首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Adapted tree+grass combinations make a valuable contribution to forage production in the Indian peninsula, but knowledge of the interactive effects between trees and grasses on their production is limited. We, therefore, conducted a field experiment involving combinations of four trees and grasses, besides monospecific grass controls, for seven years, to investigate grass productivity in association with leguminous and non-leguminous multipurpose trees (MPT) having disparate canopy architecture, and to assess the end-of-rotation soil fertility changes. Post rotation changes in herbage productivity were evaluated by growing teosinte (Zea mexicana) for three years. The four MPTs were Acacia auriculiformis, Ailanthus triphysa, Casuarina equisetifolia and Leucaena leucocephala. Grasses included Pennisetum purpureum (hybrid napier), Brachiaria ruziziensis (congo signal), Panicum maximum (guinea grass) and teosinte. Lower tree branches were pruned from fifth year. Understorey herbage production increased until three years in all tree+grass combinations, but declined subsequently, as tree crowns expanded. Overall, casuarina among MPTs, and hybrid napier and guinea grass among forage crops, were more productive than others. Pruning MPTs generally favoured greater herbage production. Understorey light levels for acacia, ailanthus, casuarina and leucaena were 17, 60, 55 and 55% of that in the open at five years. During the post-rotation phase, MPT plots were characterised by higher soil nutrient capital and consequently teosinte yields were higher than in the treeless control treatment. All previous tree-grass combinations showed an increasing trend till two years after MPT felling. Yield levels declined subsequently, despite at variable rates. Careful selection of the tree and grass components is, therefore, crucial for optimising herbage productivity in silvopastoral systems. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
A study was conducted to identify and explore indigenous knowledge relating to fodder trees and silvopastoral management systems of small-scale farmers in seasonally dry areas of Jamaica. The objectives of the study were to: 1) explore farmers indigenous knowledge relating to fodder trees and silvopastoral management systems in a subtropical dry climate; 2) examine pastoral land-use systems and technologies in current use; and 3) seek to integrate this information into silvopastoral tree fodder systems. Data were gathered via observation and semistructured interviewing. A snowball sampling strategy was used to purposively select all small-scale farmers who had cattle in the Green Park valley for interview.Of forty farmers interviewed, 37 males (92.5%) and 3 females (7.5%) were primary caretakers of cattle. Twenty-seven of 40 farmers (68%) raised cattle to generate income. During extended droughts farmers are forced to look for alternatives to desiccated, overgrazed pasture grasses, including: 1) local travel to harvest sugar cane tops and to cut Guinea grass (Panicum maximum); 2) purchase of bag feed; and 3) harvest and use of tree fodder. Preferred fodder trees were identified as Bacedar (Guazama ulmifolia), Guango (Albizia saman), Breadnut (Brosimum alicastrum) and Quickstick (Gliricidia sepium).Recommended silvopastoral management systems include fodder hedgerows, three strata forage systems, and living fences. In addition, production of indigenous fodder tree species, introducing improved tree fodder species, and planting improved pasture grasses concurrent with cash trees is suggested.  相似文献   

3.
Reduction in forage production (FP) under trees in the humid tropics is well known, but information on how different levels of nitrogen (N) fertilizer influence FP under trees is meager. The present study reports effects of four N fertilizer levels (0, 60, 80 and 120 kg ha−1 N) on net soil N mineralization rate (NMR) and soil moisture (SM), FP, shoot biomass/root biomass ratio (SB/RB), N concentration in SB, N uptake and nitrogen use efficiency (NUE) of three grasses [guinea (Panicum maximum Jacq.), para (Brachiaria mutica (Forssk) Stapf) and hybrid-napier (Pennisetum purpureum Schumach.)] under three canopy positions [under canopy (UC, representing high shade), between canopy (BC, representing low shade) and open] of coconut trees (Cocos nucifera L.) in a coconut based silvopastoral system in the humid tropical climate of South Andaman Island of India. The study was performed for two annual cycles (2005–2006 and 2006–2007). The hypotheses tested were: (1) FP would decline under tree shades, both in N fertilized as well as no N fertilized conditions, when SM was not growth limiting in the open. However, amount of decline in the FP would depend on grass species and intensity of shades i.e., higher was the shade greater would be the decline; (2) N fertilizer would increase FP under tree shades, but the increase depended on grass species, intensity of shades and amount of N applied. Amount of N applied, however, would not annul the shades effects when SM was not growth limiting in the open. The study revealed that the tree reduced light 59% under UC and 32% under BC positions, but the N fertilizer levels increased NMR by 11–51% under UC and 3–44% under BC positions compared to the open. SM did not differ across the canopy positions. Under all situations, FP of all grasses declined under UC (47–78%) and BC (18–32%) positions compared to the open; the decline was greater in Hybrid-napier than Guinea and Para grasses. Forage production of all grasses increased with N fertilizer increments under all canopy positions reaching 32 t ha−1 dry matters for hybrid-napier at 120 kg ha−1 N in the open. Both guinea and para grasses outyielded hybrid-napier grass under UC but not under BC or in the open. N concentration in the forage (SB) also increased as N fertilizer level increased. These observations support our hypotheses and suggest that forage production under coconut palms can be increased by the application of N fertilizer with both guinea and para grasses being more productive than hybrid-napier grass under the high shade. Where light conditions are better, hybrid-napier would produce more forage than the other species.  相似文献   

4.
Dry, dehiscent fruits ofAcacia tortilis provide important fodder for pastoral livestock in dry seasons on the central Borana Plateau, fruits ofA. nilotica may also be useful during drought. Information was needed on fruit yield to assess what these species could contribute to improved calf feeding systems based on local resources. Fruit production of 10 mature trees per species was measured at five sites for seven months during 1988–9 (n=50 per species). Fruit yields varied according to site, season and species x site (each atP<0.001), but there was no main effect of species (P=0.13). Yields were not correlated with trunk diameter at breast height (DBH) or canopy area within or across species (P>0.05 in all cases). Yields ranged from 0 to 40 kg DM per tree overall, with an average of 5.3 kg DM per tree (or 65 g DM/m2 of canopy area). This average tree had a DBH of 26 cm and a canopy area of 81 m2. Low and highly variable fruit yields appear to constrain enhanced use of these species here. These species warrant further attention in research and development, however, given their strategic value as forage resources in pastoral systems and their ability to persist in variable environments.  相似文献   

5.
The choice of an appropriate hedgerow species is one of the most critical decisions in exploiting the value of a contour hedgerow system. The implications of hedgerow species with nitrogen (N)-fixation capacity on hedgerow-crop competition and crop productivity have been widely debated. We examined the agronomic significance of N-fixation by comparing the performance of species representing three classes of hedgerow vegetation: A nitrogen-fixing tree legumeGliricidia sepium), a non-nitrogen fixing tree (Senna spectabilis syn.Cassia spectabilis), and a forage grass (Pennisetum purpureum). The 4-year study investigated the hedgerow biomass and nutrient yields, and their relative effects on the performance of two annual crops commonly grown in alley farming systems, with emphasis on hedgerow-crop interference. The work was done on an Ultic Haplorthox (pH 4.8, organic C 1.9%, total N 0.18%).Senna produced 46% more pruning biomass on an annual basis than didGliricidia; N supplied to the alley crops was similar toGliricidia in the first year of observation, but 20–30% higher in the succeeding years. Upland rice and maize grain yields and total dry matter were unaffected by tree species, but the nitrogen-fixing tree exerted less competitive effects on the annual crops growing in adjacent rows. Grass hedgerows reduced maize yields 86% by the second year, indicating an unsustainable drawdown of nutrients and water. We conclude that hedgerow systems composed of a nitrogen-fixing tree did not exert significant advantages compared to a non-fixing tree species, and that factors other than N-fixation were more important determinants for the choice of hedgerow species.  相似文献   

6.
A major production constraint in arid and semiarid areas of Ethiopia is a lack of water for crop growth. Run off water can be harvested by channeling it into micro- catchments (MC) where it slowly infiltrates into the soil. The increased moisture provides more plant growth in these dry lands. An experiment using MC was conducted in eastern Ethiopia to study the growth of four multipurpose tree species intercropped with grass. Trees and grass were grown in 25 m2 and 100 m2 MC. Plant height, root collar diameter, and mortality rate of trees were determined 12 months after planting. Dry matter yield of grasses and trees were measured and nutrient analysis of plant tissues was determined. In a separate experiment the biomass of trees was determined after 2.5 years of continuous growth without grass competition. Soil moisture, organic matter, texture and bulk density of the soils were also determined. Mean tree height was 10% greater in the 100 m2 than in the 25 m2 MC. Root collar diameter and survival rate showed similar increase with 13% and 7.8% respectively. Acacia saligna and Leucaena leucocephala showed better growth in both plot sizes than the indigenous Acacia seyal and Acacia tortilis. The dry matter yield of grass (Panicum maximum) was over 12 tons/ha and 8 tons/ha in the 100 m2 and 25 m2 plots respectively. Soil moisture content was greater in MC than in control plots with no water harvesting structures with 31% and 24% during the wet and dry seasons respectively. The use of water harvesting can improve fodder production and carrying capacity of the dry lands of Ethiopia.  相似文献   

7.
Forage and wood yield of Acacia cyanophylla, also known as Acacia saligna, was studied in a 300–400 mm precipitation zone in Tunisia. Yields were measured during and after drought. This short (2–8 m) evergreen leguminous tree is used as a forage drought reserve in frost free regions where mean annual precipitation exceeds 250 mm. The standing crop of leafy forage builds up year after year for at least four years or until the tree is cut. It rapidly regrows after cutting from coppice shoots. The leaves provide high protein forage for sheep and goats during the long dry summer season typical of the Mediterranean climate as well as emergency forage during drought. The tree is used to stabilize moving sand dunes, and as a windbreak to protect cropland. It also provides fuelwood and increasaes soil nitrogen by fixation. The need for supplemental irrigation during establishment is a major constraint. Research in the 350 mm precipitation zone of Tunisia found 3.2 year old trees to yield over 1400 kg of forage standing crop per hectare after a severe drought. Trees harvested at 2.5 years of age in May, during the worst drought in over 30 years, yielded a standing forage crop of 724 kg per hectare. Forage regrowth 8 months after cutting and 4 months after rains returned was 700 kg/ha. The forage standing crop for trees harvested only once during the 3.2 year period was double the amount of forage regrowth from trees harvested the previous year, but mean annual forage yield similar. This demonstrates that it is possible for forage to be conserved as a living forage reserve for later use during drought. Total wood yield was only 1621 kg/ha for trees cut twice compared to 3683 kg/ha for trees cut only once. Annual cutting will substantially reduce the amount of forage available during drought and reduce the production of fuelwood. It may also reduce the vigor, productivity and life of the tree. Acacia cyanophylla alley cropped on cereal farmland can protect the soil from erosion, protect the associated crop from wind damage, fix nitrogen, provide fuelwood and provide a reserve of high quality forage for use during drought. This work was supported by the Government of Tunisia and the U.S.A.I.D. Tunisia Range Development and Management Project (664-0312.8).  相似文献   

8.
The objective of this study was to compare the effects of woodlots of five tree species, continuous maize (Zea mays L.) and natural fallow on soil water and nitrogen dynamics in western Tanzania. The tree species evaluated were Acacia crassicarpa (A. Cunn. ex Benth.), Acacia julifera (Berth.), Acacia leptocarpa (A. Cunn. ex Benth), Leucaena pallida (Britton and Rose), and Senna siamea (Lamarck) Irwin & Barneby). The field experiment was established in November 1996 in a completely randomized block design replicated three times. Maize was intercropped between the trees during the first three years after planting and thereafter the trees were allowed to grow as pure woodlots for another two years. Transpiration by the trees was monitored when they were 3 years old using sap flow gauges. Soil water content was measured using the neutron probe approach between November 1999 and March 2001. Soil inorganic N profiles were measured when the trees were four years old in all treatments. The results indicated that the trees transpired more water than natural fallow vegetation during the dry season. The difference was apparent at a depth of 35 cm soil, but was more pronounced in deeper horizons. The water content in the entire soil profile under woodlots and natural fallow during the dry period was 0.01 to 0.06 cm3 cm−3 lower than in the annual cropped plots. This pattern was reversed after rainfall, when woodlots of A. crassicarpa, A. leptocarpa, A. julifera, S. siamea and L. pallida contained greater quantity of stored water than natural fallow or continuous maize by as much as 0.00 to 0.02, 0.01 to 0.04, 0.01 to 0.04, 0.01 to 0.03 and 0.00 to 0.02 cm3 cm−3, respectively. Natural fallow plots contained the lowest quantity of stored water within the entire profile during this period. Transpiration was greatest in A. crassicarpa and lowest in L. pallida. All tree species examined were `scavengers' of N and retrieved inorganic N from soil horizons up to 2-m depth and increased its concentration close to their trunks. This study has provided evidence in semi-arid environments that woodlots can effectively retrieve subsoil N and store more soil water after rains than natural fallow and bare soil. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
The effects of isolated, mature Samanea saman trees on herbaceous production and species composition were investigated over the 1993/1994 growing season in a subhumid tropical grassland in north-east Queensland, Australia. Under the crown, the cumulative aboveground biomass over the season was almost 90% above that of the open grassland. This increase was associated with a difference in species composition. The principal grass under the crown was Panicum maximum, while in the open grassland, the dominant species was Urochloa mosambicensis. Near the crown, cumulative biomass was intermediate and this was reflected in a mixed species composition. This study confirms earlier, largely anecdotal reports of the potential beneficial effects of S. saman on forage production, but by itself was unable to explain the mechanism by which this increase occurred. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Parkia biglobosa is an important traditional economic tree legume of considerable multipurpose potentials that has not been well researched. It is used for fodder, human food, fuel wood, timber, green manure, medicine, provides shade for forage grasses and livestock and protects soil from heat and it is important in soil nutrient cycling.The objective of this study was to determine the effect of management regimes (cutting frequency and height) on the coppicing ability, fodder production, and nutritive value potentials of cultivated Parkia trees. This initial study has shown that the tree has a potential as fodder for livestock as well as human food and should be further studiedto fully understand its biology, agronomy and feeding value under various agroforestry or silvopastoral systems of humid tropics in West Africa.  相似文献   

11.
There is interest in producing alfalfa as an alley crop because alfalfa (Medicago sativa L.) is the most profitable hay crop in the USA. Field experiments were conducted near Stockton, MO in 2003 and 2004. Treatments consisted of alfalfa grown in open plots and in plots that were alley cropped between 20-year-old black walnut trees (Juglans nigra L.) planted in rows 24.4- and 12.2-m apart. Alfalfa was sampled for three harvest cycles each year. In the alley-cropping plots, samples were taken beneath the canopy (2.5 m from the tree row) and in the center of the alleys. Data were taken on dry-matter yield, maturity, and forage quality. At all harvest dates over both years, yields from beneath the canopy of both alleys and the narrow alley centers were less than yields from the wide alley centers and open plots. Yield from the wide alley centers was similar to that in open plots in every harvest but the final harvest of 2004. Transects across the plots indicated that yields increased linearly from the tree row to the center of both alleys. Alfalfa tended to mature faster in the open and wide alley centers compared to beneath the canopy of both alleys and the narrow alley centers. Forage quality differences were inconsistent across treatments. Alfalfa yield was significantly reduced and maturity was delayed by the narrow 12.2 m tree spacing, but yield was not reduced in the centers of the wider 24.4 m alleyways.  相似文献   

12.
A study was conducted at Fasola (7°45 N and 3°5 E) in southwest Nigeria to determine the best tree cutting scheme for forage production and the effects of hedge configurations on tree, grass and total forage productivity of 6–8-year-old leucaena (Leucaena leucocephala Lam. de Wit) and gliricidia (Gliricidia sepium Walp.)-Guinea grass (Panicum maximum Jacq. cv. Ntchisi) mixture. After a uniform cut at the end of January 1990 (mid-dry season), the trees were cut according to the following cutting regimes: one cut after a 12-month regrowth (12M); two cuts after three- and nine-month regrowth (3–9M); two cuts every six months (6-6M); two cuts after nine- and three-month regrowth (9-3M); three cuts, two cuts every three months and the third cut after a six-month regrowth (3-3-6M), and four cuts every three months (3-3-3-3M). Grass was cut every six weeks between April and October followed by a cut in January. The hedge configuration was either one or three hedgerows of mixed stands of leucaena and gliricidia. There were twice as many trees and one-third less grass in the triple than in the single hedgerow hedge configuration.The 3-3-3-3M, 9-3M and 3-3-6M cutting regimes produced the highest total forage (tree foliage + grass) dry matter yields (DM) of 6.54, 5.80 and 5.77 t DM ha–1 annum–1, respectively. The magnitude of the difference between the tree forage yields of the triple and single hedgerow plots (16%) did not reflect the theoretical difference in the number of trees (33%) in the two arrangements.  相似文献   

13.
Fuelwood production from a high density leucaena-based fodder production experiment at Mtwapa, Coast Province, Kenya is reported. Leucaena with and without other fodder crops namely, Cassava, Bana and Napier grass, formed the main-plot treatments while leucaena densities ranging from 6,250 to 100,000 ha–1 planted in single- or double-line planting arrangements formed the sub-plot treatments of the split-plot design used. Each treatment was replicated four times. The experiment was established and maintained without the use of fertilizer, pesticides, irrigation. Hand weeding was done only during the first year.After 2.7 years growth, height and diameter measurements were taken before cutting back the leucaena stems to 0.5 m above ground. Utilizable fuelwood (twigs greater than 0.5 mm diameter) was then sun-dried for 3 months and dry weights taken.Fuelwood yields were significantly reduced by the fodder intercrops. Yield from leucaena intercropped with fodder crops were, on average, 30% lower than yield from sole stands of leucaena. Mean yields of the single-line plantings ranged from 13.7 to 21.2 tons ha–1. Yield from the double-line plantings were lower (on average 10%) than that of single-line plantings and were as well highly variable. Unlike tree heights, diameters in the single-line planting arrangement were not affected significantly by the fodder intercrops. In the single line plantings, yield of fuelwood from sole stand of leucaena was higher at all in-row spacings than the yield from intercropped leucaena. Increase in in-row spacing of leucaena generally led to reduced yield of fuelwood.Fodder yields of intercropped Cassava, Bana and Napier grasses were near normal in the first year but zero or negligible in the remaining 1.7 years. Implications of the prolonged tree establishment period on fodder yields after opening of the canopy are discussed.  相似文献   

14.
A cross-sectional survey on 41 farms followed by six weeks monitoring of dairy cattle feeding on ten smallholder dairy farms in central Kenya was conducted to investigate the use, availability and quality of dry season feed resources. Fodder production was largely from Napier grass (Pennisetum purpureum) grown on small plots and contour strips where it acts both as a fodder source as well as a biological barrier to soil erosion. There is a need to broaden the choice of fodder crops on such farms to provide a wide range of harvesting management options and to avoid total loss in case of pest or disease outbreaks. Intercropping of Napier grass with leguminous fodder trees could boost the quantity and quality of herbage production especially during the dry season. Roughage from a variety of sources was utilised during the dry season in addition to Napier grass. Among the herbages, leguminous feeds had the lowest potential dry matter degradability while weeds harvested from cropland and roadsides had the highest. Energy and protein intake from the roughage fed to grade dairy cattle during the dry season may be insufficient to meet the requirements of these animals due to the high levels of fibre concentration (acid detergent fibre and neutral detergent fibre (ADF and NDF)) in them. It is recommended that the scope for alternative sources of improved roughage such as Napier/calliandra mixtures, to boost the energy, protein and overall dry matter provision on the farms should be investigated further.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

15.
Granier’s probes were applied to measure the sap flow of 14 sample trees in an Acacia mangium forest on the hilly lands in Heshan City, Guangdong, during the time period of October, 2003. The photosynthetically active radiation (PAR), air relative humidity (RH) and temperature of air (T) above the forest canopy were recorded. The sap flow measurement was used in combination with morphological characteristics of tree and forest structure to calculate the whole-tree transpiration (E), stand transpiration (E t), and mean canopy stomatal conductance (g c). Analyses on the relationships between tree morphological characters and whole-tree water use, and on the responses of g c to PAR and vapor pressure deficit (D) were conducted. The results showed that whole-tree transpiration correlated significantly and positively with tree diameter at breast height (DBH) (p<0.0001), with sapwood area (p<0.0001), and with canopy size (p = 0.0007) logarithmically, but exponentially with tree height (p = 0.014). The analyses on the responses of canopy stomatal conductance showed that the maximum g c (g cmax) changed with PAR in a hyperbolic curve (p<0.0001) and with D in a logarithmic one (p<0.0001). The results obtained with sap flow technique indicate its reliability and accuracy of the methods of estimation of whole-tree and stand transpirations and canopy stomatal conductance. __________ Translated from Chinese Journal of Applied Ecology, 2006, 17(7): 1149–1156 [译自: 应用生态学报]  相似文献   

16.
The effects of Cassia siamea, Albizia lebbek, Acacia auriculiformis, and Azadirachta indica on soil fertility have been studied on five-year-old fallows on Ferric Acrisols in Central Togo. Litter quality and soil fertility under the four species were significantly different. Topsoil pH increases significantly with increasing litter Ca levels. Cassia siamea and Azadirachta indica were superior in enriching the sandy-loamy topsoils with Calcium and in increasing soil pH. Under Acacia, which had the highest biomass production, litter accumulation appeared to be responsible for the low mineral soil Ca and P values. In addition, topsoil pH under Acacia was lower than under grass or bush fallow or the other species. Slow litter mineralization of Acacia auriculiformis was probably caused by the thick, leathery consistence and high tannin content of its litter. Due to its high biomass production supporting soil acidification pure Acacia auriculiformis stands seemed to be less favourable for improving soil fertility on planted fallows but more suited for firewood plantations and topsoil protection. The foliage as well as the litter and topsoil under Albizia showed narrow C/N- and C/P-ratios resulting in easily mineralizable organic matter. All tree species tested were superior to natural grass/herb fallow in building up surface soil fertility. However, differences with natural bush fallow were not significant.
Résumé Au bout de cinq ans des differences fortement significative ont été trouvées quant aux caractères de la litière et de la fertilité des jachères arborées avec Cassia siamea, Albizia lebbek, Acacia auriculiformis et Azadirachta indica, respectivement. ll y a une corrélation positive entre le pH de l'horizon superficiel et la teneur en Ca dans la litière: l'enrichissement du sol sable-limoneux en Ca et le pH sont plus élevés sous Cassia siamea et Azadirachta indica que sous les autres espèces. Acacia se caractérise par la plus grande production en biomasse, donc une accumulation importante de litière sur le sol, ce qui entraîne les plus faibles teneurs en P et Ca dans l'horizon de surface. En plus, il semble qu'elle fait diminuer le pH parce que les valeurs trouvées sont inférieures à celles des parcelles témoin ou des autres espèces. La mineralisation retardée de la litière de Acacia auriculiformis depend probablement de la consistence des feuilles et du content élevé de tannine. Acacia est par consequent moins favorable à des jachères plantées mais plutôt efficace quant à la production du bois de feu et la protection du sol contre l'érosion. Vu les petits rapport C/N et C/P dans les feuilles, la litière et dans l'horizon superficiel d'Albizia, on peut supposer que sa matière organique soit plus facilement décomposable. Toutes les espèces d'arbre étudiées sont plus capables de lever la fertilité des sols que les herbes des parcelles témoin. La comparaison avec une jachère spontanée d'arbustes ne fait pas apparâitre d'effets significatifs.
  相似文献   

17.
The effect of tree species on the characteristics of the herbaceous stratum, during the first five years of a fallow, was evaluated in the North of Cameroon (average annual temperature 28.2 °C, total annual rainfall 1050 mm). Treatments included a natural grazed herbaceous fallow, a natural ungrazed herbaceous fallow and three planted tree fallows (Acacia polyacantha Willd. ssp. campylacantha (Hochst. ex A. Rich.), Senna siamea Lam. and Eucalyptus camaldulensis Dehnh.), which were protected against grazing. Because tree species influenced light interception in different ways, as well as having different root patterns, they had different effects on the herbaceous stratum in terms of species composition and biomass. The grazed herbaceous fallow maintained the greatest species richness. Protection against grazing or the introduction of tree species associated with the absence of grazing induced both a progressive evolution to a particular species composition. The ungrazed herbaceous fallow consisted mainly of Andropogon gayanus Kunth, which provided the greatest biomass (8 t dry matter ha–1 at the end of the fallow period). E. camaldulensis provided little shade and the lowest fine root mass in the top layer allowing the growth of A. gayanus and thus a greater herbaceous biomass (3.5 t DM ha–1) than that found under the other tree species. Under the heavy shade of A. polyacantha, the herbaceous stratum consisted mainly of annual Pennisetum spp. (2.2 t DM ha–1) and showed the greatest N concentration (1.3%), probably due to N2 fixation by the tree species. After the fourth year, despite the relatively open tree canopy, S. siamea, which showed the highest fine root mass, had a strong depressive effect on the herbaceous stratum. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Litterfall and decomposition are the two main processes accounting for soil enrichment in agroforestry. The extent of enrichment in soil properties depends on the tree species, management practices and the quantity and quality of litter. A field investigation was carried out to study litterfall production, decay rates, release of nutrients and consequent changes in soil physicochemical properties under crowns of four multipurpose tree species (MPTs) in irrigated conditions in farm fields. The species were Prosopis cineraria (L.), Dalbergia sissoo (Roxb.) ex DC, Acacia nilotica (L.) Del. and Acacia leucophloea (Roxb.) Willd. Annual accretion of litter ranged from 36 to 54 kg tree−1 year−1 and was highest under D. sissoo and lowest under A. nilotica. Total litterfall production was in the order: P. cineraria > A. leucophloea > A. nilotica > D. sissoo. P. cineraria showed the highest NPK concentration in litter. For all MPTs, a large pulse of litterfall coincided with the winter season (November to February). Litter of P. cineraria decomposed fastest while that of A. nilotica was slowest. More than 95% of the leaf litter of P. cineraria decomposed in 6 months, of D. sissoo in 7 months and A. leucophloea and A. nilotica in 9 months. Decomposition rate of litter was highly correlated with neutral detergent fibre (NDF) (r = −0.94) and P (r = −0.91) concentration. N, P and K release were best correlated with NDF, acid detergent fibre (ADF), P, lignin, lignin/N and C/P ratios and NDF alone explained 88% to 94% of the variability in litter decomposition and nutrient release rates. There was significant build up of soil organic carbon and available NPK in the agrisilvicultural systems but also a decrease in soil pH. Build up in soil fertility was significantly correlated with litterfall and soil improvement was greatest under P. cineraria.  相似文献   

19.
The coast of the Gulf of Mexico is characterized by dry regions with high variation in climatic conditions. This area is rich in drought-tolerant or subhumid species. The species that are potentially useful for reforestation, regreening, agroforestry activities and the production of timber, fodder, fuelwood and human food have been overexploited, resulting in the gradual decrease and degradation of their populations. This study was undertaken in order to suggest ways of improving the regeneration of these species. Fifteen native and exotic multipurpose tree species of low dry shrubland planted in monoculture in four randomized blocks. Measurements of various growth parameters, volume of trees, fodder potential and agroforestry uses over 15 years were evaluated. Eucalyptus camaldulensis Dehnh., E. microtheca F. Muell., Leucaena leucocephala (Lam.) de Wit. (exotic species), Acacia farnesiana (L.) Wild and Parkinsonia aculeata L. (native species) tend to have better characteristics in terms of growing annual rate, economic value and management schemes, while Prosopis glandulosa Torr. and Helietta parvifolia (Gray) Benth. (native species) did not establish well due to biotics problems which arose under plantation conditions. Acacia rigidula Benth., A. wrightii Benth. and two Pithecellobium spp. (native species) had intermediate yields of great interest since their multipurpose potential is the best of all 15 species. The forage potential of the exotic species (483–1684 kg DM//ha/year) were notably superior to native species (76–721 kg DM/ha/year). The firewood production volume varied between averages of 0.3–1.2 (native species) and 0.4–2.5 m3/ha/year (exotic species). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
For this paper, we studied the water-holding capacity of canopy, vegetation layer under canopy and litter layer, the water-holding capacity and permeability of soil as well as their changes with growth of stands in Acacia mangium plantations of three different age classes (four-, seven-and 11-year-old). Results show that total water-holding above ground in the order of 11-year stand age (52.86 t/hm2)>seven-year stand age (41.90 t/hm2)>seven-year stand age (25.78 t/hm2), the increment tendency increased with stand age. Similar sequence also obtained on the water-holding capacity and permeation capacity of soil (0–40 cm). The total water-storage capacity both above ground and soil in four-year-old, seven-year-old and 11-year-old of A. mangium plantations were 2,023.0, 2,158.4 and 2,260.4 t/hm2, respectively, and the all value of water conservation were 1,372.70, 1,474.42 and 1,549.91 yuan (RMB)/hm2, respectively. Therefore, A. mangium plantation had a good ability to modify soil structure and good water conservation function. __________ Translated from Journal of Soil and Water Conservation, 2006, 20(5): 5–8, 27 [译自: 水土保持学报]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号