首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
菌剂挂膜3D-RBC联合BCO工艺处理养猪沼液废水   总被引:2,自引:2,他引:0  
针对养猪沼液废水寡营养、高氨氮的水质特征,该研究采用耐高氨氮、适应贫营养生长的异养硝化-好氧反硝化(Heterotrophic Nitrification-Aerobic Denitrification,以下简称HN-AD)菌挂膜启动三维结构生物转盘+生物接触氧化反应器(3D-RBC+BCO)组合工艺对沼液进行处理。该文研究了3D-RBC+BCO组合工艺在真实沼液条件下的启动过程及污染物去除效果,重点考察了溶解氧(Dissolved Oxygen,DO)浓度和C/N比2个关键因素对组合工艺污染物去除效果的影响。同时,借助高通量测序技术对DO和C/N比优化过程中微生物群落结构的变化规律进行解析。结果表明:在真实沼液条件下,采用HN-AD菌剂挂膜启动方法,仅用12和18 d就分别完成3D-RBC和BCO反应器的挂膜启动,同时组合工艺对COD、NH4+-N和TN的去除率分别稳定在94.8%、95.7%和80.1%,出水优于城镇污水厂排放一级B标准。在对3D-RBC反应器DO和C/N比的优化过程中,增设底曝后COD、NH4+-N和TN等指标的去除率分别降低了25.4%、15.4%和15.5%。高通量测序结果显示,增加底曝后3D-RBC盘片生物膜中微生物菌属的数量小幅下降,但HN-AD优势菌属的种类与丰度显著降低,导致脱氮效率下降;贫营养型Acinetobacter、Pseudomonas菌属是3D-RBC可以对真实沼液高效脱氮的关键,提高C/N比会显著降低其丰度,进而影响脱氮效果。  相似文献   

2.
氯苯、对硝基酚对土壤生物活性的影响   总被引:10,自引:3,他引:10       下载免费PDF全文
本文通过对土壤呼吸强度,各微生物生理群的数理以及土壤酶活性的测定,研究了氯苯,对硝基酚对土壤生物活性的影响。实验表明氯苯,对硝基酚对土壤活性的影响是复杂的。氯苯在200mg/kg以下对土壤呼吸强度,细菌放线菌及真菌的数量都有一定的刺激作用;而对氨化细菌硝化细菌以及反硝化细菌则表现出抑制作用;  相似文献   

3.
Growing interest in the use of biofiltration technology to remove toxic organic compounds from gaseous waste streams has led to the investigation of various solid packing materials to support microbial populations capable of contaminant biodegradation. Finished compost material has been used as a biofiltration packing matrix for the treatment of noxious odors and the removal of several gaseous organic contaminants. Trichloroethylene (TCE), a widespread groundwater contaminant, has been shown to undergo aerobic biodegradation under a variety of environmental conditions. The current investigation focused on the capacities of five different finished compost materials to remove TCE from head space vapors in small reaction flasks. Due to the cometabolic nature of aerobic TCE biodegradation, enrichment of compost materials with propane or methane as primary substrates was tested as a means to stimulate biological TCE removal. Results indicate that all of the materials tested removed at least 85 percent of the added TCE (initial head space concentration = 5.0 ppmv) without enrichment and over 99 percent total removal was observed in samples enriched with propane gas. Rapid adsorption of TCE accounted for up to 77 percent of the removal observed in the reactors. This study suggests that finished compost material from a variety of sources has considerable potential for use as a biofiltration packing material for the treatment of chlorinated solvent vapors in waste gas streams.  相似文献   

4.
阐述了植物和微生物降解环境中石油污染物及PAHs的重要作用和最新进展。国内外大量实验室研究表明,不同植物和微生物(细菌、真菌和放线菌)联合修复石油污染土壤均得到了较为理想的效果,在某种程度上微生物菌群要优于单一菌株;土壤中植物根系与微生物形成根际效应对污染物的降解起到了促进作用;生物表面活性剂较合成表面活性剂具有更好的生态适宜性和石油污染土壤修复能力;土壤中多组分污染物共同修复虽处于起步阶段,其作用机理也有待进一步研究,但是,发展前景值得期待。目前该领域的研究仍存在一些问题有待解决:植物–微生物菌群降解石油污染物过程中,微生物菌群间协同和竞争机制及试验结果的可重复性尚需证实;实验室研究与大田环境条件的差异,使得目前的研究成果尚需田间试验的验证和支持;根据土壤类型和气候特点,研究极端(高含盐量;氮、磷等营养元素缺乏;低温)条件下的石油高效降解菌株/群,制备有效的便于大田应用的固体菌肥意义重大;同时在确定石油污染物对环境致害的限值的基础上,建立石油污染土壤评价体系也势在必行。  相似文献   

5.
In this paper, coke wastewater that had passed through biological and integrated membrane processes (filtration on sand bed—reverse osmosis) was chosen to assess the phytotoxicity of selected industrial wastewater with regard to the test plant—Vicia faba. An innovative research technique in vitro test was conducted in a large scale phytothrone chamber on two matrices: cotton and Murashige and Skoog Basal Medium (MSBM). The toxicity of wastewater was evaluated for samples: (1) treated in the treatment plant by biological processes, (2) filtrated through a sand bed and filtrated (3) reverse osmosis (RO) membrane. The results showed that there is a noticeable correlation between increasing concentrations of wastewater and seed germination of the test plant. Although the wastewater collected from the coke plant was treated biologically, it showed very high levels of germination inhibition (90–98% for cotton matrix and 92–100% for MSBM matrix) and strong toxic effects. The wastewater collected from the coke plant showed a significantly greater phytotoxic effect compared with those obtained from the effluent treated on a sand bed and in RO. However, wastewater, even after treatment on a sand bed (reduction of COD—39%, TN—46%, TOC—42%, TC—47%, SS—50%, 16PAHs—53%), was still toxic and germination inhibition was in the range of 24–48% for the cotton matrix and 14–54% for the MSBM matrix. The toxicity of wastewater treated in the membrane process was the lowest (reduction of COD—85%, TN—95%, TOC—85%, TC—86%, SS—98%, 16PAHs—67%). The germination inhibition was in the range of 4–10% for the cotton matrix and 2–12% for the MSBM matrix. These samples are classified as non-toxic or slightly toxic to the model plant. The present study highlights the necessity of monitoring not only the basic physical and chemical indicators (including the level of toxic substances as PAHs), but also their effect on the test organisms in wastewater samples.  相似文献   

6.
The feasibility of using nanoscale zerovalent iron (nZVI) treatment for reducing the acute toxicity of explosive wastewater, such as 2,4,6-trinitrotoluene (TNT) red water which contains highly toxic nitroaromatic compounds (NACs), has been investigated. The water quality was evaluated before and after nZVI treatment using several different analytical techniques, including UV?CVis spectroscopy, X-ray photoelectron spectroscopy, high-performance liquid chromatography, and gas chromatography/mass spectroscopy. The acute toxicity of the wastewater was tested using a luminescence bacterium bioarray. The results indicated that the most significant toxic NACs, such as dinitrotoluene sulfonates, had been effectively removed from the TNT red water by nZVI together with the small amounts of other NACs. Following 1?h of the nZVI processing treatment, the acute toxicity of the TNT wastewater was reduced by approximately 94?%. This treatment would therefore be useful for the pretreatment of wastewaters prior to the application of a biological process. The reduction in the biotoxicity of the wastewater was based on the reductive conversion processes and adsorption behaviors of nZVI.  相似文献   

7.
Water treatment for wastewater containing phenols and their chlorinated variations has attracted important research efforts. Phenol??s high toxicity makes them a good model to test possible water treatment based on biological and/or chemical methods. High concentrations of phenols may be treated by pure biological schemes. However, chlorinated phenols are very toxic for many microorganisms. Therefore, mixed treatment trains can be proposed to solve the treatment of this class of organics. In this study, the ozonation was used as pretreatment to decompose chlorinated phenols. Besides, this study describes how the microbial consortiums were adapted to handle ozonation by-products. The biodegradation of different phenol concentrations from 50 to 1,500?mg/L was evaluated using preadapted microbial consortia in batch and in a trickling packed-bed reactor (TPBR). Under batch conditions, phenol was efficiently removed up to 500?mg/L. For every phenol concentration evaluated, higher degradation rates were obtained in TPBR. The chlorophenols were found to be poorly degraded by the pure biological treatment, 4-CPh was not degraded during the biological process and 2,4-DCPh was only 40?% degraded after 250?h of culture. By combining the chemical (as pretreatment) and the biological processes, 85?% of 4-CPh was removed, while the degradation of the 2,4-DCPh was enhanced from 40 to 87?%. The predominant bacteria found in the preadapted cultures were Xanthomonas sp., Ancylobacter sp., and Rhodopseudomonas. Total treatment period was reduced from several weeks to some days. This information reflects the benefits offered by the mixed water treatment train proposed in this paper.  相似文献   

8.
In domestic wastewater, bacterial physiology controls cell production (growth, replication) and cell maintenance, determining how energy is allocated between these two processes. The aim here was to develop a method to quantify these cellular processes so that the bacterial physiological state could be manipulated to lower this source of pollution. We simultaneously used the incorporation of radiolabelled thymidine into DNA (a measure of new cell synthesis) and leucine into protein in wastewater to quantitatively distinguish bacterial growth from maintenance processes. We found that DNA and protein syntheses were coupled in wastewater after substrate enrichment (with glucose or acetate)??balanced growth. Once the substrate was depleted, the two processes became uncoupled??unbalanced growth. In this physiological state, the bacteria were synthesising protein, but fewer bacteria were replicating. More energy was allocated to cell maintenance than replication. A mean Leu/TdR ratio of 7.4 was determined for wastewater and was similar to natural aquatic ecosystems. As the bacterial growth rate decreased, the Leu/TdR ratios increased. We show how the simultaneous measurement of [3H]Leu and [3H]TdR quantitatively distinguishes balanced from unbalanced growth. Low [3H]Leu/[3H]TdR ratios indicated bacteria were physiologically stressed, an ideal state for biological wastewater treatment processes (WWTP) as the bacteria divert more energy to maintenance activities instead of growth. Leu/TdR ratios of 70 have been recorded in natural aquatic ecosystems which suggests WWTP have potential to be manipulated to achieve much higher Leu/TdR ratios than we report here. Changes to plant operation to improve operation efficiency include finding the optimum rate of substrate (pollution supply) or alternating aerobic and anaerobic periods to maximise the Leu/TdR ratio to achieve less biomass production for land disposal and more cost-effective operation that generates less pollution in the effluent.  相似文献   

9.
糖蜜酒精废水是糖厂利用糖蜜生产酒精后的废液,废水中色素的含量较高,脱色为该类废水处理过程中的一大难题。采用富集培养技术,将取自糖厂IC(internal circulation)反应器底部的活性污泥加入到不同浓度废水中进行富集,得到的菌群可使废水脱色24%、COD(chemical oxygen demand)去除率19.2%。为了提高菌群的脱色能力,研究了几种单因素对菌群生长、脱色及COD去除能力的影响,结果发现,菌群使废水脱色和去除COD的最佳条件为:10%(v/v)废水中添加0.5%葡萄糖、0.1%蛋白胨、0.1%KH2PO4、0.05%MgSO4·7H2O、0.05%KCl,废水初始pH7.0,在37℃培养7d,废水脱色率达46.2%、COD去除率为38.5%。为了了解以上条件下菌群的群落结构,采用分子生态学方法构建了菌群中细菌16S rDNA文库并对代表性的克隆进行了测序,结果显示其中细菌主要分布在Firmicutes、Proteobacteria、Bacteroidetes的7个目中,分别是Erysipelotrich-ales、Clostridiales、Lactobacillales、Xanthomonadales、Burkholderiales、Enterobacteriales、Bacteroidales。大多数细菌属于发酵型细菌,化能异氧型。本研究结果为利用微生物调控糖蜜酒精废水的生物处理提供了依据。  相似文献   

10.
Biochars are adsorptive solids potentially of benefit to soil microbes by providing improved nutrient retention, a carbon substrate and contaminant adsorption. A 28-day incubation experiment gauged the interactive effects of biochar application and contaminants on the microbial biomass and respiration of a sandy loam soil. Soil was amended with 250 mg/kg phenol or p-nitrophenol (two toxic but nevertheless biodegradable organic contaminants) or 50 mg/kg cadmium or copper. Biochar application generally caused increased microbial respiration and biomass relative to non-amended controls. Of the heavy metal-amended soils, Cu effected significant reductions in microbial biomass carbon and basal respiration, which were improved with concurrent biochar amendment. The biochar’s functional groups are likely to have mitigated the metals’ negative effects via complexation and sorption, while the soil’s proportion of negative pH-dependent sites was increased by the pH rise induced by biochar application, allowing more cationic retention. Organic contaminant-spiked soils had higher microbial biomass-specific respiration without biochar amendment, indicating that surviving microbes utilised the compounds and necromass as substrates. Paranitrophenol proved to be particularly toxic without biochar application, causing marked reductions in the microbial quotient and biomass carbon. Remarkably, concurrent biochar and pNP application led to hugely increased microbial biomass carbon and nitrogen, significantly higher than those in contaminant-free replicates. It is likely this arose from biochar sorbing the contaminant and allowing its microbial utilisation as a carbon and nitrogen source, stimulating growth. Biochar application is a highly promising strategy for reducing the soil microbial toxicity of heavy metals and aromatic organic contaminants, particularly p-nitrophenol.  相似文献   

11.

Background, Aims and Scope

Bioavailability of toxic compounds in soil can be defined as the fraction able to come into contact with biota and to cause toxic effects. The contact toxicity tests may detect the total toxic response of all bioavailable contaminants present in a sample. The objectives of this study were to evaluate the use of microbial contact toxicity tests for cadmium bioavailability assessment and to evaluate the relationship between sorption, soil characteristics and cadmium bioavailability.

Methods

A test soil bacterium,Bacillus cereus, was put in direct contact with the solid sample. Four unpolluted soils were selected to provide solid samples with a variety of physicochemical characteristics. The toxicity and sorption behaviour of cadmium spiked to the soil samples were determined.

Results, Discussion and Conclusions

A significant correlation between contact toxicity test results and partitioning of cadmium in the soil samples (r2= 0.79, p <0.05; n = 26) was found. The results confirm that the bioavailability of cadmium in soil depends on its sorption behaviour. Cadmium sorbed to the cation exchange sites associated with fulvic acids is non-bioavailable in the toxicity test employed in this study. It is concluded that the microbial contact toxicity test is a suitable tool for detecting cadmium bioavailablity in the soils used in this study.

Outlook

The application of microbial contact toxicity tests for bioavailability assessment can be very useful for the risk identification and remediation of soil-associated contaminants.  相似文献   

12.
《Soil biology & biochemistry》2001,33(12-13):1777-1789
We assessed the direct and indirect effect of the herbicide glyphosate on soil microbial communities from ponderosa pine (Pinus ponderosa) plantations of varying site quality. Direct, toxic effects were tested using culture media and soil bioassays at glyphosate concentrations up to 100-fold greater than expected following a single field application. Indirect effects on microbial biomass, respiration, and metabolic diversity (Biolog and catabolic response profile) were compared seasonally after 9–13 years of vegetation control using repeated glyphosate applications in a replicated field study. Three pine plantations were selected to provide a range of soil characteristics associated with glyphosate binding (clay, Fe and Al oxide content) and site growing potential from the lowest to the highest in northern California. Glyphosate was toxic to bacteria and fungi from each plantation when grown in soil-free media. Culturable populations were reduced, as was the growth rate and metabolic diversity of surviving bacteria, by increasing concentrations of glyphosate. This toxicity was not expressed when glyphosate was added directly to soil, however. Microbial respiration was unchanged at expected field concentrations (5–50 μg g−1), regardless of soil, and was stimulated by concentrations up to 100-fold greater. Increased microbial activity resulted from utilization of glyphosate as an available carbon substrate. Estimated N and P inputs from glyphosate were inconsequential to microbial activity. Long-term, repeated applications of glyphosate had minimal affect on seasonal microbial characteristics despite substantial changes in vegetation composition and growth. Instead, variation in microbial characteristics was a function of time of year and site quality. Community size, activity, and metabolic diversity generally were greatest in the spring and increased as site quality improved, regardless of herbicide treatment. Our findings suggest that artificial media assays are of limited relevance in predicting glyphosate toxicity to soil organisms and that field rate applications of glyphosate should have little or no affect on soil microbial communities in ponderosa pine plantations.  相似文献   

13.
Cycling of extracellular DNA in the soil environment   总被引:1,自引:0,他引:1  
Upon entering the soil environment, extracellular DNA is subjected to dynamic biological, physical, and chemical factors that determine its fate. This review concerns the fate of both recombinant and non-recombinant sources of DNA. A schematic of DNA cycling coupled with genetic transformation is presented to understand its behavior in soil. Extracellular DNA may persist through cation bridging onto soil minerals and humic substances, be enzymatically degraded and restricted by DNases of microbial origin, and/or enter the microbial DNA cycle through natural transformation of competent bacteria. Lateral gene transfer may disseminate DNA through the microbial community. An understanding of DNA cycling is fundamental to elucidating the fate of extracellular DNA in the soil environment.  相似文献   

14.
养殖废水中异养硝化细菌的分离筛选和鉴定   总被引:1,自引:0,他引:1  
为了获得脱氮功能强的异养硝化菌株用于养殖废水的脱氮处理,通过富集、分离和纯化等步骤,并结合格利斯试剂检验菌株硝化能力的方法,从某养猪场污水处理池污泥中分离筛选了4株具异养硝化功能的菌株,分别标号为79、84、L116、L117,通过16SrDNA序列分析和美国全自动微生物分析仪Biolog鉴定,4株菌均为粪产碱杆菌(Alcaligenesfaecalis),并验证了这4株菌的硝化能力。结果表明,当液体培养基初始氨氮浓度为90mg.L-1左右时,在振荡培养48h内,菌株79、84、L116、L117培养基中氨氮和总氮均快速下降,氨氮去除率分别达到44.4%、47.9%、61.3%和56.4%,总氮(除菌)去除率达到39.9%、38.5%、43.4%和40.7%。  相似文献   

15.
The combination of chemical oxidation (Fenton reaction) and biological treatment processes is a promising technique aiming to reduce recalcitrant wastewater loads. Preliminary tests were carried out on two widely used toxic and non-biodegradable pesticides, namely, Dazomet and Fenamiphos. The chemical reaction was employed as a pre-treatment step for the conversion of the substrates into oxygenated intermediates that were easily removed by means of a final biological treatment. In the combined action, the mineralisation activity of a selected microbial consortium was used to degrade residual volatile and non-volatile organic compounds into CO2 and biomass.  相似文献   

16.
Poly- and perfluorinated alkyl substances (PFASs) are groups of persistent toxic substances that have been commonly detected in wastewater treatment plants (WWTPs). In some cases, the activated sludge (AS) in WWTPs will encounter special wastewaters containing PFASs up to tens of milligram per liter (mg L?1). However, under this condition, the potential impacts of PFASs on AS process remain unclear. In the present research, a lab-scale sequencing batch reactor was continuously exposed to perfluorooctanoic acid (PFOA), used as a representation for PFASs, at 20 mg L?1 to mimic the extreme condition. The objective is to explore the impact of PFOA on AS process in terms of its wastewater treatment performance and evolution of microbial communities. The results indicate that PFOA restrained the microbial growth and affected the dissolved organic carbon removal. These negative impacts could be recovered after long-term adaptation. Besides, 20 mg L?1 PFOA shows limited inhibition on nitrification and denitrification, suggesting a safe exposure level of PFOA for nitrogen removal. For microbial evolution, PFOA induced changes of communities during long-term exposure. The high abundance of Bacteroidetes, Proteobacteria, and Acidobacteria maintained over time reveals their tolerance towards PFOA. The occurrences of PFOA-resistant species are also observed. The present research provides new insight into the possible impacts of typical PFAS at high concentrations on AS process.  相似文献   

17.
The aim of the study was to elucidate the spatial distribution of soil microorganisms and enyzme activities in a long‐term wastewater treated soil. Soil was sampled from a plough layer of the Ah horizon of a sandy Haplic Luvisol which was either (1) irrigated with municipal wastewater for almost 100 years, or (2) no more irrigated since 20 years, or (3) never received wastewater. The samples were fractionated by wet sieving to obtain seven size fractions of organic and mineral soil particles, and a separate silt+clay fraction. The individual soil samples contained between 1.2% (never irrigated) and 4.1% (long‐term irrigated) organic particles by weight, but these particles harboured up to 47.8% of the total soil carbon and 41.7% of nitrogen, and thus represented an important storage of energy and nutrient for microorganisms. In total, however, the highest C and N amounts were accumulated in the silt+clay fraction, whereas coarser mineral particles which dominanted by weight in the Haplic Luvisol were low in C and N. The highest numbers of bacteria, actinomycetes and fungi per gram of the individual soil fractions were found in organic particles of the long‐term irrigated soil. Less nutrient‐dependent oligotrophic bacteria were for the most part associated with the silt+clay fraction, irrespective of the soil treatment with wastewater. Similar to microbial counts, also the ATP content, as a measure of active microbial biomass, and the activities of β‐glucosidase, β‐acetylglucosaminidase, and proteinase were higher in the long‐term irrigated soil than in that which was never irrigated. In most cases slightly enhanced values of microbiological and biochemical parameters were still detectable 20 years after the wastewater irrigation was terminated. The values of the individual parameters decreased in all soil samples under testing in general gradually with decrease in size of the organic soil particles. In conclusion, the coarse soil organic particles > 5 mm and the silt+clay fraction < 0.05 mm represent the sites with the highest microbial inhabitance, ATP contents and enzyme activities in the Ah horizon of an Haplic Luvisol. Long‐term wastewater irrigation resulted in an increase of microbial counts, total biomass and soil enzyme activities.  相似文献   

18.
近年来,饲料、饵料产量不足和化肥、农药大量施用带来的环境污染问题给农业可持续发展带来了巨大挑战。微藻因其含有能够促进动植物生长、提高农产品品质的营养元素和生物活性物质,且能同化氮、磷等污染物,被广泛应用于农业种植业、畜禽业和水产养殖业。该文系统总结和分析了微藻在土壤改良、农作物保护、直接刺激农作物生长、畜禽和水产养殖废水处理、饲料和饵料等领域的应用现状、特征和环境与经济效益,以及面临的机遇和挑战。分析发现,通过优化微藻培养技术降低其规模化应用的采收成本和提高其对污染物的去除效率,系统增强其在农业应用中的经济价值和可持续性,为农业可持续发展提供科技支撑是未来微藻研究的重点关注方向。  相似文献   

19.
通过温室盆栽实验研究了施用茶树菇栽培废料对青菜生物量及株高、土壤微生物数量、酶活性及碳源利用能力的影响。结果表明,施用茶树菇栽培废料显著增加了青菜生物量及土壤中放线菌、有机解磷菌、无机解磷菌、纤维素降解菌的数量,改善了土壤微生物区系,提高了土壤磷酸酶活性。单碳源利用图谱显示,施用茶树菇栽培废料增加了土壤微生物功能多样性指数(Shannon指数),降低了均一性指数(McIntosh指数)。主成分分析结果表明,施用茶树菇栽培废料导致土壤微生物主要对糖类物质的利用能力产生分异。研究表明茶树菇栽培废料可作为一种良好的有机肥料,通过增加非优势土壤微生物的功能多样性而改善土壤微生物特性,从而加速土壤碳、磷等元素循环以促进作物生长和增加产量。  相似文献   

20.
为探讨味精废浆有机肥对林木土壤的生物学效应及确定味精废浆与化肥适宜的搭配比例,通过盆栽试验,研究了CK(对照,不施肥)、N100(尿素提供100%的氮)、M10N90(味精废浆和尿素分别提供10%与90%的氮)、M30N70(味精废浆和尿素分别提供30%与70%的氮)与M50N50(味精废浆和尿素各提供50%的氮)等处理对杨树幼苗土壤活性有机碳、碳库管理指数(CPMI)与微生物呼吸、代谢熵及生长的影响。结果表明:与N100处理相比,配施味精废浆处理的土壤活性、中活性和高活性有机碳含量均明显升高。M30N70处理的活性有机碳含量与CPMI显著高于其他处理,分别较N100处理高出34.78%和42.96;其微生物量碳、氮含量也明显高于其他处理。同时,M30N70处理还能显著增强土壤微生物呼吸作用,但降低了代谢熵,其中土壤微生物呼吸分别较CK、N100、M10N90和M50N50处理提高81.13%,35.21%,17.07%和5.49%,而代谢熵分别下降9.16%,10.37%,6.98%和5.80%。此外,M30N70处理的地径、苗高亦达最高值,并与其他处理差异达显著水平。同M30N70处理相比,M10N90与M50N50处理对杨树幼苗土壤及生长的影响效果较小。相关性分析表明,地径、苗高生长与土壤不同程度的活性有机碳、碳库管理指数及微生物活性有显著或极显著的相关性,各指标之间具有紧密的内在关联。综合分析认为,味精废浆与化肥以3∶7比例配施能显著提高杨树幼苗土壤的活性有机碳含量,明显增强土壤微生物活性,并促进其生长。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号