首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Ascochyta blight is a major fungal disease affecting chickpea production worldwide. The genetics of ascochyta blight resistance was studied in five 5 × 5 half-diallel cross sets involving seven genotypes of chickpea (ICC 3996, Almaz, Lasseter, Kaniva, 24B-Isoline, IG 9337 and Kimberley Large), three accessions of Cicer reticulatum (ILWC 118, ILWC 139 and ILWC 184) and one accession of C. echinospermum (ILWC 181) under field conditions. Both F1 and F2 generations were used in the diallel analysis. The disease was rated in the field using a 1–9 scale. Almaz, ICC 3996 and ILWC 118 were the most resistant (rated 3–4) and all other genotypes were susceptible (rated 6–9) to ascochyta blight. Estimates of genetic parameters, following Hayman’s method, showed significant additive and dominant gene actions. The analysis also revealed the involvement of both major and minor genes. Susceptibility was dominant over resistance to ascochyta blight. The recessive alleles were concentrated in the two resistant chickpea parents ICC 3996 and Almaz, and one C. reticulatum genotype ILWC 118. The wild Cicer accessions may have different major or minor resistant genes compared to the cultivated chickpea. High narrow-sense heritability (ranging from 82% to 86% for F1 generations, and 43% to 63% for F2 generations) indicates that additive gene effects were more important than non-additive gene effects in the inheritance of the trait and greater genetic gain can be achieved in the breeding of resistant chickpea cultivars by using carefully selected parental genotypes.  相似文献   

2.
A chickpea F2 population of 593 plants derived from the intraspecific cross ILC3279 × WR315 was genotyped for markers closely linked to quantitative trait loci (QTLs) for ascochyta blight resistance (QTLAR1 and QTLAR2 located on linkage group 4 and QTLAR3 on linkage group 2). All the markers located on linkage group 4 exhibited strongly distorted segregation with respect to the expected Mendelian inheritance, towards the male parental line. This skewed segregation was also observed in a second F2 population of 50 plants derived from the same cross, confirming the presence of a region of distorted segregation on this linkage group and its heritability. The most skewed markers were SC-Y17 and TA72, which were tightly linked to each other, indicating that they may both be closely associated with the genetic factor responsible for segregation distortion in chickpea. To attempt to explain the non-Mendelian segregation, by identifying factors to which it could be attributed, three different chi-square tests were carried out to test different hypotheses using the data obtained from examining co-dominant markers associated with segregation distortion. According to our results, the distorted segregation could be caused by gametophytic factors that affect either male or female gametes. Pollen fertility and meiosis were also analysed to determine their relationship with segregation distortion; however, these not seem to be inducing factors in the non-Mendelian segregation reported in this study.  相似文献   

3.
The three major leaf types in chickpea are normal compound leaf, simple leaf and multipinnate. Simple leaf types are less commonly cultivated worldwide and are often reputed to be susceptible to ascochyta blight disease, whereas other leaf types range from resistant to susceptible. This study determined the association between host plant resistance to ascochyta blight and different leaf types in segregating populations derived from crosses between disease resistant and susceptible chickpea genotypes. In addition, the inheritance of disease resistance and leaf type was investigated in intraspecific progeny derived from crosses between two resistant genotypes with normal leaf type (ICC 3996 and Almaz), one susceptible simple leaf type (Kimberley Large) and one susceptible multipinnate leaf type (24 B-Isoline). Our results showed that, in these segregating populations, susceptibility to ascochyta blight was not linked to multipinnate or simple leaf types; resistance to ascochyta blight depended more on genetic background than leaf shape; leaf type was controlled by two genes with a dihybrid supplementary gene action; normal leaf type was dominant over other leaf types; and inheritance of ascochyta blight resistance was controlled by two major genes, one dominant and one recessive. Since there was no linkage between ascochyta blight susceptibility and leaf type, breeding various leaf types with ascochyta blight resistance is a clear possibility. These results have significant implications for chickpea improvement, as most current extra large seeded kabuli varieties have a simple leaf type.  相似文献   

4.
Physical and genetic maps of chickpea a QTL related to Ascochyta blight resistance and located in LG2 (QTLAR3) have been constructed. Single-copy markers based on candidate genes located in the Ca2 pseudomolecule were for the first time obtained and found to be useful for refining the QTL position. The location of the QTLAR3 peak was linked to an ethylene insensitive 3-like gene (Ein3). The Ein3 gene explained the highest percentage of the total phenotypic variation for resistance to blight (44.3 %) with a confidence interval of 16.3 cM. This genomic region was predicted to be at the Ca2 physical position 32–33 Mb, comprising 42 genes. Candidate genes located in this region include Ein3, Avr9/Cf9 and Argonaute 4, directly involved in disease resistance mechanisms. However, there are other genes outside the confidence interval that may play a role in the blight resistance pathway. The information reported in this paper will facilitate the development of functional markers to be used in the screening of germplasm collections or breeding materials, improving the efficiency and effectiveness of conventional breeding methods.  相似文献   

5.
Ascochyta blight is a devastating disease of chickpea. Breeders have been trying to introduce resistance from wild Cicer into cultivated chickpea, however, the effort is hampered by the frequent genetic drag of undesirable traits. Therefore, this study was aimed to identify potential markers linked to plant growth habit, ascochyta blight resistance and days to flowering for marker-assisted breeding. An interspecific F2 population between chickpea and C. reticulatum was constructed to develop a genetic linkage map. F2 plants were cloned through stem cuttings for replicated assessment of ascochyta blight resistance. A closely linked marker (TA34) on linkage group (LG) 3 was identified for plant growth habit explaining 95.2% of the variation. Three quantitative trait loci (QTLs) explaining approximately 49% of the phenotypic variation were found for ascochyta blight resistance on LG 3 and LG 4. Flowering time was controlled by two QTLs on LG3 explaining 90.2% of the variation. Ascochyta blight resistance was negatively correlated with flowering time (r = −0.22, P < 0.001) but not correlated with plant growth habit.  相似文献   

6.
Botrytis grey mould (BGM) caused by Botrytis cinerea Pers. ex. Fr. is the second most important foliar disease of chickpea (Cicer arietinum L.) after ascochyta blight. An intraspecific linkage map of chickpea consisting of 144 markers assigned on 11 linkage groups was constructed from recombinant inbred lines (RILs) of a cross that involved a moderately resistant kabuli cultivar ICCV 2 and a highly susceptible desi cultivar JG 62. The length of the map obtained was 442.8 cM with an average interval length of 3.3 cM. Three quantitative trait loci (QTL) which together accounted for 43.6% of the variation for BGM resistance were identified and mapped on two linkage groups. QTL1 explained about 12.8% of the phenotypic variation for BGM resistance and was mapped on LG 6A. It was found tightly linked to markers SA14 and TS71rts36r at a LOD score of 3.7. QTL2 and QTL3 accounted for 9.5 and 48% of the phenotypic variation for BGM resistance, respectively, and were mapped on LG 3. QTL 2 was identified at LOD 2.7 and flanked by markers TA25 and TA144, positioned at 1 cM away from marker TA25. QTL3 was a strong QTL detected at LOD 17.7 and was flanked by TA159 at 12 cM distance on one side and TA118 at 4 cM distance on the other side. This is the first report on mapping of QTL for BGM resistance in chickpea. After proper validation, these QTL will be useful in marker-assisted pyramiding of BGM resistance in chickpea.  相似文献   

7.
Resistance of chickpea against the disease caused by the ascomycete Ascochyta rabiei is encoded by two or three quantitative trait loci, QTL1, QTL2 and QTL3. A total of 94 recombinant inbred lines developed from a wide cross between a resistant chickpea line and a susceptible accession of Cicer reticulatum, a close relative of cultivated chickpea, was used to identify markers closely linked to QTL1 by DNA amplification fingerprinting in combination with bulked segregant analysis. Of 312 random 10mer oligonucleotides, 3 produced five polymorphic bands between the parents and bulks. Two of them were transferred to the population on which the recent genetic map of chickpea is based, and mapped to linkage group 4. These markers, OPS06-1 and OPS03-1, were linked at LOD-scores above 5 to markers UBC733B and UBC181A flanking the major ascochyta resistance locus. OPS06-1 mapped at the peak of the QTL between markers UBC733B (distance 4.1 cM) and UBC181A (distance 9.6 cM), while OPS03-1 mapped 25.1 cM away from marker UBC733B on the other flank of the resistance locus. STMS markers localised on this linkage group were transferred to the population segregating for ascochyta resistance. Three of these markers were closely linked to QTL1. Twelve of 14 STMS markers could be used in both populations. The order of STMS markers was essentially similar in both populations, with differences in map distances between them. The availability of flanking STMS markers for the major resistance locus QTL1 will help to elucidate the complex resistance against different Ascochyta pathotypes in future. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
Chickpea genetic mapping has been hampered by insufficient amplicon length polymorphism for sequence based markers. To develop an alternative source of polymorphic markers, we determined naturally abundant single nucleotide polymorphism (SNP) in coding and genomic regions between FLIP 84-92C (C. arietinum) and PI 599072 (C. reticulatum) and identified an inexpensive method to detect SNP for mapping. In coding sequences, 110 single base changes or substitutions (47% transitions and 53% transversions) and 18 indels were found; while 50 single base changes (68% transitions and 33% transversions) and eight indels were observed in genomic sequences. SNP frequency in coding and genomic regions was 1 in 66 bp and 1 in 71 bp, respectively. In order to effectively use this high frequency of polymorphism, we used Cleaved Amplified Polymorphic Site (CAPS) and derived CAPS (dCAPS) marker systems to identify a restriction site at SNP loci. In this study, we developed six CAPS and dCAPS markers and fine mapped QTL1, a region previously identified as important for ascochyta blight resistance. One of the CAPS markers from a BAC end was identified to account for 56% of the variation for ascochyta blight resistance in chickpea. Conversion of naturally abundant SNPs to CAPS and dCAPS for chickpea mapping, where absence of amplicon length polymorphism is a constraint, has potential to generate high-density maps necessary for map-based cloning and integration of physical and genetic maps.  相似文献   

9.
Ascochyta blight (AB) caused by Ascochyta rabiei, is globally the most important foliar disease that limits the productivity of chickpea (Cicer arietinum L.). An intraspecific linkage map of cultivated chickpea was constructed using an F2 population derived from a cross between an AB susceptible parent ICC 4991 (Pb 7) and an AB resistant parent ICCV 04516. The resultant map consisted of 82 simple sequence repeat (SSR) markers and 2 expressed sequence tag (EST) markers covering 10 linkage groups, spanning a distance of 724.4 cM with an average marker density of 1 marker per 8.6 cM. Three quantitative trait loci (QTLs) were identified that contributed to resistance to an Indian isolate of AB, based on the seedling and adult plant reaction. QTL1 was mapped to LG3 linked to marker TR58 and explained 18.6% of the phenotypic variance (R 2) for AB resistance at the adult plant stage. QTL2 and QTL3 were both mapped to LG4 close to four SSR markers and accounted for 7.7% and 9.3%, respectively, of the total phenotypic variance for AB resistance at seedling stage. The SSR markers which flanked the AB QTLs were validated in a half-sib population derived from the same resistant parent ICCV 04516. Markers TA146 and TR20, linked to QTL2 were shown to be significantly associated with AB resistance at the seedling stage in this half-sib population. The markers linked to these QTLs can be utilized in marker-assisted breeding for AB resistance in chickpea.  相似文献   

10.
Ascochyta blight caused by the fungus Ascochyta lentis Vassilievsky and anthracnose caused by Colletotrichum truncatum [(Schwein.) Andrus & W.D. Moore] are the most destructive diseases of lentil in Canada. The diseases reduce both seed yield and seed quality. Previous studies demonstrated that two genes, ral1 and AbR1, confer resistance toA. lentis and a major gene controls the resistance to 95B36 isolate of C. truncatum. Molecular markers linked to each gene have been identified. The current study was conducted to pyramid the two genes for resistance to ascochyta blight and the gene for resistance to anthracnose into lentil breeding lines. A population (F6:7) consisting of 156 recombinant inbred lines (RILs) was developed from across between ‘CDC Robin’ and a breeding line ‘964a-46’. The RILs were screened for reaction to two isolates (A1 and 3D2) ofA. lentis and one isolate (95B36) ofC. truncatum. χ2 analysis of disease reactions demonstrated that the observed segregation ratios of resistant versus susceptible fit the two gene model for resistance to ascochyta blight and a single gene model for resistance to anthracnose. Using markers linked to ral1 (UBC 2271290), to AbR1(RB18680) and to the major gene for resistance to anthracnose (OPO61250),respectively, we confirmed that 11 RILs retained all the three resistance genes. More than 82% of the lines that had either or both RB18680 and UBC2271290markers were resistant to 3D2 isolate and had a mean disease score lower than 2.5. By contrast, 80% of the lines that had none of the RAPD markers were susceptible and had a mean disease score of 5.8. For the case of A1 isolate of A. lentis, more than 74% of the lines that carriedUBC2271290 were resistant, whereas more than 79% of the lines that do not have the marker were susceptible. The analysis of the RILs usingOPO61250 marker demonstrated that 11out of 72 resistant lines carried the marker, whereas 66 out of 84 susceptible lines had the marker present. Therefore, selecting materials with both markers for resistance to ascochyta blight and a marker for resistance to anthracnose can clearly make progress toward resistance in the population. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Rubeena  P. W. J. Taylor    P. K. Ades    R. Ford 《Plant Breeding》2006,125(5):506-512
Quantitative trait locus (QTL) analysis of ascochyta blight resistance in lentil was conducted using genomic maps developed from two F2 populations, viz. ILL5588/ILL7537 and ILL7537/ILL6002. Five QTLs for ascochyta blight resistance were identified by composite interval mapping (CIM) across four linkage groups (LG) in population ILL5588/ILL7537. Three QTLs were identified by CIM in population ILL7537/ILL6002 (two in close proximity on LGI and one on LGII). Two of these coincided with regions identified using multiple interval mapping (MIM) and were shown to be conditioned by dominant and partial dominant gene action. Together, they accounted for approximately 50% of the phenotypic variance of disease severity. Comparison between the two populations revealed a potentially common QTL and several common regions that contained markers significantly associated with resistance. This study demonstrated the transferability of QTLs among populations and identified markers closely linked to the major QTL that may be useful for future marker‐assisted selection for disease resistance.  相似文献   

12.
Resistance gene analog polymorphism (RGAP)is a targeted homology based method, which has been used in different crops to identify tightly linked markers for disease resistance genes and also to enrich the map with a different class of markers. In chickpea, using the RGA primers, which are designed based on the conserved motifs present in characterized R-genes, Bulk Segregant Analysis (BSA) was performed on a resistant bulk and a susceptible bulk along with parents for ascochyta blight resistance. Of all available RGAs and their48 different combinations, only one RGA showed polymorphism during BSA. This marker was evaluated in an F7:8 population of142 RILs from an interspecific cross ofC. arietinum (FLIP 84-92C) × C. reticulatum (PI 599072) and was mapped toCicer linkage map. The genomic location of chickpea RGA was compared with the locations of mapped chickpea R-genes. This is the first RGA marker mapped to chickpea linkage map. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
Forage sorghum cultivars grown in India are susceptible to various foliar diseases, of which anthracnose, rust, zonate leaf spot, drechslera leaf blight and target leaf spot cause severe damage. We report here the quantitative trait loci (QTLs) conferring resistance to these foliar diseases. QTL analysis was undertaken using 168 F7 recombinant inbred lines (RILs) of a cross between a female parental line 296B (resistant) and a germplasm accession IS18551 (susceptible). RILs and parents were evaluated in replicated field trials in two environments. A total of twelve QTLs for five foliar diseases on three sorghum linkage groups (SBI-03, SBI-04 and SBI-06) were detected, accounting for 6.9–44.9% phenotypic variance. The morphological marker Plant color (Plcor) was associated with most of the QTL across years and locations. The QTL information generated in this study will aid in the transfer of foliar disease resistance into elite susceptible sorghum breeding lines through marker-assisted selection.  相似文献   

14.
RAPD and SCAR markers for resistance to acochyta blight in lentil   总被引:3,自引:0,他引:3  
Resistance to ascochyta blight of lentil (Lens culinaris Medikus),caused by the fungus Ascochyta lentis, is determined by a single recessive gene, ral 2, in the lentil cultivar Indian head. Sixty F2 individuals from a cross between Eston (susceptible) and Indian head (resistant) lentil were analyzed for the presence of random amplified polymorphic DNA (RAPD) markers linked to the ral 2gene, using bulked segregant analysis (BSA). Out of 800 decanucleotide primers screened, two produced polymorphic markers that co-segregated with the resistance locus. These two RAPD markers, UBC2271290and OPD-10870, flanked and were linked in repulsion phase to the gene ral 2 at 12 cm and 16 cm, respectively. The RAPD fragments were converted to SCAR markers. The SCAR marker developed from UBC2271290 could not detect any polymorphism between the two parents or in the F2. The SCAR marker developed from OPD-10870 retained its polymorphism. The polymorphic RAPD marker UBC2271290 and the SCAR marker developed from OPD-10870 can be used together in a marker assisted selection program for ascochyta blight resistance in lentil. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Molecular marker analysis can be an effective tool when searching for new fire blight resistance donors. It can speed up the breeding process as well, even though many of the available markers linked to fire blight resistance QTLs have not yet been tested by screening a large number of cultivars. The aim of this study was to search for alternate sources of the three major QTLs of fire blight resistance; FBF7, FB_MR5 and FB_E, as well as to test the efficiency of some markers linked to minor QTLs. Altogether, nine primer pairs were used on 77 genotypes including new Hungarian cultivars and old apple cultivars from the Carpathian basin. Several marker alleles of FB resistance QTLs have been detected in the screened genotypes, most importantly the alleles coupling with FB_MR5 in the old cultivars ‘Kéresi muskotály’, ‘Szabadkai szercsika’ and ‘Batul’. We propose these cultivars as the first available resistance donors of FB_MR5 instead of the crabapple Malus × robusta 5. The results also bring new information regarding the resistance alleles of new Hungarian cultivars and selections.  相似文献   

16.
Fusarium wilt (FW) and Ascochyta blight (AB) are two important diseases of chickpea which cause 100 % yield losses under favorable conditions. With an objective to validate and/or to identify novel quantitative trait loci (QTLs) for resistance to race 1 of FW caused by Fusarium oxysporum f. sp. ciceris and AB caused by Ascochyta rabiei in chickpea, two new mapping populations (F2:3) namely ‘C 214’ (FW susceptible) × ‘WR 315’ (FW resistant) and ‘C 214’ (AB susceptible) × ‘ILC 3279’ (AB resistant) were developed. After screening 371 SSR markers on parental lines and genotyping the mapping populations with polymorphic markers, two new genetic maps comprising 57 (C 214 × WR 315) and 58 (C 214 × ILC 3279) loci were developed. Analysis of genotyping data together with phenotyping data collected on mapping population for resistance to FW in field conditions identified two novel QTLs which explained 10.4–18.8 % of phenotypic variation. Similarly, analysis of phenotyping data for resistance to seedling resistance and adult plant resistance for AB under controlled and field conditions together with genotyping data identified a total of 6 QTLs explaining up to 31.9 % of phenotypic variation. One major QTL, explaining 31.9 % phenotypic variation for AB resistance was identified in both field and controlled conditions and was also reported from different resistant lines in many earlier studies. This major QTL for AB resistance and two novel QTLs identified for FW resistance are the most promising QTLs for molecular breeding separately or pyramiding for resistance to FW and AB for chickpea improvement.  相似文献   

17.
Bacterial leaf blight (BLB), caused by Xanthomonas axonopodis pv. vignicola (Xav), is widespread in major cowpea [Vigna unguiculata (L.) Walp.] growing regions of the world. Considering the resource poor nature of cowpea farmers, development and introduction of cultivars resistant to the disease is the best option. Identification of DNA markers and marker‐assisted selection will increase precision of breeding for resistance to diseases like bacterial leaf blight. Hence, an attempt was made to detect QTL for resistance to BLB using 194 F2 : 3 progeny derived from the cross ‘C‐152’ (susceptible parent) × ‘V‐16’ (resistant parent). These progeny were screened for resistance to bacterial blight by the leaf inoculation method. Platykurtic distribution of per cent disease index scores indicated quantitative inheritance of resistance to bacterial leaf blight. A genetic map with 96 markers (79 SSR and 17 CISP) constructed from the 194 F2 individuals was used to perform QTL analysis. Out of three major QTL identified, one was on LG 8 (qtlblb‐1) and two on LG 11 (qtlblb‐2 and qtlblb‐3). The PCR product generated by the primer VuMt337 encoded for RIN2‐like mRNA that positively regulate RPM1‐ and RPS2‐dependent hypersensitive response. The QTL qtlblb‐1 explained 30.58% phenotypic variation followed by qtlblb‐2 and qtlblb‐3 with 10.77% and 10.63%, respectively. The major QTL region on LG 8 was introgressed from cultivar V‐16 into the bacterial leaf blight susceptible variety C‐152 through marker‐assisted backcrossing (MABC).  相似文献   

18.
The Chinese wheat landrace Huangfangzhu (HFZ) has a high level of resistance to Fusarium head blight (FHB). To identify chromosomal regions that are responsible for FHB resistance in HFZ, F8 recombinant inbred lines (RIL) were developed from a cross between HFZ and Wheaton, a U.S. hard spring wheat. FHB was evaluated by single floret inoculation in both greenhouse and field environments. Two quantitative trait loci (QTL) with major effects were identified. One QTL was located on the short arm of chromosome 3B, and explained 35.4% of the phenotypic variation; the other QTL was assigned to 7AL and explained 18.0% of the phenotypic variation for FHB response. In addition, three minor QTL were detected on chromosomes 1AS, 1B and 5AS by single marker regression. HFZ contributed all favorable alleles. The RIL with HFZ alleles at the QTL on 3BS and 7AL displayed significantly lower percentages of infected spikelets than RIL without these alleles in both greenhouse and field environments. HFZ combined several alleles from germplasm reported previously and is a promising alternative source for improving wheat FHB resistance.  相似文献   

19.
Much effort has been invested in identifying molecular markers in wheat (Triticum aestivum L.) linked to quantitative trait loci (QTL) that confer resistance to Fusarium head blight (FHB) caused by Fusarium graminearum Schwabe [teleomorph Gibberella zeae (Schwein) Petch]. Even after several generations of crossing and selection by many wheat breeding programs, resistance of the Chinese spring wheat cultivar ‘Sumai 3’ (PI 481542) remains among the most effective. It therefore seems that undocumented resistance QTL present in Sumai 3 were not detected in various mapping studies. Using an extremely susceptible Tibetan landrace (‘Y1193-6’; unknown pedigree) in the creation of a mapping population with Sumai 3, the objective of this research was to identify undocumented resistance QTL in Sumai 3. This was accomplished through collecting disease index (DI) and Fusarium damaged kernel (FDK) phenotypic values along with 305 Diversity Array Technology (DArT) and 52 Simple Sequence Repeat (SSR) marker genotypes on 160 F2:6 recombinant inbred lines (RILs). Disease response evaluations were based on four (two greenhouse and two field) experiments where spray inoculation methods were used. Three QTL were identified on chromosome arms 3BS, 6BL and 2DS explaining 26.1, 10.7 and 18.9% of the phenotypic variation for DI, respectively. The same QTL were also significantly associated with reduced FDK scores and explained 28.0, 11.0 and 23.0% of phenotypic variation. Lines within the mapping population were placed in eight categories with respect to their various QTL combinations. Lines with no QTL were the most susceptible, whereas those with the Sumai 3-derived 3BS and 6BL QTL combined with the 2DS QTL from Y1193-6 were the most resistant. Though the 3BS and 6BL QTL are well-documented, the 2DS resistance QTL, which was contributed by the susceptible parent, confers increased susceptibility when derived from Sumai 3. In this study no new FHB QTL from Sumai 3 was discovered, but results suggest that Sumai 3 contains a QTL for susceptibility on chromosome arm 2DS. Selection against this QTL may potentially increase resistance levels among Sumai 3-derived populations.  相似文献   

20.
Summary Chickpea is a cool season grain legume of exceptionally high nutritive value and most versatile food use. It is mostly grown under rain fed conditions in arid and semi-arid areas around the world. Despite growing demand and high yield potential, chickpea yield is unstable and productivity is stagnant at unacceptably low levels. Major yield increases could be achieved by development and use of cultivars that resist/tolerate abiotic and biotic stresses. In recent years the wide use of early maturing cultivars that escape drought stress led to significant increases in chickpea productivity. In the Mediterranean region, yield could be increased by shifting the sowing date from spring to winter. However, this is hampered by the sensitivity of the crop to low temperatures and the fungal pathogen Ascochyta rabiei. Drought, pod borer (Helicoverpa spp.) and the fungus Fusarium oxysporum additionally reduce harvests there and in other parts of the world. Tolerance to rising salinity will be a future advantage in many regions. Therefore, chickpea breeding focuses on increasing yield by pyramiding genes for resistance/tolerance to the fungi, to pod borer, salinity, cold and drought into elite germplasm. Progress in breeding necessitates a better understanding of the genetics underlying these traits. Marker-assisted selection (MAS) would allow a better targeting of the desired genes. Genetic mapping in chickpea, for a long time hampered by the little variability in chickpea’s genome, is today facilitated by highly polymorphic, co-dominant microsatellite-based markers. Their application for the genetic mapping of traits led to inter-laboratory comparable maps. This paper reviews the current situation of chickpea genome mapping, tagging of genes for ascochyta blight, fusarium wilt resistance and other traits, and requirements for MAS. Conventional breeding strategies to tolerate/avoid drought and chilling effects at flowering time, essential for changing from spring to winter sowing, are described. Recent approaches and future prospects for functional genomics of chickpea are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号