首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The aim of this work was to study the specific effects of low temperature and 1-MCP treatment on ethylene metabolism and oxidative behaviour in plums (Prunus × salicina cv. Larry Ann). Control fruit were stored at 20 °C or 0 °C and the 1-MCP (625 nL L?1) treated fruit at 0 °C. Changes in the kinetics of ethylene production upon removal were related to changes in ACC metabolism (ACC and MACC levels), oxidative behaviour (H2O2 content) and enzymatic antioxidant potential (SOD, CAT and POX enzymes) during cold storage. Low temperature stress inhibited the synthesis of MACC, which appeared to be the basic process that regulated ACC and ethylene production at ambient temperature. Although 1-MCP treatment inhibited ethylene production and ACC accumulation in the cold, it did not inhibit the accumulation of MACC. Neither cold nor 1-MCP treatment induced oxidative stress. Nevertheless, the 1-MCP treatment significantly impaired the increase in POX activity observed during cold storage. Collectively these results showed the underlying role that ACC metabolism plays in the ripening behaviour of cold-stored plums, confirming previous results. The results also indicate that MACC and malonyl transferase activity are the key regulatory factors that control ripening and possibly some ethylene-related disorders such as chilling injury in cold-stored plums.  相似文献   

2.
‘Black Splendor’ (BS) and ‘Royal Rosa’ (RR) plums were treated preharvest with methyl jasmonate (MeJA) at three concentrations (0.5, 1.0 and 2.0 mM) along the on-tree fruit development: 63, 77 and 98 days after full blossom (DAFB). Both control and treated fruit were harvested at the commercial ripening stage and stored in two temperature conditions: 9 days at 20 °C or at 2 °C + 1 day at 20 °C for 50 days. Preharvest MeJA at 2.0 mM significantly accelerated whereas 0.5 mM delayed the postharvest ripening process for both cultivars, since ethylene production, respiration rate and softening were reduced significantly at the two storage conditions for 0.5 mM. In these fruit, total phenolics, total antioxidant activity (hydrophilic fraction, HTAA) and the antioxidant enzymes peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) were found at higher levels in treated than control plums during postharvest storage, which could account for the delay of the postharvest ripening process and the extension of shelf-life.  相似文献   

3.
4.
Wooden bin-stored ‘Bartlett’ pears (Pyrus communis L.) were hydrocooled (HC) or forced-air cooled (FAC) and immediately treated or not with 1-methylcyclopropene (1-MCP) for 24 h. 1-MCP gas concentrations used were 0, 0.3 or 0.6 μL L?1 (called 0, 0.3 and 0.6, respectively). Fruit were subsequently kept at 20 °C for 20 d or stored at ?0.5 °C and 95% RH for 60, 90, 120 or 150 d. After cold storage, fruit were kept at 20 °C for up to 16 d for further ripening. In another experiment, pears stored in wooden bins (W) or plastic bins (P) were all hydrocooled, treated or not with 0.5 μL L?1 1-MCP (called 0.5 and 0, respectively), stored at ?0.5 °C and 95% RH for 0, 30, 60, 90 or 120 d, and transferred to 20 °C for further ripening. In FAC pears, increasing 1-MCP concentrations usually resulted in delayed increases in ethylene production and lower ethylene production rates, as well as delayed softening. In contrast, HC-0.3 pear firmness did not differ from that of HC-0 fruit after cold storage. Generally, HC-0.3 pears displayed higher ethylene production and lower firmness values than FAC-0.3 pears after a 7-d exposure to 20 °C, regardless the length of cold storage. FAC-0.6 pears always showed lower ethylene production rates and higher flesh firmness values than HC-0.6 fruit. Soluble solids concentration was not consistently affected by 1-MCP. FAC-0.3 and HC-0.6 fruit showed higher titratable acidity values than HC-0 fruit after 0, 60, 120 and 150 d of cold storage plus 7 d at 20 °C. Effectiveness of 1-MCP treatments on HC pears was influenced by the bin material; P-0.5 pears were firmer than W-0.5 pears after 7 d at 20 °C, regardless the length of the cold storage. HC-0.5 fruit exposed to ?0.5 °C for 90 d reached eating quality (firmness ≤23 N) by day 7 if placed in W, and by day 21 when stored in P. Results and previous evidence suggest that wet wooden bin material may represent a major though unpredictable source of 1-MCP sorption that could bind a significant percentage of the 1-MCP applied. When used at relatively low doses 1-MCP partial removal by wet wooden bins can compromise the application effectiveness for controlling ethylene action.  相似文献   

5.
A continuing challenge for commercializing 1-methylcyclopropene (1-MCP) to extend the storage life and control superficial scald of ‘d’Anjou’ pear (Pyrus communis L.) is how to initiate ripening in 1-MCP treated fruit. ‘D’Anjou’ pears harvested at commercial and late maturity were treated with 1-MCP at 0.15 μL L−1 and stored either at the commercial storage temperature −1.1 °C (1-MCP@−1.1 °C), or at 1.1 °C (1-MCP@1.1 °C) or 2.2 °C (1-MCP@2.2 °C) for 8 months. Control fruit stored at −1.1 °C ripened and developed significant scald within 7 d at 20 °C following 3–5 months of storage. While 1-MCP@−1.1 °C fruit did not develop ripening capacity due to extremely low internal ethylene concentration (IEC) and ethylene production rate for 8 months, 1-MCP@1.1 °C fruit produced significant amounts of IEC during storage and developed ripening capacity with relatively low levels of scald within 7 d at 20 °C following 6–8 months of storage. 1-MCP@2.2 °C fruit lost quality quickly during storage. Compared to the control, the expression of ethylene synthesis (PcACS1, PcACO1) and signal (PcETR1, PcETR2) genes was stable at extremely low levels in 1-MCP@−1.1 °C fruit. In contrast, they increased expression after 4 or 5 months of storage in 1-MCP@1.1 °C fruit. Other genes (PcCTR1, PcACS2, PcACS4 and PcACS5) remained at very low expression regardless of fruit capacity to ripen. A storage temperature of 1.1 °C can facilitate initiation of ripening capacity in 1-MCP treated ‘d’Anjou’ pears with relatively low scald incidence following 6–8 months storage through recovering the expression of certain ethylene synthesis and signal genes.  相似文献   

6.
The effects of 1-methylcyclopropene (1-MCP) on ripening, superficial scald and concentrations of α-farnesene, conjugated trienols (CTols) and antioxidant enzyme activity of ‘KS6’ Asian pear (Pyrus serotina Rehd.) were studied. 1-MCP treated (2 μL L?1) or untreated control fruit were stored at 1 °C and 90–95% RH for up to 120 days. 1-MCP treated fruit were firmer than untreated fruit. Application of 1-MCP delayed skin color change. Scald appeared after shorter storage duration and was reduced, but not entirely controlled, with 1-MCP. Accumulation of α-farnesene and oxidation were slower in skin of 1-MCP treated fruit compared with controls. Catalase and peroxidase activities in untreated fruit either increased while activities decreased in 1-MCP treated fruit. Superoxide dismutase activity remained stable. The treatment of Asian pears with 1-MCP followed by cold storage maintained textural characteristics with less scald incidence.  相似文献   

7.
The effect of multiple 1-MCP treatments prior to the establishment of controlled atmosphere (CA) storage on the quality of ‘McIntosh’ and ‘Empire’ apples [Malus × sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.] was investigated. Fruit were harvested on three occasions over a 1 week period, and at each harvest cooled overnight and 1-MCP applied the following day. Fruit from the first or second harvests were treated again or for the first time when fruit from each successive harvest was treated. CA conditions were established after the last 1-MCP treatment and fruit were stored for up to 8 months. Delays in 1-MCP application generally resulted in progressively higher internal ethylene concentrations (IECs) at the time of treatment and lower firmness both at the time of treatment and after storage. Multiple 1-MCP applications kept IECs low and maintained firmness compared with single applications that were applied after 4 d. For ‘McIntosh’, external CO2 injury was more prevalent after storage if fruit were treated without delays after harvest for earlier harvests while later harvests were less affected. For ‘Empire’, flesh browning was more prevalent in fruit from later harvests and 1-MCP treated fruit had higher levels than untreated fruit. Either early 1-MCP treatment or multiple treatments reduced senescent breakdown in ‘McIntosh’, and core browning and greasiness in ‘Empire’.  相似文献   

8.
Guava (Psidium guajava L. cv. ‘Allahabad Safeda’) fruit harvested at the mature light-green stage were exposed to 300 and 600 nL L−1 1-methylcyclopropene (1-MCP) for 6, 12 and 24 h at 20 ± 1 °C, and held in either cold storage (10 °C) for 25 days or ambient conditions (25–29 °C) for 9 days. Most of the physiological and biochemical changes during storage and ripening were affected by 1-MCP in a dose dependent manner. Ethylene production and respiratory rates were significantly suppressed during storage as well as ripening under both the storage conditions depending upon 1-MCP concentration and exposure duration. 1-MCP treatment had a pronounced effect on fruit firmness changes during storage under both the conditions. The reduced changes in the soluble solids contents (SSC), titratable acidity (TA) and vitamin C content showed the effectiveness of 1-MCP in retarding fruit ripening. Vitamin C content in 1-MCP-treated fruit was significantly higher than in non-treated fruit, and those treated with 300 nL L−1 1-MCP for 6 h. The development of chilling injury symptoms was ameliorated to a greater extent in 1-MCP-treated fruit during cold storage and ripening. A significant reduction in the decay incidence of 1-MCP-treated fruit was observed under both the storage conditions. 1-MCP at 600 nL L−1 for 12 h, in combination with cold storage (10 °C) seems a promising way to extend the storage life of guava cv. ‘Allahabad Safeda’ while 1-MCP at 300 nL L−1 for 12 and 24 h or 600 nL L−1 for 6 h, may be used to provide 4–5 days extended marketability of fruit under ambient conditions.  相似文献   

9.
Separate experiments were conducted with three major commercial avocado (Persea americana Mill.) cultivars grown in Florida: ‘Simmonds’ (early-season, West Indian race); ‘Booth 7’ (mid-season, Guatemalan-West Indian hybrid); and ‘Monroe’ (late-season, Guatemalan-West Indian hybrid). Fruit were harvested at preclimacteric stage and left untreated (Control) or treated 24 h after harvest with aqueous 1-methylcyclopropene (1-MCP) at 1.39 (treatment M1) or 2.77 μmol L−1 a.i. (treatment M2) (75 or 150 μg L−1) for 1 min at 20 °C. Whole fruit ripening was monitored at 20 °C/92% ± 3% R.H. and based on whole fruit firmness, respiration and ethylene evolution. Fruit volatiles were assessed at preclimacteric (24 h after harvest), mid-ripe (half of initial fruit firmness) and ripe maturity stages, from 100 g of chopped pulp using a purge and trap system. Untreated, firmer fruit ‘Monroe’ (268 N at harvest) ripened within 12 d of harvest while softer fruit ‘Simmonds’ (118 N) ripened within only 6 d. 1-MCP treatment extended ripening time from 33% (M1) to 83% (M2). All fruit softened normally, indicating the potential benefits of aqueous 1-MCP as a postharvest treatment for avocado when applied at these concentrations. Volatile profiles differed among the three cultivars with several compounds detected in only one cultivar, results that may contribute to a potential identification of the origin of the cultivar based on fruit volatile composition. The West Indian cultivar ‘Simmonds’ had much higher emission of hexanal (preclimacteric fruit) and cis-3-hexenal and cis-3-hexen-1-ol (ripe fruit) than the Guatemalan-West Indian hybrids ‘Booth 7’ and ‘Monroe’. On the other hand, these latter hybrids had much higher levels of alkanes than ‘Simmonds’. Treatment with 1-MCP increased emissions of alkanes during ripening of ‘Booth 7’ and ‘Monroe’. Total volatiles of avocado decreased during ripening mainly due to the significant reduction of sesquiterpenes, the main group of volatiles in all cultivars at harvest (‘Simmonds’, 53%; ‘Booth 7’, 78%; ‘Monroe’, 66%). β-Caryophyllene was the major compound at harvest, but decreased to less than 2% in ripe fruit, at which point most sesquiterpenes were not detected. Among the 10 sesquiterpenes commonly found in the avocado cultivars in this study, only α-Copaene had significantly higher emissions in mid-ripe fruit treated with the higher concentration of 1-MCP (2.77 μmol L−1 a.i.), suggesting that ethylene participates in the regulation of this sesquiterpene.  相似文献   

10.
Factors that affect the efficacy of 1-methycyclopropene (1-MCP) treatment of apples [Malus sylvestris (L.) Mill var. domestica (Borkh.) Mansf.] include cultivar and maturity. In this study, ‘McIntosh’, ‘Cortland’ and ‘Empire’ apples were categorized by internal ethylene concentrations (IECs) at harvest, treated with 1 μL L−1 1-MCP, and the IECs of individual fruit followed at 30 d intervals during air storage at 0.5 °C for 90 d. IECs at harvest ranged from <0.5 μL L−1 to ≥100 μL L−1, 51 < 100 μL L−1, and 10 < 50 μL L−1 for ‘McIntosh’, ‘Cortland’ and ‘Empire’, respectively. 1-MCP treatment resulted in a decrease of IECs in fruit of all cultivars by day 30 after harvest. During subsequent storage IECs remained low in fruit with <1 μL L−1 at harvest, but in ‘McIntosh’, ‘Cortland’ increased in proportion to IECs at harvest, but not in ‘Empire’. The importance of initial IECs in fruit on the persistence of 1-MCP inhibition of ethylene production was confirmed in a further experiment, in which IECs in untreated and 1-MCP treated ‘McIntosh’ and ‘Empire’ apples were measured for up to 194 d. 1-MCP also decreased 1-aminocyclopropene-1-carboxylic acid (ACC) concentrations in fruit. The results of our study are consistent with the hypothesis that IEC modulates the sensitivity of climacteric fruit to 1-MCP.  相似文献   

11.
‘Galia’ (Cucumis melo var. reticulatus L. Naud. cv. Galia) fruit were harvested at the three-quarter slip stage and treated with 1 μL L−1 1-methylcyclopropene (1-MCP) at 20 °C for 24 h. The fruit were processed and stored as fresh-cut cubes and intact fruit for 10 d at 5 °C. Ethylene production of fresh-cut cubes was approximately 4–5-fold higher than intact fruit at day 1. Afterward, the ethylene production of fresh-cut cubes declined significantly whereas that of intact fruit remained relatively constant at about 0.69–1.04 ng kg−1 s−1. 1-MCP delayed mesocarp softening in both fresh-cut and intact fruit and the symptoms of watersoaking in fresh-cut fruit. Continuously stored fresh-cut cubes and cubes derived from intact fruit not treated with the ethylene antagonist softened 27% and 25.6%, respectively, during 10 d storage at 5 °C while cubes derived from 1-MCP-treated fruit softened 9% and 17%, respectively. Fresh-cut tissue from 1-MCP-treated fruit exhibited slightly reduced populations of both total aerobic organisms and Enterobacterium, although the differences did not appear to be sufficient to explain the differences in keeping quality between 1-MCP-treated and control fruit. Based primarily on firmness retention and reduced watersoaking, 1-MCP treatment deferred loss of physical deterioration of fresh-cut ‘Galia’ cubes at 5 °C by 2–3 d compared with controls.  相似文献   

12.
Fruit of cv. Monthong durian (Durio zibethinus) were treated with 0 (control) or 500 nL L−1 1-MCP for 12 h at 25 °C. Fruit were then stored at 15 °C. To determine storage life, every 3 days a batch of fruit was transferred to 25 °C. The time to ripeness (adequate eating quality) at 25 °C in controls (no 1-MCP) decreased from 5 days in freshly harvested fruit to 3 days after 18 days of storage at 15 °C. Storage life was considered adequate if the time to ripeness was ≥3 days. The storage life at 15 °C of control fruit (no 1-MCP) was therefore 18 days. After the 1-MCP treatment the time to ripeness at 25 °C was 7 days in fresh fruit, while in fruit stored at 15 °C for 30 days it was about 3 days. The storage life at 15 °C of 1-MCP-treated fruit was therefore 30 days. Pulp firmness and pulp total soluble solids (TSS) were determined after 3 day storage intervals at 15 °C and when the fruit was ripe at 25 °C. These parameters were only slightly affected by the 1-MCP treatment. Furthermore, 1-MCP had no effect on pulp color, but delayed yellowing of the fruit exterior. It is concluded that treatment with 1-MCP before storage at 15 °C extended storage life from 18 to 30 days.  相似文献   

13.
The effects of controlled atmospheres (CA) on respiration, ethylene production, firmness, weight loss, quality, chilling injury, and decay incidence of three commercially important cultivars of guava fruit were studied during storage in atmospheres containing 2.5, 5, 8, and 10 kPa O2 with 2.5, 5, and 10 kPa CO2 (balance N2) at 8 °C, a temperature normally inducing chilling injury. Mature light green fruit of cultivars, ‘Lucknow-49’, ‘Allahabad Safeda’ and ‘Apple Colour’, were stored for 30 days either in CA or normal air, and transferred to ambient conditions (25–28 °C and 60–70% R.H.) for ripening. CA storage delayed and suppressed respiratory and ethylene peaks during ripening. A greater suppression of respiration and ethylene production was observed in fruit stored in low O2 (≤5 kPa) atmospheres compared to those stored in CA containing 8 or 10 kPa O2 levels. High CO2 (>5 kPa) was not beneficial, causing a reduction in ascorbic acid levels. CA storage was effective in reducing weight loss, and maintaining firmness of fruit. The changes in soluble solids content (SSC), titratable acidity (TA), ascorbic acid, and total phenols were retarded by CA, the extent of which was dependent upon cultivar and atmosphere composition. Higher amounts of fermentative metabolites, ethanol and acetaldehyde, accumulated in fruit held in atmospheres containing 2.5 kPa O2. Chilling injury and decay incidence were reduced during ripening of fruit stored in optimal atmospheres compared to air-stored fruit. In conclusion, guava cultivars, ‘Lucknow-49’, ‘Allahabad Safeda’, and ‘Apple Colour’ may be stored for 30 days at low temperature (8 °C) supplemented with 5 kPa O2 + 2.5 kPa CO2, 5 kPa O2 + 5 kPa CO2, and 8 kPa O2 + 5 kPa CO2, respectively.  相似文献   

14.
The research was conducted to evaluate the relationship between IAD index (index of absorption difference between 670 and 720 nm) values and internal quality attributes of apples treated with 1-methylcyclopropene (1-MCP) and stored in air and controlled atmospheres (CA). Apples of ‘8S6923’ (Aurora Golden Gala™), ‘Fuji’ and ‘Royal Gala’ were tested. The results with Aurora Golden Gala™ show that IAD index values were maintained at higher levels if the fruit were stored in CA and that 1-MCP had no significant effect on retaining at-harvest values. The IAD values correlated with chlorophyll a content in the peel (R2 = 0.95, P < 0.0001), but not with chlorophyll b content, internal ethylene levels, firmness or titratable acidity. ‘Royal Gala’ apples showed a similar response to Aurora Golden Gala™ apples, showing no correlation between IAD index values and internal quality attributes of those apples when treated with 1-MCP and/or CA. In contrast, ‘Fuji’ apples showed a relationship between IAD index value changes and internal ethylene concentrations (R2 = 0.67, P < 0.05) and titratable acidity changes (R2 = 0.89, P < 0.01), but not firmness. These results suggest that when 1-MCP and/or CA are applied to apples after harvest, that IAD index values do not consistently correlate to any internal quality attributes other than peel chlorophyll a content.  相似文献   

15.
Physiological responses and fruit quality of ‘d’Anjou’ pear fruit from five orchard lots were evaluated after cold storage in air or controlled atmospheres (CA) with the O2 concentration based on assessment of fruit chlorophyll fluorescence (CF) or standard conditions (1.5 kPa O2). The pCO2 for all CA fruit was 0.5 kPa. Softening, acid loss, and peel degreening of all lots were delayed at one or more evaluation dates (2, 4, 6, 8 months) by previous storage at the CF pO2 compared with fruit stored in 1.5 kPa O2 or in air. Superficial scald developed on fruit previously stored in air but not on fruit stored in a CA. Pithy brown core developed on fruit from all lots stored at the CF pO2 and on fruit stored at 1.5 kPa in 3 of the 5 lots. Pithy brown core incidence decreased with advanced harvest maturity. Post-storage ethylene and CO2 production were in most instances lowest for fruit stored at the CF pO2. A significant relationship between fruit ethanol content and pithy brown core incidence was observed. Results indicate low pO2 storage based on CF monitoring slows fruit ripening relative to fruit stored at 1.5 kPa O2, prevents superficial scald development compared with fruit stored in air, however, development of pithy brown core in fruit stored at the CF pO2 was not accompanied by a change in CF.  相似文献   

16.
Common food additives (sodium bicarbonate (SB), sodium carbonate (SC), and potassium sorbate (PS)) were compared to the fungicide fludioxonil for the control of gray mold on California-grown ‘Wonderful’ pomegranates artificially inoculated with Botrytis cinerea and stored at 7.2 °C in either air or controlled atmosphere (CA, 5 kPa O2 + 15 kPa CO2) conditions. Fludioxonil was superior to other treatments. PS was the most effective additive. Synergistic effects between antifungal treatments and CA storage were observed. After 15 weeks of storage at 7.2 °C, the combination of PS treatment (3 min dip in 3% solution at 21 °C) and CA storage was as effective as the combination of heated fludioxonil (30 s dip in 0.6 g L−1 of active ingredient at 49 °C) and air storage. Mixtures of PS with SB or SC did not improve the efficacy of either treatment alone. In tests conducted in commercial facilities, decay development and external and internal fruit quality were assessed on naturally infected pomegranates stored in either air or CA after application of a selected postharvest antifungal combined treatment (CTrt) integrating PS, SB + chlorine, and fludioxonil. CTrt was effective in controlling natural gray mold after 6 weeks of storage at 8.9 °C, but lacked persistence and it was not effective after 14 weeks. CA storage greatly enhanced decay control ability of CTrt. Skin red color was better maintained in CA-stored than in air-stored fruit. Juice color and properties (SSC, TA, and pH) were not practically affected by either postharvest treatment or storage condition. The integration of PS treatments with CA storage could provide an alternative to synthetic fungicides for the management of pomegranate postharvest decay.  相似文献   

17.
Blueberries are highly perishable and therefore it is necessary to develop strategies to increase their storage life. Two rabbiteye cultivars (‘Centurion’ and ‘Maru’) were stored at 1.5 °C in either regular air or controlled atmosphere (2.5 kPa O2 + 15 kPa CO2) for up to 6 weeks. Measurements of firmness, soluble solids content, titratable acidity, weight loss, shrivel and blemishes were combined with determinations of antioxidant activities and total phenolic content. Weight loss and shrivel were not affected by storage atmosphere or storage duration. After 28 days, controlled atmosphere storage resulted in only half as much blemished fruit compared with storage in regular air. Additionally, fungal development in ‘Maru’ fruit was minimised by controlled atmosphere storage.Water-soluble extracts from ‘Centurion’ fruit had higher antioxidant activities and total phenolic content than those from ‘Maru’ fruit at harvest and after storage in regular air and controlled atmosphere. The highest increases in antioxidant activity and total phenolic content occurred during the additional 6 days of shelf-life at 20 °C.  相似文献   

18.
‘Empire’ apples [Malus sylvestris (L.) Mill var. domestica (Borkh.) Mansf.] are susceptible to development of chilling injury, expressed as firm flesh browning, during controlled atmosphere (CA) storage. Because of this susceptibility, fruit are typically stored at 2–4 °C, but the incidence of flesh browning can be increased by 1-methylcyclopropene (1-MCP) treatment at these temperatures. In this study, flesh browning development has been investigated in relationship to ethylene production, internal ethylene concentration (IEC), flesh firmness, total phenolic concentrations, and the activities of polyphenol oxidase (PPO) and peroxidase (POX) in the flesh tissues. Fruit were harvested from two orchards, either untreated or 1-MCP treated, and then stored under CA conditions at either 0.5 or 4 °C. Fruit were removed from storage at 1.5-month intervals for 10.5 months. 1-MCP treated apples were firmer than those of untreated apples, and had lower IECs, at all removals. Flesh browning incidence and severity developed earlier in 1-MCP-treated apples than untreated apples stored at either temperature. Total phenolic concentrations differed by orchard, but no major differences in concentrations were detected between untreated and 1-MCP treated apples. However, PPO activities were higher in the flesh of 1-MCP treated apples than untreated apples from both orchards and at both storage temperatures. POX activity was not consistently affected by 1-MCP treatment or storage temperature. Overall, our results suggest that inhibited ethylene production, either as a result of storage at 0.5 °C, or by treatment with 1-MCP at either temperature, may cause stress and damage to cells and result in higher PPO activity that leads to progressive flesh browning development during CA storage.  相似文献   

19.
‘Raf’ tomato fruit were harvested at the mature-green stage and treated with 1-methylcyclopropene (1-MCP) at 0.5 (for 3, 6, 12 or 24 h) or 1 μl l−1 for 3 or 6 h. Fruit were stored at 10 °C for 7 days and a further 4 days at 20 °C for a shelf life period. All 1-MCP treatments reduced both ethylene production and respiration rate and in turn retarded the changes in parameters related to fruit ripening, such as fruit softening, colour (a*) change, and increase in ripening index (TSS/TA ratio). These effects were significantly higher when 1-MCP was applied at 0.5 μl l−1 for 24 h. In order to obtain the maximum benefit from 1-MCP, this treatment would be the most suitable for commercial purposes.  相似文献   

20.
Four cultivars of tomato fruit (‘Cherry’, ‘Daniela’, ‘Patrona’ and ‘Raf’) were harvested at two ripening stages (S1 and S2), treated with 0.5 μl l−1 of 1-methylcyclopropene (1-MCP) for 24 h and stored at 10 °C for 28 days. For all cultivars, control fruit deteriorated very rapidly (due to weight loss, softening, colour changes and decay) with an estimated shelf life of 7 days (‘Cherry’ and ‘Patrona’) and 14 days (‘Daniela’ and ‘Raf’), independently of the ripening stage at harvest. All quality parameters for all cultivars were delayed and/or inhibited in treated fruit, the efficacy of 1-MCP being higher in tomatoes harvested at the S2 ripening stage. At this stage, the organoleptic properties had already developed in fruit on the plant and tomatoes could thus reach consumers with optimal postharvest quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号