首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
【目的】将微波加热与甘油利用相结合的综合炼制工艺用于木质纤维素生物质预处理,探索其在燃料乙醇制备中的可行性,为实现经济可行、经济有效的木质纤维素生物质酶解预处理技术和生物燃料生产提供基础信息。【方法】以银腺杨、日本落叶松、刚竹和柳枝稷为试验材料,采用微波液化法对其进行液化处理,将液化产物分为纤维素、半纤维素和木质素组分,并对纤维素纤维组分进行综合表征。【结果】化学分析结果表明,纤维素纤维具有较高的葡聚糖含量;红外光谱显示,木质素和半纤维素的信号逐渐减弱,说明半纤维素和木质素经液化处理后有效脱除;XRD分析结果表明,纤维素纤维结晶度高、表面积大。【结论】相比原木质纤维素生物质,银腺杨、日本落叶松、刚竹和柳枝稷4种原材料纤维素纤维的酶解糖化效率均有不同程度提升(最高酶解转化率可达70%),液化固体产物--纤维素纤维在制备燃料乙醇中具有广阔的潜力和前景。  相似文献   

2.
木质纤维素具有储量大、可再生等特点,是生物质精炼的重要原料。通过酶水解将高聚糖转化为葡萄糖、木糖等单糖,是目前木质纤维素生物质精炼的重要途径。传统观点认为,酶水解体系中的底物木质素和溶解木质素都会阻碍木质纤维原料中纤维素的酶水解,主要表现为木质素阻碍了纤维素酶对纤维素的可及性、木质素对纤维素酶的非生产性吸附和溶解的木质素或类木质素结构(木质素衍生的酚类分子)对纤维素酶的抑制作用。但是近几年的研究表明,在酶水解体系中加入适量的水溶性木质素可有效促进含木质素底物中纤维素的酶水解。笔者总结了近年来水溶性木质素对木质纤维素生物质酶水解的研究进展,从纤维素酶-木质素相互作用的角度探讨了水溶性木质素对纤维素酶水解的促进作用,提出了水溶性木质素与纤维素酶之间的作用机理,即水溶性木质素与底物木质素对纤维素酶存在竞争吸附,水溶性木质素与纤维素酶的吸附域结合形成木质素-纤维素酶复合物,可有效减少底物木质素对纤维素酶的非生产性吸附,从而提高木质纤维素生物质的酶水解转化效率。  相似文献   

3.
低共熔溶剂(DESs)是一种新型绿色溶剂,具有蒸汽压低、合成过程简单、价格低廉、无毒、可生物降解等优点,被认为是最有发展潜力的生物质预处理试剂之一,在木质纤维类生物质领域中的研究应用逐年增加。综述了DESs在木质素、纤维素和半纤维素的溶解、改性以及利用等相关方面的研究进展,分析了DESs氢键供体和氢键受体种类、摩尔比、浓度、处理温度等条件对三大素溶解性能的影响,以及三大素在DESs中酯化、活化和降解等的研究现状。介绍了DESs预处理稻壳、玉米芯、农作物秸秆、木材等木质纤维类原料的研究现状,利用DESs预处理木质纤维类生物质主要是提取并获得高纯木质素组分,同时提高富纤维物质的葡萄糖得率和木糖得率,对DESs预处理木质纤维类生物质的机理进行了分析。重点介绍了利用DESs预处理纸浆等木质纤维类生物质制备纳米纤维素的研究进展。最后,提出了DESs在木质纤维类生物质领域研究的发展方向,以期为DESs应用于木质纤维类生物质资源化利用提供依据和参考。  相似文献   

4.
针对己糖(葡萄糖)、戊糖(木糖)共发酵产纤维素乙醇抑制物控制的关键性瓶颈,分别以玉米秸秆及玉米秸秆中非木质素的4类组分纤维素、半纤维素、热水提取物和乙醇提取物为原料,并以0.75%稀硫酸和180℃预处理40 min得到5种稀酸预处理液。以60 g/L葡萄糖和30 g/L木糖为碳源,分别添加上述稀酸预处理液,比较了5种预处理液对休哈塔假丝酵母(Candida shehatae)共发酵产乙醇的影响,并探究主要抑制物来源。结果表明:133 g/L全玉米秸秆稀酸预处理的降解物会完全抑制C.shehatae糖代谢和共发酵。在玉米秸秆稀酸预处理过程中,4类非木质素组分降解物均会导致乙醇得率下降,其中100 g/L纤维素降解物完全抑制木糖的发酵,半纤维素降解物同时抑制葡萄糖和木糖的发酵,甚至对酵母产生致死毒性,热水提取物和乙醇提取物降解物延滞糖利用和酵母生长。玉米秸秆共发酵产乙醇抑制物主要来自于纤维素和半纤维素在稀酸预处理中的降解反应,主要为甲酸、乙酸、乙酰丙酸、5-羟甲基糠醛和糠醛,同时还存在着其他降解产物的毒性或协同毒性。  相似文献   

5.
为优化桉木高温热水预处理的工艺条件,用傅立叶红外光谱(FT-IR)、扫描电镜(SEM)、X射线衍射(XRD)等手段分析预处理渣的理化特性。结果表明,最佳的预处理条件为:预处理温度180℃,时间20 min,绝干木粉与水1∶20(g∶mL)。此条件下,预处理液中木糖、葡萄糖的转化率分别为81.93%和2.21%。桉木木粉经最优条件预处理后,大部分半纤维素被水解;纤维素的相对结晶度基本不变;碳水化合物的结构变的松散,纹孔膜破裂,纤维碎片增多,极大的提高了后续纤维素酶的可及度。对最优条件下预处理渣的进一步酶解:发现葡萄糖的转化率高达80.52%,比未经预处理直接酶解提高3.63倍。对酶解残渣的进一步分析可知,桉木原料87.12%的酸不溶木质素可在酶解残渣中得到回收,这有利于木质素的综合利用。  相似文献   

6.
木质纤维生物质高值转化生产清洁能源、生物基化学品和功能材料是可再生能源领域的研究热点.纤维素是木质纤维生物质的主要成分,其高效利用是生物炼制的重点.然而,纤维素的生物转化面临分子链有序组装与结晶而成的超分子结构、微纤丝聚集形成的多尺度网络结构及其与木质素、半纤维素的多种化学交联共同形成的木质纤维素抗降解屏障,阻碍了其产...  相似文献   

7.
酸预处理对毛竹酶解糖化的影响   总被引:1,自引:0,他引:1  
竹子富含纤维素和半纤维素,是生产纤维素乙醇的潜在原料来源。而预处理过程是研究的重点和难点之一。本文以毛竹为原料,研究了微波消解稀酸预处理对其化学组成及其酶水解的影响。结果表明,预处理条件为酸用量为2%(w/w干物质),固液比1∶6,温度180℃,时间30min时,能脱除97.2%的半纤维素。预处理得到的底物在酶用量为纤维素酶20FPU/g纤维素和β-葡萄糖苷酶40IU/g纤维素,水解48h,纤维素水解得到葡萄糖的收率由2.41%(未经预处理)提高到52.72%。酶水解过程中,酸不溶木质素的存在,可导致葡萄糖收率的降低。  相似文献   

8.
在木质纤维素的生物降解和转化过程中,木质纤维素的复杂结构和木质素组分限制了碳水化合物的高效酶水解。过氧化氢预处理可以通过破坏木质纤维素的物理化学结构并氧化降解部分木质素,从而改善原料的酶水解效率。过氧化氢预处理主要有过氧化氢-酸、过氧化氢-碱、活化过氧化氢这3类预处理方法。笔者主要归纳了不同预处理过程中的木质素降解机理,总结了过氧化氢预处理强化木质纤维原料酶水解的效果,探讨了预处理对木质纤维原料降解产物的影响,评价了各类过氧化氢预处理的可行性和优缺点。最后,根据过氧化氢预处理的特点分析了过氧化氢预处理的研究策略,展望了过氧化氢预处理的发展趋势。从安全性和经济可行性的角度来看,低试剂用量、低温和低压的预处理条件是未来过氧化氢预处理的主要研究方向。  相似文献   

9.
在能源问题日益紧张的时局下,寻求可再生清洁能源是亟待解决的关键问题。由农林废弃物转化获得新能源、新材料已经成为重要的发展趋势,其中生物乙醇作为环保、可持续的新型能源得到了广泛关注。预处理作为生物乙醇制备的第一个重要环节备受重视,传统化学预处理技术能量消耗大、对设备要求高、半纤维素降解严重且对环境造成污染,没有充分考虑半纤维素和木质素的高值化回收利用,单一化降解纤维素使得经济利用价值很低;生物预处理作为一种环境友好和低成本的预处理技术,也存在着转化效率低、作用周期长和碳水化合物损失严重的缺点。热水预处理通过条件参数优化可在尽量保留天然大分子原位结构的基础上,一定程度地破坏植物细胞壁的致密结构,且仅利用水作为反应试剂,具有无化学药剂使用、对环境友好、操作成本低等优点,其对生物质细胞壁的主要作用为使木素-碳水化合物复合体(LCC)连接键断裂并除去部分半纤维素,使木质素性质发生改变并进行再分配,且在一定程度上降低了纤维素的聚合度。热水预处理过程中生成的糠醛、5-羟甲基糠醛、甲酸、乙酸等产物,会对生物降解产生抑制作用,可以通过优化条件来控制其含量。酶解过程是指利用纤维素酶及其辅助酶将预处理后的纤维素降解为可发酵单糖,若直接将预处理后的产物进行发酵则需要较长时间且仅能获得极低浓度的乙醇。酶水解过程中由于半纤维素和木质素的保护作用,阻碍了纤维素酶与纤维素底物的接触,而预处理过程则会削弱或完全破坏这种阻碍作用,增大酶与纤维素的接触面积使酶解效率提高。提高预处理温度会使乙醇发酵得率提高,但是预处理温度过高会导致纤维素降解从而使乙醇得率降低。本文对热水预处理过程中纤维素、半纤维素、木质素物理化学性质的改变和处理过程中抑制物的转化生成进行总结,分析比较在不同预处理条件下生物质中各主要组分和降解产物不同程度的变化及其对后续酶水解、酵母发酵的影响。  相似文献   

10.
γ-戊内酯预处理可以打破纤维原料的抗降解屏障,改善底物的可降解性能。目前,有关戊内酯预处理对木质纤维原料水解特性和结构变化的研究较少。本试验在戊内酯/水体系下,采用硫酸和硫酸氢钠预处理玉米秸秆,研究了其对底物水解特性和结构的影响。结果表明,戊内酯/水体系能够脱除底物中的半纤维素和木质素。硫酸的催化效果优于硫酸氢钠,硫酸浓度分别为75和150 mmol/L时(120℃下进行预处理1 h),底物中纤维素相对含量从34.82%增至57.41%和72.57%,150 mmol/L硫酸预处理时半纤维素和木质素脱除率为92.0%和77.4%,纤维素酶(10 U/g底物)水解得率分别为52.4%和65.6%。对预处理前后玉米秸秆结构表征结果显示,戊内酯预处理后玉米秸秆纤维表面受到破坏,表面O/C明显增加,木质素和半纤维素被脱除,玉米秸秆结晶度增加。该试验表明戊内酯/水体系下稀硫酸预处理可高效溶出玉米秸秆中的半纤维素和木质素,提高纤维素酶水解效率,具有一定的应用前景。  相似文献   

11.
在从木质纤维中去除木质素和纤维素糖化的过程中常用无机酸作为催化剂,但无机酸通常会造成设备腐蚀及环境污染。多金属氧酸盐(Polyoxometalates,POMs)是组成与结构确定、强氧化还原性的固体强酸,可通过改变组成元素对酸强度及氧化还原性进行调控,制备多活性点位POMs催化剂。通过室温氧化、酸处理木质纤维,完成木质素的分离和生物利用,实现纤维素和半纤维素向葡萄糖和5-羟甲基糠醛等平台化合物的转化,为生物质绿色、高效转化提供崭新思路与方法。  相似文献   

12.
预处理是木质纤维原料以糖基平台为基础的生物炼制的关键步骤,在对目前常用的稀酸/碱、蒸汽爆破、高温热水、微波、亚临界CO2、离子液体、低共熔溶剂、有机溶剂、研磨/粉碎、生物预处理等方法的优缺点及对后续酶解发酵研究进展进行综述的基础上,介绍了国内外基于Aspen Plus流程模拟和技术经济分析等在生物质原料经预处理联产乙醇和平台化学品的利用情况,最后总结了Aspen Plus计算机模拟技术在生物质原料经预处理生产乙醇方面存在的不足,提出了今后可以深入开展的研究方向。  相似文献   

13.
木质纤维由纤维素、半纤维素和木质素组成,是地球上最丰富的可再生碳氢资源。作为生物质的主要组分之一,木质素是唯一一种可再生的芳香化合物原料。木质素通过降解转化为苯酚单体化合物是实现木质素高值化的应用基础。笔者利用具有纳米尺度的MoOx/SBA-15催化剂开展了云杉木质纤维的还原催化分离研究,实现了木质素组分优先降解为松柏醇醚的过程。结果表明:云杉在甲醇体系中催化还原降解反应的最佳条件为温度240℃、反应时间2 h、常压氮气氛围、甲醇作为溶剂及氢供体。在最佳条件下,木质素经过降解转化为高附加值的松柏醇甲醚,基于木质素质量计算的转化率可达13.5%,该产物可通过简单的硅胶柱层析法实现分离纯化。反应后的固体残渣中,纤维素和半纤维素组分保留率分别达到98%和92%,可分别通过酶催化及酸催化高效转化为葡萄糖和木糖。由此可知,以MoOx/SBA-15作为催化剂不仅可以有效地将木质素催化降解为易于进一步功能化的不饱和单体产物松柏醇甲醚,还可以实现生物质组分分离,得到容易酶解的碳水化合物组分,从而有利于实现生物质的全组分利用。  相似文献   

14.
【目的】为破坏木质生物质天然抗降解屏障,促进木质生物质高效转化利用,筛选出适宜的热预处理方式。【方法】以栎木为研究对象,利用质量法/体积法、范式抽提法对高温蒸汽处理、固态汽爆处理和挤压膨化处理栎木的物理性质、木质纤维素含量进行测定,采用傅里叶变换红外光谱、X-射线衍射法对其木质官能团和纤维素相对结晶度进行分析。【结果】挤压膨化处理可显著改变栎木的形貌,持水力和比孔隙率分别为对照的3.2倍和4.71倍,容重降低至对照的1/4。各热预处理均可显著降低栎木木质纤维素含量,挤压膨化处理后木质纤维素含量显著下降,纤维素、半纤维素和木质素含量分别比对照组降低了22.60%、15.85%和7.9%。傅里叶变换红外光谱显示,各热预处理栎木均具有木质特征官能团,挤压膨化处理I898/I1 509比值显著增大,说明纤维素被富集。经不同热预处理后栎木仍具有典型的纤维素X-射线衍射特征,晶体结构峰形未发生改变,但强度不同程度变弱;相对结晶度不同程度增大,固态汽爆处理和挤压膨化处理后相对结晶度显著升高,表明结晶区的纤维素被更多地暴露出来。【结论】挤压膨化处理可显著改变...  相似文献   

15.
低浓度乙酸预处理玉米芯的工艺研究   总被引:1,自引:0,他引:1  
以脱除木质素,降解半纤维素为木糖,提高纤维素酶解得率为目的,研究了低浓度乙酸预处理玉米芯的效果,考察了乙酸质量分数、预处理温度和时间对预处理的影响。研究结果表明:质量分数5%乙酸预处理玉米芯可以脱除大部分的半纤维素和少部分木质素,预处理后的玉米芯具有较好的水解效果。低浓度乙酸预处理玉米芯最优条件为:预处理温度160℃,保温时间60 min,乙酸质量分数5%,固液比1∶8(g∶mL)。在此条件下,玉米芯固体渣回收率为53.75%,固体渣中纤维素保留率93.17%,半纤维素脱除率87.36%,木质素脱除率25.04%,预处理液中木糖质量浓度15.56 g/L。预处理后的玉米芯固体经72 h酶解,酶解得率为92.69%。  相似文献   

16.
稀酸预处理改善玉米秸秆酶水解性能的机制探讨   总被引:1,自引:0,他引:1  
为了探讨在稀酸预处理提高玉米秸秆在纤维素酶酶解阶段提高纤维素转化率的机制,利用一系列的检测方法:FT-IR、XRD、SEM和比表面积分析仪分析了预处理前后玉米秸秆在形态学和物理化学性质方面的变化.在经过稀酸预处理后的玉米秸秆在纤维素酶酶解阶段其纤维素转化率有较大的提高,经过170℃,60 min,固液比1∶15(g∶mL),1.00 g/mL酸质量浓度的条件预处理后,从31.88%提高到95.74%.XRD结果显示预处理后玉米秸秆的结晶度有所增加,从原料的37.8%增加到58.7%,但是当预处理强度增加到一定程度后,结晶度没有较大的变化,基本维持在58%.玉米秸秆的表面结构在稀酸预处理后,原来的光滑表面变得粗糙、多孔,这样的表面有利于纤维素酶与玉米秸秆的接触,预处理后玉米秸秆的比表面积有很大程度的增加,经过170℃,60 min,固液比1∶15,1.00g/mL酸质量浓度的条件预处理后,玉米秸秆的比表面积从0.329 m2/g增加到2.878 m2/g,这都有利于改善纤维素酶对纤维素的作用,增加纤维素转化率.  相似文献   

17.
4种木质纤维素预处理方法的比较   总被引:3,自引:0,他引:3  
采用4种方法对玉米秸秆预处理,研究了不同预处理方法对酶水解性能和可发酵性糖得率的影响,分析了预处理物料主要成分,预水解液中糖组成、碳水化合物降解产物及木质素降解产物含量.100 g玉米秸秆经稀酸、稀酸磨浆、中性蒸汽爆破和稀酸蒸汽爆破预处理、洗涤后,物料中纤维素由37.17g分别降为33.96、33.54、32.63和32.88 g,木聚糖由22.84 g分别降为2.77、2.47、3.56和2.05 g,木质素由18.76 g分别降为17.63、17.42、16.90和17.25 g.稀酸蒸汽爆破预处理物料在底物质量浓度100 g/L、纤维素酶用量20 FPIU/g(以纤维素计,下同)、β-葡萄糖苷酶用量3 IU/g下酶水解48 h,纤维素水解得率为75.91%.玉米秸秆经稀酸蒸汽爆破预处理、纤维素酶水解后可发酵性糖得率为44.93%(以玉米秸秆为基准).  相似文献   

18.
以两种生物基极性非质子溶剂γ-戊内酯(GVL)和二氢左旋葡萄糖酮(Cyrene),分别与对甲苯磺酸水溶液(TsOH aq)构成耦合体系,对竹粉定向解聚及其酶解过程开展了研究。实验结果表明:质量浓度为75 g/L的TsOH,溶剂体积比为4∶1的GVL/TsOH aq体系在130℃预处理毛竹60 min后,半纤维素和木质素分离效率更高,半纤维素分离率(SH)和木质素分离率(SL)分别达到98.5%和98.4%,同时纤维素保留率(RC)为91.5%;而质量浓度为30 g/L的TsOH,溶剂体积比为0.8∶1的Cyrene/TsOH aq体系在120℃预处理毛竹60 min后,RC达到87.3%,SH和SL仅为85.5%和79.4%。预处理后固体样品的表征结果表明:竹粉经GVL/TsOH aq预处理后的样品木质纤维致密结构被有效破坏,无定形的半纤维素和木质素绝大部分被分离,结晶度达68.27%,结构更接近于微晶纤维素,同时暴露出更多的游离羟基,有利于后续酶解。而酶...  相似文献   

19.
木质素是自然界中最丰富的可再生芳香族聚合物,其高附加值化利用可减少目前木质素资源燃烧所导致的资源浪费和环境污染。生物质细胞壁中三大组分(纤维素、半纤维素和木质素)通过共价键和氢键形成了致密而复杂的细胞壁结构,使得木质素难以高效分离。若要实现生物质木质素高效分离,首先需明确原料中木质素的分子结构特点和活性基团。基于木质素结构明确的生物质原料才能够更有效地选择和开发木质素解离及解聚方法。笔者主要概述了目前结构分析用的木质素分离和结构分析方法研究进展,重点阐述了液体核磁共振技术在分离木质素定性和定量结构方面的应用,并基于目前的研究进展提出了该领域的研究趋势。总之,木质素的结构解析将为树木基因调控、林木遗传育种和木质纤维原料的生物炼制提供相关理论依据。  相似文献   

20.
以亚硫酸盐(SPORL)和稀硫酸(DA)预处理蔗渣为底物,探讨两种预处理方法对蔗渣酶解的影响,并对酶解过程中蔗渣对纤维素酶的吸附特性进行探究,比较了两种底物的酶水解效率、成分、表面形貌、吸附等温线和吸附动力学等特征,结果显示:SPORL法预处理蔗渣的还原糖转化率(81.92%)明显高于DA法预处理蔗渣(60.89%)。与未处理蔗渣相比,DA与SPORL法预处理蔗渣表面变得粗糙,表面纤维被部分剥离,暴露出内部的纤维骨架。两种方法预处理蔗渣的纤维素和半纤维素含量也没有明显差异,但SPORL法预处理蔗渣中Klason木质素含量更低。X射线光电子能谱(XPS)图分析表明两种预处理蔗渣都对纤维素酶有明显吸附。吸附实验结果表明,SPORL法预处理蔗渣对纤维素酶最大吸附量为61.91 mg/g,低于DA法的82.69 mg/g,但SPORL法预处理蔗渣对纤维素酶的吸附亲和力及吸附强度均大于DA法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号