, total DM intake was calculated. The different least-squares optimization methods gave similar predictions of the white clover content of the forage consumed. No significant (P < 0.05) effects of sampling routine, concentrate (barley) fed or interactions between the two were detected with respect to the difference between calculated and actual intake, the difference as a proportion of the total intake and estimated white clover content of the diet. The difference between the calculated and actual intake ranged from 139 to 366 g DM d ?1, which resulted in a proportional difference ranging from 0.004 to 0.02 depending on sampling routine. The actual white clover content of the herbage mixture fed was 0.42 ± 0.008, whereas the estimated white clover content ranged from 0.41 ± 0.006 to 0.43 ± 0.008. The results suggest that accurate herbage intake estimates can be achieved in dairy cows grazing perennial ryegrass/white clover swards if representative samples from herbage consumed can be collected.  相似文献   

11.
The aim was to study the effects of white clover cultivar and combinations with perennial ryegrass cultivars on seedling establishment in autumn‐sown swards and on winter survival of seedlings. Large‐leaved white clover cv. Alice and small‐leaved white clover cv. Gwenda, and an erect and a prostrate perennial ryegrass cultivar were sown in autumn in pure stands and as four binary grass‐clover mixtures. Mixtures of white clover cv. Huia and Aberherald with perennial ryegrass were also sown. Companion grasses had no significant impact on the establishment of white clover. The number of seedlings of white clover cv. Alice in mixtures (335 m?2) was higher than cv. Gwenda (183 m?2) and pure swards had similar white clover population densities as mixed swards. White clover cv. Huia tended to have more seedlings than Aberherald (355 and 205 m?2 respectively). No stolons were produced prior to a severe winter, because of the late sowing date. Winter survival of clover seedlings was 0·56 in mixtures and 0·69 in pure stands, irrespective of white clover or companion grass cultivar. Stolon development of white clover in autumn is often considered essential for overwintering survival and spring growth. In this study, there was considerable survival of the non‐stoloniferous tap‐rooted seedlings of all four clover cultivars despite a severe winter.  相似文献   

12.
In a small-plot trial five grass varieties bromegrass cv. Grasslands Matua, perennial ryegrass CVS. Melle (diploid) and Bastion, Condesa and Meltra (tetraploid) were established as grass/white clover swards with white clover cv. Menna. Productivity was measured under 6-weekIy cutting both without N fertilizer (No) and with 100 kg N ha?1 applied in spring (N100) Evaluation was made over 2 harvest years, 1986–87. Total mean annual production of herbage dry matter (DM) in the first harvest year at No and No was 5·07 t ha?1 and 6·93 t ha?1 respectively. In year 2, corresponding values were 11·81 and 12·67 t ha?1. In year 1, Matua swards at No and N100 yielded 5·08 and 6·65 t DM ha?1 compared with 507 and 70 t DM ha?1 for the mean of the four ryegrass varieties. In year 2, corresponding values were 12·90 and 12·29 for Matua and 11·54 and 12·78 for the four ryegrasses. In year 1, the digestable organic matter in the dry matter (DOMD) of the Matua swards was lower than that of Melle, Bastion and Condesa at NO, particularly at the first cut. In year 2, differences in DOMD between treatments and varieties were not significant. The proportion of white clover was found to be higher in the No than the N100 treatment, and also higher in year 2 in most treatments. For the No treatment Matua swards had the highest proportion of white clover in year 1 (32% compared with 24% for the mean of the ryegrass varieties) but the lowest proportion in year 2 (27% compared with 60% for the ryegrasses). For the No treatment in year 1 clover production was also 43% higher, on average, from the tetraploid treatments than with Melle as the companion grass; for this comparison in year 2 the differences were not significant. It is concluded that Matua bromegrass/white clover swards receiving no N fertilizer may have a good potential under cutting management. However, the evidence from this trial is that in the second year the proportion of white clover is lower with Matua swards than with perennial ryegrass as the companion grass.  相似文献   

13.
The benefits of white clover (Trifolium repens L.) in pastures are widely recognized. However, white clover is perceived as being unreliable due to its typically low content and spatial and temporal variability in mixed (grass‐legume) pastures. One solution to increase the clover proportion and quality of herbage available to grazing animals may be to spatially separate clover from grass within the same field. In a field experiment, perennial ryegrass (Lolium perenne L.) and white clover were sown as a mixture and compared with alternating strips of ryegrass and clover (at 1·5 and 3 m widths), or in adjacent monocultures (strips of 18 m width within a 36‐m‐wide field). Pastures were stocked by ewes and lambs for three 10‐month grazing periods. Over the 3 years of the experiment, spatial separation of grass and clover, compared with a grass–clover mixture, increased clover herbage production, although its proportion in the sward declined through time (0·49–0·54 vs 0·34 in the mixture in the first year, 0·28–0·33 vs 0·15 in the second year and 0·03–0·18 vs 0·01 in the third year). Total herbage production in the growing season in the spatially separated treatments decreased from 11384 kg DM ha?1 in the first year to 8150 kg DM ha?1 in the third year. Crude protein concentration of clover and grass components in the 18‐m adjacent monoculture treatment was greater than the mixture treatment for both clover (310 vs 280 g kg?1 DM) and grass (200 vs 180 g kg?1 DM). There was no clear benefit in liveweight gain beyond the first year in response to spatially separating grass and clover into monocultures within the same field.  相似文献   

14.
The sustainability of white clover in grass/clover swards of an upland sheep system, which included silage making, was studied over 5 years for four nitrogen fertilizer rates [0 (N0), 50 (N50), 100 (N100) and 150 (N150) kg N ha?1]. A common stocking rate of 6 ewes ha?1 was used at all rates of N fertilizer with additional stocking rates at the N0 fertilizer rate of 4 ewes ha?1 and at the N150 fertilizer rate of 10 ewes ha?1. Grazed sward height was controlled, for ewes with their lambs, from spring until weaning in late summer by adjusting the proportions of the total area to be grazed in response to changes in herbage growth; surplus pasture areas were harvested for silage. Thereafter sward height was controlled on separate areas for ewes and weaned lambs. Areas of pasture continuously grazed in one year were used to make silage in the next year. For treatments N0 and N150, white clover stolon densities (s.e.m.) were 7670 (205·4) and 2296 (99·8) cm m?2, growing point densities were 4459 (148·9) and 1584 (76·0) m?2 and growing point densities per unit length of stolon were 0·71 (0·015) and 0·67 (0·026) cm?1 respectively, while grass tiller densities were 13 765 (209·1) and 18 825 (269·9) m?2 for treatments N0 and N150 respectively. White clover stolon density increased over the first year from 780 (91·7) cm m?2 and was maintained thereafter until year 5, reaching 8234 (814·3) and 2787 (570·8) cm m?2 for treatments N0 and N150 respectively. Growing point density of white clover increased on treatment N0 from 705 (123·1) m?2 to 2734 (260·7) m?2 in year 5 and it returned to the initial level on treatment N150 having peaked in the intermediate years. Stolon density of white clover was maintained when the management involved the annual interchange of continuously grazed and ensiled areas. The non‐grazing period during ensiling reduced grass tiller density during the late spring and summer, when white clover has the most competitive advantage in relation to grass. The increase in stolon length of white clover in this period appears to compensate for the loss of stolon during periods when the sward is grazed and over winter when white clover is at a competitive disadvantage in relation to grass. The implications for the management of sheep systems and the sustainability of white clover are discussed.  相似文献   

15.
The aim of this study was to determine the associative effects between fresh perennial ryegrass and fresh white clover on intake and digestion in sheep. Five proportions of ryegrass and white clover, ranging from 0 to 1 in 0·25 increments (DM basis), were allocated to two groups of five sheep according to a replicated 5 × 5 Latin square design, and intake behaviour and digestive parameters including methane (CH4) emissions were measured. Feeding behaviour was affected through increased forage intake when the proportion of white clover was increased, and there were positive associative effects on intake, eating time and eating rate during the main meals consumed immediately after feed was given. These effects seemed to be related to a greater motivation to eat, rather to more efficient digestion, as no difference on DM digestibility (average 766 g kg?1) was detected. There were no differences in CH4 yield (average 18·1 g kg?1 DM intake) among the treatments. The optimal proportion of white clover fed with ryegrass to optimize intake and digestion was between 0·25 and 0·50. These results indicate that mixing perennial ryegrass and white clover positively affects forage intake in sheep and their motivation to eat.  相似文献   

16.
The object of this study was to determine the effect of closing date and date of harvest for conservation (accumulation period), on dry‐matter (DM) yield and forage quality of annual pasture in Western Australia. The field study comprised 48 plots, 2 m × 2 m, sown with either annual ryegrass (Lolium rigidum Gaud.) or Italian ryegrass (L. multiflorum Lam.), and mixed with subterranean clover (Trifolium subterraneum L.). Defoliation of swards until the end of winter was at the three leaves tiller–1 stage. In spring, once stem nodal development had commenced, swards were defoliated every 3–4 weeks. Swards were defoliated either twice with three leaves tiller–1 (accumulation period 1 commenced on 15 August); twice with three leaves tiller–1 and then once after 4 weeks (accumulation period 2 commenced on 11 September); twice with three leaves tiller–1 and then twice after 4‐week intervals (accumulation period 3 commenced on 9 October) or; twice with 3 leaves tiller–1 and then twice after 4‐week intervals and then once after 3 weeks (accumulation period 4 commenced on 30 October). From the commencement of the accumulation period, tiller density, DM yield and forage quality were determined weekly for up to 10 weeks. There was a positive quadratic association between DM yield and days after the commencement of the accumulation period. Yields were maximized from accumulation period 1 with 5·3, 6·6 and 9·5 t DM ha–1, and growth rates were 140, 128 and 145 kg DM ha–1 d–1, for Wimmera annual ryegrass and Richmond and Concord cultivars of Italian ryegrass respectively. In contrast, in vitro dry‐matter digestibility (IVDMD) and crude protein (CP) content were negatively associated with days after the commencement of the accumulation period, and initial values were greater than 0·80 and 180 g kg DM–1 for IVDMD and CP content respectively. The rate of decline in IVDMD d–1 for Wimmera annual ryegrass was 0·005, 0·019 and 0·012 d–1 for accumulation periods 1, 2 and 3, respectively, while for Italian ryegrass cultivars Richmond was 0·015, 0·011, 0·02 and 0·012 d–1 and Concord was 0·014, 0·009, 0·013 and 0·01 d–1, for the 4 accumulation periods respectively. It is recommended that annual and Italian ryegrass pastures be harvested between 10% and 20% inflorescence emergence when IVDMD will exceed 0·70 regardless of cultivar and/or defoliation practice prior to the commencement of the accumulation period.  相似文献   

17.
The selection by sheep (six Coopworth ewe hoggets, 44·3 ± 4·6 kg live weight) and goats (six Saanen/Anglo‐Nubian yearling males, 38·1 ± 3·8 kg live weight) for perennial ryegrass (Lolium perenne) and white clover (Trifolium repens) and for sward height was measured in two experiments involving paired turves. Pairs of turves with herbage of differing height and of either the same or different plant species were offered. One sward (fixed height species, FHS) was always offered at 130 mm and the other (variable height species, VHS) at 130, 90 or 50 mm. Turves (450 mm × 220 mm) were cut to a soil depth of 100–150 mm from areas of perennial ryegrass and white clover regrown to the desired height after previously being cut to 30 mm. Each turf in a pair was weighed (±1 g) before and after grazing by penned animals maintained on a barley‐based pelleted diet. The number of prehending bites taken from each turf was recorded over a grazing period (128 ± 12 s). Bite mass, bite rate and intake rate were calculated. As the sward height of the VHS turf declined, an increasing proportion of the diet was selected from the 130 mm turf. When averaged over all height contrasts, both animal species selected a higher proportion (0·776 ± 0·026) of their diet from 130‐mm white clover than from 130‐mm perennial ryegrass (0·591 ± 0·018) turves. On average, goats selected a higher proportion (0·721 ± 0·022) of their dry‐matter (DM) intake from the 130‐mm turf than sheep (0·646 ± 0·019), but the effect was not consistent. In contrasts with perennial ryegrass as the VHS (and both perennial ryegrass and white clover as FHS), the proportion of the diet selected from the 130‐mm turf was very similar for both animal species. However, with white clover as the VHS (and both perennial ryegrass and white clover as FHS), goats selected a higher proportion of their intake from the 130‐mm turf to the extent that in the 130‐mm perennial ryegrass/50‐mm white clover contrast sheep showed as strong selection for 50‐mm white clover as goats did for 130‐mm perennial ryegrass. This lesser selection of goats for white clover as its height in a sward declines is likely to contribute to the higher white clover content observed in swards grazed by goats. Bite mass was greater on white clover (246 ± 5 mg DM bite–1) than on perennial ryegrass (173 ± 5 mg DM bite–1) and was greater for goats (255 ± 6 mg DM bite–1) than for sheep (195 ± 5 mg DM bite–1). Bite rate was greater on perennial ryegrass (45·9 ± 1·0 bites min–1) than on white clover (39·9 ± 1·0 bites min–1) and was greater for sheep (45·5 ± 1·1 bites min–1) than for goats (42·5 ± 1·1 bites min–1). Apparent intake rate by both sheep and goats was lower (mean, 5·0 ± 0·29 g DM min–1) on 130 mm perennial ryegrass/white clover than on 130 mm perennial ryegrass/perennial ryegrass (7·0 ± 0·27 g DM min–1), but was higher (9·62 ± 0·29 g DM min–1) on 130‐mm white clover/perennial ryegrass than on 130‐mm white clover/white clover (8·2 ± 0·29 g DM min–1) combinations.  相似文献   

18.
Overseeded winter annuals in bermudagrass [Cynodon dactylon (L.) Pers.] improve annual dry‐matter (DM) yield and capture nutrients in fields receiving manure application. This study determined the DM and nutrient uptake responses of annual ryegrass (Lolium multiflorum L.), cereal rye (Secale cereale), berseem clover (Trifolium alexandrinum L.) and bermudagrass‐winter fallow to 0, 50, 100 and 150 kg N ha?1 applied approximately 2 months before a single spring harvest, and in addition to swine‐effluent N (258 and 533 kg ha?1 in summer 2000 and 2001, respectively). Under drought conditions in 2000, DM yield at the spring harvest was highest in ryegrass, and summer DM yield of bermudagrass was greater at 100 and 150 kg N ha?1 than 50 kg N ha?1(P < 0·05). The concentration and uptake of N at the spring harvest increased linearly across N rates in both years (P < 0.05). Cover crops differed in N uptake in 2000 (P < 0.01) and values ranged from approximately 141 kg N ha?1 in berseem clover to 86 kg N ha?1 in rye. Per unit of N applied, uptake of N increased by approximately 0·409 kg ha?1 in 2000 and 0·267 kg ha?1 in 2001; uptake of P increased by 0·029 and 0·014 kg ha?1 respectively. In 2000, uptake of P was responsive to N rate and this relationship was significant (P < 0·01) in winter fallow (slope = 0·032) and ryegrass (slope = 0·057). Increased uptake of N and P at the single spring harvest was due mainly to higher concentrations in herbage and not higher DM yield.  相似文献   

19.
First and second harvests of lucerne (Medicago sativa L.), perennial ryegrass (Lolium perenne L.) and a lucerne–perennial ryegrass mixture [80 or 144 g kg?1 dry matter (DM) of ryegrass] at the first and second harvests were cut and conditioned, wilted to 500 or 700 g DM kg?1 then baled and stretch‐wrapped for silage on the same dates. Lucerne bales were denser (411 kg m?3) than bales of perennial ryegrass (331 kg m?3) (P < 0·05). After an 8‐month storage period, silage made from high DM‐content forage had a higher concentration of neutral‐detergent fibre (NDF) and was less digestible than that made from low DM‐content forage. Daily DM intakes by beef steers, when the silages of the second harvest were fed ad libitum, were 31·2, 31·2 and 22·3 g kg?1 live weight for lucerne, lucerne–perennial ryegrass mixture and perennial ryegrass silages, respectively (P < 0·01), when the herbage had been wilted to 500 g kg?1. In vivo digestibility of NDF in the lucerne–perennial ryegrass mixture silage (0·587) was significantly lower than that of perennial ryegrass silage (0·763) but higher than lucerne silage (0·518). Higher intakes of baled lucerne silage tended to offset its lower digestibility values. Lucerne–perennial ryegrass mixture silage had a higher DM and NDF digestibility than lucerne silage, indicating perhaps the presence of associative effects.  相似文献   

20.
A simple multiplicative model using temperature, foliage nitrogen (N) concentration and water status was developed to predict the maximum photosynthetic rate (Pmax) of field‐grown cocksfoot (Dactylis glomerata L.) leaves when none, one, two or all the factors were limiting. The highest Pmax was 27·4 μmol CO2 m–2 s?1 in non‐limited conditions, which was defined as the standardized Pmax value dimensionless (Pmaxs=1). Pmaxs increased 0·058 units per °C from 10°C to the optimum range (19–23°C) (Pmaxs=1) and then declined 0·077 units of Pmaxs per °C from 23 to 31°C. Pmaxs=1 was also measured from 59 to 52 g N kg?1 dry matter (DM) foliage N. Pmaxs then decreased at the rate of 0·115 units per 10 g N kg?1 DM from 52 to 26 g N kg?1 DM, and 0·409 units of Pmaxs per 10 g N kg?1 DM from 26 to 15 g N kg?1 DM. For predawn leaf water potential (ψlp), Pmaxs=1 was measured from ?0·1 to ?1·2 bar but declined linearly at a rate of 0·078 units per bar of ψlp from ?1·2 to ?14·0 bar because of a linear decrease in stomatal conductance. An interaction between low N content (≤20 g N kg?1 DM) and high temperature (>23°C) was also detected. Together, this multiplicative model accounted for 0·82 of the variation in Pmaxs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号