首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
探讨了在框剪结构中剪力墙的厚度、数量及长度的确定,从剪力墙的平面、竖向布置方向,阐述了剪力墙的布置原则,以利框架与剪力墙起到很好的互补作用,满足抗震要求。  相似文献   

2.
对高层住宅建筑框架剪力墙结构的施工探讨   总被引:1,自引:0,他引:1  
框架结构建筑布置比较灵活,可以形成较大的空间,但抵抗水平荷载的能力较差,而剪力墙结构则相反。框架-剪力墙结构(也称框剪结构)使两者结合起来,取长补短,在框架的某些柱间布置剪力墙,从而形成承载能力较大、建筑布置又较灵活的结构体系。笔者根据多年的施工经验,对这种广泛应用的结构进行了探讨。  相似文献   

3.
指出了高层建筑在设计阶段,往往会存在结构构件布置不合理的地方,在建筑完工后会存在一定的安全问题,并且竣工的实际费用与施工前的预算费用有一定的差别,因此在前期结构设计的过程中,结构的优化设计起着至关重要的作用。使得剪力墙布置方案更加合理,结构构件的受力更加明确,对结构的设计具有重要的作用。根据剪力墙设计的影响因素,从剪力墙墙肢的长短、剪力墙的数量以及剪力墙的厚度方面进行了优化分析,得出了在剪力墙优化设计的过程中该因素对高层剪力墙设计具体的影响结果,为剪力墙优化设计提供具体的优化方向。  相似文献   

4.
介绍了配筋砌块砌体剪力墙结构的概念,阐明其与钢筋混凝土剪力墙结构的不同之处,继而通过设计实例论述了配筋砌块砌体剪力墙结构有利于建筑物抗震,且造价低于现浇钢筋混凝土剪力墙的优点。  相似文献   

5.
根据实际设计经验,简单阐述2010年版高规的短肢剪力墙在高层建筑结构设计中的注意事项以及相对2002年版高规的不同。2010年版高规规定不论是否短肢剪力墙多少,所有短肢剪力墙都要按短肢剪力墙设计。对普通剪力墙结构而言,2010年版高规更明确、适用,安全。  相似文献   

6.
中国传统木结构建筑可以通过设置剪力墙提高抗震性能,而轻钢剪力墙具有抗剪能力大、横向位移刚度大等优点,是木结构的理想加固构件。本研究创新性地将轻钢剪力墙作为加固件置入榫卯木框架中,采用ABAQUS有限元软件分别建立了有无轻钢剪力墙的榫卯木框架模型,并对其抗震性能进行对比。通过输入同等级不同种类和同种类不同等级的地震波,对木框架进行罕遇地震下的动力时程分析,得到了不同工况下两组木框架各层关键节点的加速度响应、位移响应和结构应力特征。结果表明:设置轻钢剪力墙后,结构的自振频率大幅度增加,在地震波激励下,木框架的层间位移减小,结构稳定性增强。由于轻钢剪力墙承担了一部分应力,因而榫卯节点的承载能力提升,木框架的抗震性能有所增强。  相似文献   

7.
文章简述城市小高层建筑发展的原因以及短肢剪力墙设计在小高层住宅结构设计中的重要性,论述了短肢剪力墙的判断及设计方法,并提出短肢剪力墙设计中应注意的问题。  相似文献   

8.
从高层建筑剪力墙结构的计算、经济含钢量等方面入手,详细探讨了高层建筑剪力墙结构设计优化方法及优化措施。从而达到建筑结构的整体优化,实现高层建筑结构设计科学、合理、经济、安全的设计目的。  相似文献   

9.
随着现代木结构建筑在国内的推广应用,木结构的试验与理论研究工作在我国也逐步展开,其中对木框架剪力墙(简称木剪力墙)的研究也取得了较多成果。笔者基于木剪力墙结构在侧向水平荷载作用下的试验研究,利用有限元分析软件ABAQUS建立分析模型,主要研究无洞墙体、开门洞墙体在单向与反复荷载作用下的荷载-变形关系以及受力特点。将有限元模拟结果与试验结果对比分析表明,所建模型能够很好地模拟木剪力墙抗侧性能以及墙体应力状态和变形特点,模型能为木剪力墙抗侧性能的理论分析提供较好的借鉴。  相似文献   

10.
采用木基结构板材的轻型木结构,其剪力墙的抗剪强度和抗剪刚度由面板和面板钉构造情况决定。当采用石膏面板时,剪力墙的失效主要由面板钉节点破坏导致,在受力后期木骨架将承担一定的墙体剪力,因此应考虑木骨架特别是边界骨柱对剪力墙抗剪性能的影响。通过对石膏面板轻型木结构剪力墙的单调加载试验,分别研究了有无墙面板、边界单骨柱和边界双骨柱对墙体剪力分配比例、抗剪强度和抗剪刚度等的影响。结果表明:边界骨柱对石膏面板轻型木结构剪力墙墙体抗剪承载力影响不大,但可提高抗剪刚度;采用边界双骨柱时可提高骨架剪力分配比例,延缓面板钉连接破坏,从而提升剪力墙抗剪性能;可采用本文提出的抗剪刚度提高系数计算边界双骨柱时墙体的抗剪刚度。  相似文献   

11.
A cross-laminated timber (CLT) wall plays the role of resisting shear stress induced by lateral forces as well as vertical load. Due to the press size, CLT panels have a limitation in size. To minimize the initial investment, some glulam manufactures wanted to make a shear wall element with small-size CLT panels and panel-to-panel connections and wanted to know whether the shear wall would have equivalent shear performance with the wall made of a single CLT panel. In this study, this was investigated by experiments and kinematic model analysis. Two shear walls made of small CLT panels were tested. The model showed a good agreement with test results in the envelope curve. Even though the shear walls were made of small panels, the global peak load did not decrease significantly compared with the wall made of a single CLT panel, but the global displacement showed a large increase. From this analysis, it was concluded that the shear wall can be designed with small CLT panels, but displacement should be designed carefully.  相似文献   

12.
Timber is one of the most common materials used in traditional buildings worldwide. Our previous research has suggested that timber shear walls play an important role in resisting external loadings, such as earthquakes. Thus, improving the structural performance of in-filled shear walls can also improve that of the entire structure. In the traditional Taiwanese timber shear wall system, the embedment strength of beams and friction between wooden planks and beams significantly affect the strength of the shear wall. This article proposes a new method of reinforcing traditional timber shear walls in Taiwan by inserting teak and padauk strips into the grooves between wooden planks and beams to increase the embedment strength of beams and the friction between wooden planks and the hardwood strips. A total of 18 full-scale specimens were tested under reversed cyclic loading. The results revealed that the strength and energy dissipation capacities of a wooden shear wall can be significantly increased by inserting teak and padauk strips into the grooves between planks and beams. Furthermore, the simplified calculation method proposed in this study can be used to calculate the strength of both reinforced and unreinforced wooden shear walls with satisfactory agreement.  相似文献   

13.
In the previous report of this ongoing study, results of an extensive field survey were collated and a theoretical model was proposed to predict the mechanical behavior of timber shear walls of traditional design in Taiwan. The initial objective of the present report was to propose a simplified calculation method for estimating the initial stiffness and yield strength of traditional timber shear walls. Based on the results of the field survey, a total of 15 full-scale specimens were tested to verify the theoretical model and simplified calculation proposed previously. Good agreement was found from comparison of analytical and experimental results. The results of this study show that the friction behavior between board units and beams plays the major role in resisting the lateral force applied on the timber shear wall, followed by the resistance supplied by embedment. The resistance provided by bamboo nails is minor due to the small section. Another trend found was that for set dimensions of a timber shear wall, the board width can be increased to obtain higher stiffness and strength of the shear wall.  相似文献   

14.
This paper presents a structural model called “PB3D” to perform nonlinear time history analyses of post and beam timber buildings under seismic loads. The model treats the three-dimensional structure as an assembly of roof/floor diaphragms and wall subsystems. The roof/floor diaphragms are modeled by beam elements and diagonal brace elements in order to take into account the in-plane stiffness. The wall system consists of vertical beam elements, for wall posts, as well as nonlinear shear springs to consider the contribution of diagonal wall bracing members or sheathing panels. The hysteretic characteristics of the shear springs are represented by a simplified, mechanics-based model named a “pseudo-nail”. Standard finite element procedure is used to construct the system’s equation of motion, which is solved by Newmark’s integration. The model was verified against shake test results of a three-story post and beam building subjected to strong ground motions scaled to the 1995 Kobe earthquake. Model predictions agreed very well with the test results in terms of base shear forces and inter-story drift responses. This model provides a robust and efficient tool to study the seismic behavior of post and beam timber buildings.  相似文献   

15.
A half-scale model of a light-frame shear wall was developed to evaluate the racking performance of a fullscale shear wall (prototype). The effect of nail size on the performance of the shear wall was also investigated using models constructed with three types of nail. Materials for the model were determined through experimental methods, which included nail-head push-through, stud-to-sheathing nail connection, and static bending tests. Materials with which the model was made to be in similarity to the prototype were three-layer 4.8-mm plywood, 39.72-mm long nails, and 1 × 2 lumber cut from 2 × 4 studs. In accordance with ASTM E 72 and ASTM E 564, racking resistance tests were conducted on 20 shear walls. The results showed that the maximum load capacities of the prototype walls could be evaluated by the model without significantly different failure modes. Tests on the effect of nail size revealed that increasing the nail head diameter may improve the performance of shear walls.Parts of this paper were presented at the International Conference on Effective Utilization of Plantation Timber (ICEUPT'99), Chi-Tou, Taiwan, May 1999; and the World Conference on Timber Engineering (WCTE2000), Whistler, Canada, July–August 2000  相似文献   

16.
配筋砌块剪力墙结构,作为一种新的中高层结构形式,符合我国的墙体改革方向,其经济性与适用性在国内的试点建筑中已得到充分体现.本文论述了利用SATWE软件计算结构内力的方法.  相似文献   

17.
本文针对目前应用广泛的剪力墙结构,结合规范与工程实际,总结了自己的设计体会和一些在设计中需要注意的问题。  相似文献   

18.
A sensitivity study was performed with a nonlinear elastic finite element model for monotonie analyses of wood-framed shear walls. The objective was to provide information about simplifying a model of wood-framed shear walls with no significant loss in accuracy. The simplifications concern features such as slips in joints between frame members, slips in hold-down connections, and bearing between adjacent sheathing panels. The results from analyses of a shear wall with an opening of window shape show that the effect of constraint by the bearing between sheathing panels and slips in frame joints on the overall stiffness of the wall is limited. Thus, there are great possibilities for reducing the calculation time by not taking these phenomena into account, avoiding an excessive number of degrees of freedom and iterations. The influence of the simplifications on the distribution of vertical reaction forces along the wall is more significant. Furthermore, if each simplification is introduced separately, the effect on the overall stiffness is greater. The difference, however, is less than 10%. The failing pattern of the nail connections is also clearly influenced by the simplifications when they are introduced separately. The results from the analyses show that slips in frame joints can be sufficiently represented by those in connection with the opening.  相似文献   

19.
论述了异型柱与短肢剪力墙结构设计中应注意的问题,并介绍了其优点、计算及构造要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号