首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pharmacokinetic properties of flumequine and its metabolite 7-hydroxyflumequine were determined in six healthy sheep after single intramuscular (i.m.) and intravenous (i.v) injections at a dose of 6 mg/kg body weight. The tissue residues were determined in 20 healthy sheep after repeated i.m. administration with a first dose of 12 mg/kg and nine doses of 6 mg/kg. The flumequine formulation used was Flumiquil 3% Suspension Injectable®. The mean plasma concentrations of flumequine after i.v. administration were described by a three-compartment open model with a rapid distribution and a relatively slow elimination phase. The low value of volume of distribution at steady state (Vdss) (0.52 ± 0.24 L/kg) and high value of volume of distribution (Vdλ3) (5.05 ± 3.47 L/kg) emphasized the existence of a small compartment with a slow rate of return to the central compartment. The mean elimination half-life was 11.5 h. The 7-hydroxyflumequine plasma levels represented 2.3% of the total area under the curve. The mean plasma concentrations of flumequine after i.m. administration were characteristic of a two-compartment model with a first order absorption. The mean maximal plasma concentration (1.83 ± 1.15 μg/mL) was obtained rapidly, i.e. 1.39 ± 0.71 h after the i.m. administration. The fraction of dose absorbed from the injection site was 85.00 ± 30.13%. The minimal concentrations of flumequine during repeated treatment were significantly lower in females than in males. Eighteen hours after the last repeated i.m. admini-stration, the highest concentration of flumequine was observed at the injection sites followed by kidney, liver, muscle and fat. The highest concentration of 7-hydroxyflumequine was observed in the kidney and was ten times lower than the flumequine concentration. The longest flumequine elimination half-life was observed in the fat.  相似文献   

2.
Separate groups of goats were used to determine drug depletion patterns in serum (n=10), tissue (n=20) and milk (n=8) following a single intramuscular (i.m.) dose of 20 mg/kg of a long-acting oxytetracycline (OTC) formulation (Liquamycin LA-200). Milk residues were also determined following a subcutaneous (s.c.) administration of the same product at the same dose. Serum samples were taken for 24 h post-treatment and tissues (fat, liver, kidney, muscle and injection site) collected at 4, 7, 14, 21 and 28 days following injection. Milk from lactating goats was collected every 12 h for 8 days following both the i.m. and s.c. treatments utilizing an intervening 5-week washout period. Residues in serum and tissue were measured using a microbial inhibition assay, while milk residues were measured using both a microbial inhibition assay and a validated HPLC method. The serum pharmacokinetic parameters of OTC in goats were determined, with a mean AUC=67.4 microg h/mL, mean terminal half-life=14.4 h, and apparent clearance=0.33 L/kg h. Tissue half-lives could not be determined with confidence because the collection times provided only two points at which residues could be measured for most tissues. Oxytetracycline residues in all goat tissue samples measured less then cattle tissue tolerance by 96 h postdosing. One-compartment model describing milk depletion data for i.m. and s.c. dosing had terminal slope half-lives of 20.1 and 36.1 h, respectively. By 96 h post-treatment none of the milk samples contained OTC residues in excess of the cattle milk tolerance (0.3 p.p.m.). For both milk and tissue, the upper-bound 99% confidence intervals for the samples taken from goats 96 h postdosing were lower than approved cow milk and tissue tolerances.  相似文献   

3.
The effects of maturation on the intravenous (IV) and intramuscular (IM) pharmacokinetics of ceftiofur sodium following a dose of 2.2 mg ceftiofur equivalents/kg body weight were evaluated in 16 one-day-old Holstein bull calves (33-53 kg body weight initially; Group 1) and 14 six-month-old Holstein steers (217-276 kg body weight initially; Group 2). Group 1 calves were fed unmedicated milk replacer until 30 days of age and were then converted to the same roughage/concentrate diet as Group 2. Groups 1-IV and 2-IV received ceftiofur sodium IV, and Groups 1-IM and 2-IM received ceftiofur sodium IM. Group 1 calves were dosed at 7 days of age and at 1 and 3 months of age; group 2 calves were dosed at 6 and 9 months of age. Blood samples were obtained serially from each calf, and plasma samples were analysed using an HPLC assay that converts ceftiofur and all desfuroylceftiofur metabolites to desfuroylceftiofur acetamide. Cmax values were similar in all calves, and were no higher in younger calves than in older calves. Plasma concentrations remained above 0.150 μg ceftiofur free acid equivalents/mL for 72 h in 7-day-old calves, but were less than 0.150 μg/mL within 48 h following IV or IM injection for 6- and 9-month-old calves. Intramuscular bioavailability, assessed by comparing the model-derived area under the curve (AUCmod) from IM and IV injection at each age, appeared to be complete. After IV administration, the AUCmod in 7-day-old and 1-month-old calves (126.92±21.1 μg-h/mL and 135.0±21.6 μg.h/mL, respectively) was significantly larger than in 3-, 6- and 9-month-old calves (74.0±10.7 μg.h/mL, 61.0±17.7 μg.h/mL and 68.5±12.8 μg.h/mL, respectively; P< 0.0001). The Vd(ss) decreased linearly within the first 3 months of life in cattle (0.345±0.0616 L/kg, 0.335±0.919 L/kg and 0.284±0.0490 L/kg, respectively; P= 0.031), indicative of the decreasing extracellular fluid volume in maturing cattle. The Clb was significantly smaller in 7-day-old and 1-month-old calves (0.0178±0.00325 L/h.kg and 0.0167±0.00310 L/h.kg, respectively) than in 3-, 6- and 9-month-old calves (0.0303±0.0046 L/h.kg, 0.0398±0.0149 L/h.kg and 0.0330±0.00552 L/h.kg, respectively; P≦0.001). This observation may be indicative of maturation of the metabolism and/or excretion processes for ceftiofur and desfuroylceftiofur metabolites. The approved dosage regimens for ceftiofur sodium of 1.1-2.2 mg/kg administered once daily for up to 5 consecutive days will provide plasma concentrations above the MIC for bovine respiratory disease pathogens for a longer period of time in neonatal calves than in older calves. Peak plasma concentrations of ceftiofur and desfuroylceftiofur metabolites were no higher in neonatal calves than in more mature cattle, highly suggestive that peak tissue concentrations would be no higher in neonatal calves than in more mature cattle.  相似文献   

4.
After intramuscular (IM) administration (dose 20 mg/kg) of three 20% (Terramycin/LA (product A), Alamycin LA (product B) and Terralon 20% LA (product C) and two 10% oxytetracycline (OTC) formulations (Engemycin 10% (product D) and Oxyject 10% (product E)), to calves, pigs and sheep, the OTC residue concentrations were determined in organs, muscle, fat, plasma, urine and at the injection sites at 10 days post injection (p.i.). At that time the irritation at the injection site was studied, too. The three 20%-formulations (products A, B, C) and one 10%-formulation (product E) induced considerable local irritation in and between the muscles. This was most pronounced in calves and pigs; in sheep the extent of irritation was limited. Ten days after administration of formulations A, B, C and E, OTC residues were found in organs and the OTC recovery at the injection sites varied widely among the three species. Following IM injection of product D minimal tissue irritation and no OTC residues could be detected at the injection site at 10 days p.i. The differences in local tissue irritation and the residue state of the carcass (including injection site) are related to the various solvent systems used in the formulations.  相似文献   

5.
The pharmacokinetics of florfenicol (FF) and its metabolite, florfenicol amine (FFA), were studied in rice field eel (Monopterus albus) after a single dose (20 mg/kg) by intramuscular (i.m.) or oral gavage (p.o.) dose at 25 °C. The elimination half‐lives (t1/2β), peak concentration of FF (Cmax), and time to reach FF peak concentration (Tmax) in plasma were estimated as 18.39 h, 10.83 μg/mL, and 7.00 h, respectively, after i.m. injection and 13.46 h, 8.37 μg/mL, and 5 h, respectively, after p.o. administration. The Tmax values of FF in tissues (i.e., kidney, muscle, and liver) were larger for i.m. injection compared with those for p.o. administration. The t1/2β had the following order kidney > muscle > liver for i.m. administrated and kidney > liver > muscle for p.o. administrated. The largest area under the concentration–time curve (AUC) was calculated to be 384.29 mg · h/kg after i.m. dosing, and the mean residence time (MRT) was 42.46 h by oral administration in kidney. FFA was also found in all tissues with a lower concentration than FF for both i.m. and p.o. administrations throughout the study. The elimination of FFA was slow with a t1/2β between 18.19 and 47.80 h in plasma and tissues. The mean metabolic rate of FFA for i.m. and p.o. administrations was >23.30%.  相似文献   

6.
The present study aimed to characterize the pharmacokinetic profile of oxytetracycline long‐acting formulation (OTC‐LA) in Thai swamp buffaloes, Bubalus bubalis, following single intramuscular administration at two dosages of 20 and 30 mg/kg body weight (b.w.). Blood samples were collected at assigned times up to 504 h. The plasma concentrations of OTC were measured by high‐performance liquid chromatography (HPLC). The concentrations of OTC in the plasma were determined up to 264 h and 432 h after i.m. administration at doses of 20 and 30 mg/kg b.w., respectively. The Cmax values of OTC were 12.11 ± 1.87 μg/mL and 12.27 ± 1.92 μg/mL at doses of 20 and 30 mg/kg, respectively. The AUClast values increased in a dose‐dependent fashion. The half‐life values were 52.00 ± 14.26 h and 66.80 ± 10.91 h at doses of 20 and 30 mg/kg b.w, respectively. Based on the pharmacokinetic data and PK–PD index (T > MIC), i.m. administration of OTC at a dose of 30 mg/kg b.w once per week might be appropriate for the treatment of susceptible bacterial infection in Thai swamp buffaloes.  相似文献   

7.
Antibiotic concentrations were determined in the lacrimal fluid of sheep following subcutaneous application of penicillin/ dihydrostreptomycin into the lower eyelid, and intramuscular administration of spiramycin base, tiamulin, and oxytetracycline formulations. The penetration of penicillin and dihydrostreptomycin into the lacrimal fluid was poor. The spiramycin and tiamulin concentrations in the lacrimal fluid were 10‐ and 4‐fold higher than in the serum. The peak spiramycin concentration in the lacrimal fluid was 3.4 ±0.8 μg/ml at 8 h post injection (p.i.) and the drug could be detected at least 72 h p. i. For tiamulin and oxytetracycline (OTC) peak concentrations of 1.53 ±0.70 and 1.88 ±1.9 μg/ml, respectively, were achieved in the lacrimal fluid and these drugs could be detected 25 to 30 h p.i. The OTC and tiamulin concentration‐time curves for lacrimal fluid and serum were parallel, whereas for the spiramycin appearance in the lacrimal fluid was delayed.  相似文献   

8.
The objective of this study was to investigate the pharmacokinetics and tissue disposition of meloxicam after repeated oral administration in calves. Thirteen male British × Continental beef calves aged 4 to 6 months and weighing 297–392 kg received 0.5 mg/kg meloxicam per os once daily for 4 days. Plasma meloxicam concentrations were determined in 8 calves over 6 days after first treatment. Calves were randomly assigned to be euthanized at 5, 10, 15 (n = 3/timepoint), and 19 days (n = 4) after final administration. Meloxicam concentrations were determined in plasma (LOQ= 0.025 μg/mL) and muscle, liver, kidney, and fat samples (LOQ = 2 ng/g) after extraction using validated LC–MS–MS methods. The mean (± SD) Cmax, Cmin, and Caverage plasma meloxicam concentrations were 4.52 ± 0.87 μg/mL, 2.95 ± 0.77 μg/mL, and 3.84 ± 0.81 μg/mL, respectively. Mean (± SD) tissue meloxicam concentrations were highest in liver (226.67 ± 118.16 ng/g) and kidney samples (52.73 ± 39.01 ng/g) at 5 days after final treatment. Meloxicam concentrations were below the LOQ in all tissues at 15 days after treatment. These findings suggest that tissue from meloxicam‐treated calves will have low residue concentrations by 21 days after repeated oral administration.  相似文献   

9.
Experiments in different animal species have shown that febrile conditions, induced by Escherichia coli lipopolysaccharide (LPS), may alter the pharmacokinetic properties of drugs. The objective was to study the effects of a LPS‐induced acute‐phase response (APR) model on plasma pharmacokinetics of florfenicol (FFC) after its intravenous administration in sheep. Six adult clinically healthy Suffolk Down sheep, 8 months old and 35.5 ± 2.2 kg in body weight (bw), were distributed through a crossover factorial 2 × 2 design, with 4 weeks of washout. Pairs of sheep similar in body weight were assigned to experimental groups: Group 1 (LPS) was treated with three intravenous doses of 1 μg/kg bw of E. coli LPS before FFC treatment. Group 2 (control) was treated with an equivalent volume of saline solution (SS) at similar intervals as LPS. At 24 h after the first injection of LPS or SS, an intravenous bolus of 20 mg/kg bw of FFC was administered. Blood samples (5 mL) were collected before drug administration and at different times between 0.05 and 48.0 h after treatment. FFC plasma concentrations were determined by liquid chromatography. A noncompartmental pharmacokinetic model was used for data analysis, and data were compared using a Mann–Whitney U‐test. The mean values of AUC0–∞ in the endotoxaemic sheep (105.9 ± 14.3 μg·h/mL) were significantly higher (< 0.05) than values observed in healthy sheep (78.4 ± 5.2 μg·h/mL). The total mean plasma clearance (CLT) decreased from 257.7 ± 16.9 mL·h/kg in the control group to 198.2 ± 24.1 mL·h/kg in LPS‐treated sheep. A significant increase (< 0.05) in the terminal half‐life was observed in the endotoxaemic sheep (16.9 ± 3.8 h) compared to the values observed in healthy sheep (10.4 ± 3.2 h). In conclusion, the APR induced by the intravenous administration of E. coli LPS in sheep produces higher plasma concentrations of FFC due to a decrease in the total body clearance of the drug.  相似文献   

10.
In pregnant sheep at 120–130 days of gestational age, a study was undertaken in order to characterize the pharmacokinetics and transplacental exchange of Ivermectin after maternal or fetal intravenous administration. Eight pregnant Suffolk Down sheep of 73.2 ± 3.7 kg body weight (bw) were surgically prepared in order to insert polyvinyl catheters in the fetal femoral artery and vein and amniotic sac. Following 48 h of recovery, the ewes were randomly assigned to two experimental groups. In group 1, (maternal injection) five ewes were treated with an intravenous bolus of 0.2 mg ivermectin/kg bw. In group 2, (fetal injection) three ewes were injected with an intravenous bolus of 1 mg of ivermectin to the fetus through a fetal femoral vein catheter. Maternal and fetal blood and amniotic fluid samples were taken before and after ivermectin administration for a period of 144 h post‐treatment. Samples were analyzed by liquid chromatography (HPLC). A computerized non‐compartmental pharmacokinetic analysis was performed and the results were compared by means of the Student t‐test. The main pharmacokinetic changes observed in the maternal compartment were increases in the volume of distribution and in the half‐life of elimination (t½β). A limited maternal‐fetal transfer of ivermectin was evidenced by a low fetal Cmax (1.72 ± 0.6 ng/mL) and AUC (89.1 ± 11.4 ng·h/mL). While the fetal administration of ivermectin resulted in higher values of clearance (554.1 ± 177.9 mL/kg) and lower values of t½β (8.0 ± 1.4 h) and mean residence time (8.0 ± 2.9 h) indicating that fetal‐placental unit is highly efficient in eliminating the drug as well as limiting the transfer of ivermectin from the maternal to fetal compartment.  相似文献   

11.
Flunixin meglumine (FM, 1.1 mg/kg) and phenylbutazone (PBZ, 4.4 mg/kg) were administered intravenously (i.v.) as a single dose to eight sheep prepared with subcutaneous (s.c.) tissue-cages in which an acute inflammatory reaction was stimulated with carrageenan. Pharmacokinetics of FM, PBZ and its active metabolite oxyphenbutazone (OPBZ) in plasma, exudate and transudate were investigated. Plasma kinetics showed that FM had an elimination half-life (t½β) of 2.48 ± 0.12 h and an area under the concentration – time curve (AUC) of 30.61 ± 3.41 μg/mL.h. Elimination of PBZ from plasma was slow (t½β = 17.92 ± 1.74 h, AUC = 968.04 ± μg/mL.h.). Both FM and PBZ distributed well into exudate and transudate although penetration was slow, indicated by maximal drug concentration (Cmax) for FM of 1.82 ± 0.22 μg/mL at 5.50 ± 0.73 h (exudate) and 1.58 ± 0.30 μg/mL at 8.00 h (transudate), and Cmax for PBZ of 22.32 ± 1.29 μg/mL at 9.50 ± 0.73 h (exudate) and 22.07 ± 1.57 μg/mL at 11.50 ± 1.92 h (transudate), and a high mean tissue-cage fluids:plasma AUClast ratio obtained in the FM and PBZ groups (80–98%). These values are higher than previous reports in horses and calves using the same or higher dose rates. Elimination of FM and PBZ from exudate and transudate was slower than from plasma. Consequently the drug concentrations in plasma were initially higher and subsequently lower than in exudate and transudate.  相似文献   

12.
The pharmacokinetic properties of ketoprofen were determined in 4‐week‐old calves after intramuscular (i.m.) injection of a racemic mixture at a dose of 3 mg/kg body weight. Due to possible enantioselective disposition kinetics and chiral inversion, the plasma concentrations of the R(?) and S(+) enantiomer were quantified separately, using a stereospecific HPLC‐UV assay. A distinct predominance of the S(+) enantiomer was observed, as well as significantly different pharmacokinetic parameters between R(?) and S(+) ketoprofen. More in specific, a greater value for the mean area under the plasma concentration–time curve (AUC0→∞) (46.92 ± 7.75 and 11.13 ± 2.18 μg·h/mL for the S(+) and R(?) enantiomer, respectively), a lower apparent clearance (Cl/F) (32.8 ± 5.7 and 139.0 ± 25.1 mL/h·kg for the S(+) and R(?) enantiomer, respectively) and a lower apparent volume of distribution (Vd/F) (139 ± 14.7 and 496 ± 139.4 mL/kg for the S(+) and R(?) enantiomer, respectively) were calculated for the S(+) enantiomer, indicating enantioselective pharmacokinetics for ketoprofen in calves following i.m. administration.  相似文献   

13.
Objective To investigate tissue residues of two longacting oxytetracycline (OTC) preparations in cattle.
Design A randomised drug residue trial.  

Animals


Two hundred and forty beef cattle in 24 groups of ten.
Procedure Two blind-coded 200 mg/mL OTC preparations were used in five treatment regimens of various combinations of injection sites (from one to five) and administrations (one or two). Five cattle from each group were slaughtered at 21, 30 and 60 days after injection and the injection site, urine, kidney and diaphragm muscle analysed for residues.
Results The OTC concentration exceeded the maximum residue limit in kidney in animals slaughtered 21 days after treatment, which is the prescribed withholding period. Concentration at the injection site was much greater than the maximum residue limit 30 days post-treatment, but not 45 days post-treatment. The residue was smaller when OTC had been injected in multiple sites. There was no difference between the two OTC preparations.
Conclusion A review of the maximum injection volume, site of injection and the withholding period is needed for long-acting OTC formulations.  相似文献   

14.
Clothier, K. A., Leavens, T., Griffith, R. W., Wetzlich, S. E., Baynes, R. E., Riviere, J. E., Tell, L. A. Tulathromycin assay validation and tissue residues after single and multiple subcutaneous injections in domestic goats (Capra aegagrus hircus). J. vet. Pharmacol. Therap.  35 , 113–120. Tulathromycin is a macrolide antimicrobial labeled for treatment of bacterial pneumonia in cattle and swine. The purpose of the present research was to evaluate tissue concentrations of tulathromycin in the caprine species. A tandem mass spectrometry regulatory analytical method that detects the common fragment of tulathromycin in cattle and swine was validated with goat tissues. The method was used to study tulathromycin depletion in goat tissues (liver, kidney, muscle, fat, injection site, and lung) over time. In two different studies, six juvenile and 25 market‐age goats received a single injection of 2.5 mg/kg of tulathromycin subcutaneously; in a third study, 18 juvenile goats were treated with 2.5, 7.5, or 12.5 mg/kg tulathromycin weekly with three subcutaneous injections. Mean tulathromycin tissue concentrations were highest at injection site samples in all studies and all doses. Lung tissue concentrations were greatest at day 5 in market‐age goats while in the multi‐dose animals concentrations demonstrated dose‐dependent increases. Concentrations were below limit of quantification in injection site and lung by day 18 and in liver, kidney, muscle, and fat at all time points. This study demonstrated that tissue levels in goats are very similar to those seen in swine and cattle.  相似文献   

15.
The oxytetracycline (OTC) disposition was studied in a group of six calves following the administration of an oxytetracycline‐10 per cent formulation (i) intravenously (i.v.), (ii) subcutaneously (s. c.) in the lateral neck, and intramuscularly (i. m.) in (iii) the lateral neck, (iv) the shoulder (M. triceps brachii), and (v) the buttock (M. semitendineus). The dose levels used for the intravenous route and other routes were respectively 17.0 ± 2.3 and 18.3 ± 1.25 mg OTC/kg. The peak OTC concentrations (Cmax) were achieved with the s. c. and i. m. routes between 4 and 8 hours after injection, the highest being found after application in the shoulder (Cmax:6.9 ± 0.82 μg/ml plasma). The Cmax for the s.c. and other i.m. routes of application was similar to each other, ranging from 5.0 to 5.5 μg/ml plasma. For different points in time after injection the partial bioavailability was calculated. At 52 h post injection (p.i.) maximal bioavailability was observed for the i.m. shoulder route, viz. 98.1 ± 7.0 per cent of the administered dose, while at 76 h p.i. similar bioavailabilities were achieved for the i.m. neck and shoulder route, namely 93.3 ± 8.9 and 99.4 ± 4.2 per cent, respectively. The lowest bioavailability (83.1 ± 13.4 per cent) was obtained following the i.m. buttock route at 76 p.i.

An obvious irritating effect was observed after s.c. application in the neck an di.m. injection in the buttock, which had disappeared at 5 days p.i. It is assumed that the longer persistence of OTC in plasma resulting with the latter two routes of administration was due to this irritation effect.  相似文献   

16.
The disposition of an aqueous suspension of procaine penicillin G (300 000 U/ mL) was studied in feedlot steers. Four groups of three steers were used. Steers in groups 1 and 2 received procaine penicillin G once daily for 5 days intramuscularly (i.m.) at a dose of 24 000 U/kg (group 1) or of 66 000 U/kg (group 2). The injection on the last day was administered in the gluteal muscle. Steers in group 3 (i.m. neck injection) and group 4 [subcutaneous (s.c.) injection] each received a single dose of procaine penicillin G at a dose of 66 000 U/kg. From every animal, after the last injection in groups 1 and 2 and following the single injection in groups 3 and 4, a series of blood samples was taken at fixed time intervals. The plasma from these samples was analysed for penicillin G by a high performance liquid chromatography (HPLC) assay in order to determine the disposition of penicillin. The maximum plasma concentration (Cmax) and the area under the curve (AUC) were significantly different between groups 1 and 2, but we found no difference in the disappearance rate constant between these two groups. Group 4 single s.c. injections produced a lower mean Cmax (1.85 ± 0.27 ng/mL) than the mean Cmax (4.24 ± 1.08 μg/mL) produced in group 3 by i.m. injections into the neck muscle or the mean Cmax (2.63 ± 0.27 μg/mL) produced in group 2 by i.m. injections into the gluteal muscle. However the mean Cmax produced by i.m. injections into the neck muscles (group 3) was higher than the mean Cmax produced by i.m. injections into the gluteal muscle (group 2). Additionally, the disappearance t½, was longer (18.08 h) in group 4 following the s.c. injection and shorter (8.85 h) in group 3 following the i.m. neck injection, than the t½ following administration of the same dose i.m. into the gluteal muscle (15.96 h) in group 2. In this study, when procaine penicillin G was injected into the gluteal muscle, doses of 66 000 U/kg were necessary to produce plasma concentrations that were above a minimum inhibitory concentration (MIC) for penicillin G of 1.0 μg/mL as compared to doses of 24 000 U/kg.  相似文献   

17.
The giant river shrimp (Macrobrachium rosenbergii), a native species of Thailand, is either exported for commercial purposes or supplied to meet the local requirements in Thailand. Limited pharmacokinetic information of the major antibiotic, oxytetracycline (OTC), is available for this freshwater shrimp. The purpose of the present study was to investigate the muscle tissue kinetics of OTC in M. rosenbergii following either intramuscular (i.m.) or oral (p.o.) administration at two dosages of 11 and 22 mg/kg body weight (b.w.). The concentration of OTC in shrimp tissues was measured using high‐performance liquid chromatography (HPLC) equipped with a fluorescence detector. Muscle tissue concentrations were below the detection limit (LOD, 0.1 μg/g) after 96 and 120 h, following i.m. and p.o. administration, respectively. Peak muscle concentrations (Cmax) were 3.47 and 1.73 μg/g after i.m. and p.o. administration at a single dose of 11 mg/kg b.w. whereas they were 6.03 and 2.51 μg/g at a single dose of 22 mg/kg b.w., respectively. A noncompartment model was developed to describe the pharmacokinetics of OTC in the giant freshwater shrimp. The terminal half‐lives of OTC were 28.68 and 28.09 h after i.m. and p.o. administration at a single dose of 11 mg/kg b.w., but 29.95 and 27.03 h at a single dose of 22 mg/kg b.w., respectively. The relative bioavailability was 82.32 and 64.67% following i.m. and p.o. administration, respectively. Based on the pharmacokinetic data, i.m. and p.o. administration with OTC at a dose of 11 mg/kg b.w. would be appropriate for use in giant freshwater shrimp farming. To avoid the OTC residue in shrimp muscle, it should take at least seven half‐lives (8 days) to wash out the drug from the muscle of M. rosenbergii.  相似文献   

18.
建立了一种可准确定性定量检测4种牛可食性组织中莫昔克丁残留的液相色谱-三重四极杆/线性离子阱(LC-Qtrap)复合质谱分析技术。牛肌肉、肝脏、肾脏和脂肪样品经乙腈提取,高速离心去除蛋白质等杂质,C18柱净化。以0.1%甲酸水溶液和0.1%甲酸乙腈溶液为流动相进行洗脱,在BEH C18色谱柱上实现分离,在电喷雾正离子(ESI+)模式下,用多反应监测联合信息依赖性采集与增强子离子扫描(MRM-IDA-EPI)模式检测,基质匹配标准溶液外标法定量。结果表明:莫昔克丁在牛肌肉和牛肾脏1~100 ng/mL的基质匹配浓度范围内;在牛肝脏1~200 ng/mL的基质匹配浓度范围内和在牛脂肪1~1000 ng/mL的基质匹配浓度范围内均呈现良好的线性关系,相关系数(R 2)均大于0.990;在4种牛可食性组织中莫昔克丁的定量限均为2μg/kg。莫昔克丁在牛肌肉2~40μg/kg、牛肝脏2~200μg/kg、牛肾脏2~100μg/kg和牛脂肪2~1000μg/kg添加浓度水平上的回收率范围为65.6%~115%;批内与批间相对标准偏差均小于15%。该方法具有简便快速、灵敏度高、定性准确,重复性好等特点,可以满足上述组织中莫昔克丁残留检测的要求。  相似文献   

19.
Huang, R. A., Letendre, L. T., Banav, N., Fischer, J., Somerville, B. Pharmacokinetics of gamithromycin in cattle with comparison of plasma and lung tissue concentrations and plasma antibacterial activity. J. vet. Pharmacol. Therap. 33 , 227–237. The pharmacokinetics (PK) and dose proportionality of gamithromycin (ZACTRAN®), a novel azalide, after a single intravenous (i.v.) dose of 3 mg/kg or subcutaneous (s.c.) injection at 3, 6 and 9 mg/kg body weight were studied in 13 male castrate and 13 female Angus cattle. Following i.v. administration, the mean area under the curve extrapolated to infinity (AUCinf) was 4.28 ± 0.536 μg·h/mL, and mean elimination half‐life (t1/2) was 44.9 ± 4.67 h, with a large volume of distribution (Vss) of 24.9 ± 2.99 L/kg and a high clearance rate (Clobs) of 712 ± 95.7 mL/h/kg. For cattle treated with s.c. injection of 3, 6 or 9 mg/kg, mean AUCinf values were 4.55 ± 0.690, 9.42 ± 1.11 and 12.2 ± 1.13 μg·h/mL, respectively, and the mean elimination half‐lives (t1/2) were 51.2 ± 6.10, 50.8 ± 3.80 and 58.5 ± 5.50 h. Gamithromycin was well absorbed and fully bioavailable (97.6–112%) after s.c. administration. No statistically significant (α = 0.05) gender differences in the AUCInf or elimination half‐life values were observed. Dose proportionality was established based on AUCInf over the range of 0.5 to 1.5 times of the recommended dosage of 6 mg/kg of body weight. Further investigations were conducted to assess plasma PK, lung/plasma concentration ratios and plasma antibacterial activity using 36 cattle. The average maximum gamithromycin concentration measured in whole lung homogenate was 18 500 ng/g at first sampling time of 1 day (~24 h) after treatment. The ratios of lung to plasma concentration were 265, 410, 329 and 247 at 1, 5, 10 and 15 days postdose. The lung AUCinf was 194 times higher than the corresponding plasma AUCinf. The apparent elimination half‐life for gamithromycin in lung was 90.4 h (~4 days). Antibacterial activity was observed with plasma collected at 6 h postdose with a corresponding average gamithromycin plasma concentration of 261 ng/mL. In vitro plasma protein binding in bovine plasma was determined to be 26.0 ± 0.60% bound over a range of 0.1–3.0 μg/mL of gamithromycin. The dose proportionality of AUC, high bioavailability, rapid and extensive distribution to lung tissue and low level of plasma protein binding are beneficial PK parameters for an antimicrobial drug used for the treatment and prevention of bovine respiratory disease.  相似文献   

20.
A physiologically based pharmacokinetic model (PBPK) for oxytetracycline (OTC) residues in sheep was developed using previously published data from a combined serum pharmacokinetic and tissue residue study [Craigmill et al. (2000) J. Vet. Pharmacol. Ther.23, 345]. Physiological parameters for organ weights and tissue blood flows were obtained from the literature. The tissue/serum partition coefficients for OTC were estimated from the serum and tissue residue data obtained at slaughter. The model was developed to include all of the tissues for which residue data were available (serum, kidney, liver, fat, muscle and injection site), and all of the remaining tissues were combined into a slowly perfused compartment with low permeability. Total body clearance of OTC calculated in the previous study was used as the starting value for clearance in the PBPK model, with the kidney being the only eliminating organ. The model was built using ACSL (Advanced Continuous Simulation Language) Graphic Modeler, and the model was fit to the serum and tissue data using the ACSL Math/Optimizer software (AEgis Technologies Group, Inc., Huntsville, AL, USA). A sensitivity analysis was also performed to determine which parameters had the greatest effect on the goodness of fit. Numerous strategies were tested to model the injection site, and a model providing a biexponential absorption of the drug from the injection bolus gave the best fit to the experimental data. The model was validated using the clearance parameters calculated from the traditional pharmacokinetic model for each individual animal in the PBPK model. This simple PBPK model well predicted OTC residues in sheep tissues after intramuscular dosing with a long-acting preparation and may find use for other species and other veterinary drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号