首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We present a sea-ice record from northern Greenland covering the past 10,000 years. Multiyear sea ice reached a minimum between ~8500 and 6000 years ago, when the limit of year-round sea ice at the coast of Greenland was located ~1000 kilometers to the north of its present position. The subsequent increase in multiyear sea ice culminated during the past 2500 years and is linked to an increase in ice export from the western Arctic and higher variability of ice-drift routes. When the ice was at its minimum in northern Greenland, it greatly increased at Ellesmere Island to the west. The lack of uniformity in past sea-ice changes, which is probably related to large-scale atmospheric anomalies such as the Arctic Oscillation, is not well reproduced in models. This needs to be further explored, as it is likely to have an impact on predictions of future sea-ice distribution.  相似文献   

2.
In order to investigate rapid climatic changes at mid-southern latitudes, we have developed centennial-scale paleoceanographic records from the southwest Pacific that enable detailed comparison with Antarctic ice core records. These records suggest close coupling of mid-southern latitudes with Antarctic climate during deglacial and interglacial periods. Glacial sections display higher variability than is seen in Antarctic ice cores, which implies climatic decoupling between mid- and high southern latitudes due to enhanced circum-Antarctic circulation. Structural and temporal similarity with the Greenland ice core record is evident in glacial sections and suggests a degree of interhemispheric synchroneity not predicted from bipolar ice core correlations.  相似文献   

3.
Climate Change During the Last Deglaciation in Antarctica   总被引:1,自引:0,他引:1  
Greenland ice core records provide clear evidence of rapid changes in climate in a variety of climate indicators. In this work, rapid climate change events in the Northern and Southern hemispheres are compared on the basis of an examination of changes in atmospheric circulation developed from two ice cores. High-resolution glaciochemical series, covering the period 10,000 to 16,000 years ago, from a central Greenland ice core and a new site in east Antarctica display similar variability. These findings suggest that rapid climate change events occur more frequently in Antarctica than previously demonstrated.  相似文献   

4.
Central Greenland ice cores provide evidence of abrupt changes in climate over the past 100,000 years. Many of these changes have also been identified in sedimentary and geochemical signatures in deep-sea sediment cores from the North Atlantic, confirming the link between millennial-scale climate variability and ocean thermohaline circulation. It is shown here that two of the most prominent North Atlantic events-the rapid warming that marks the end of the last glacial period and the Bolling/Allerod-Younger Dryas oscillation-are also recorded in an ice core from Taylor Dome, in the western Ross Sea sector of Antarctica. This result contrasts with evidence from ice cores in other regions of Antarctica, which show an asynchronous response between the Northern and Southern Hemispheres.  相似文献   

5.
High-resolution, continuous multivariate chemical records from a central Greenland ice core provide a sensitive measure of climate change and chemical composition of the atmosphere over the last 41,000 years. These chemical series reveal a record of change in the relative size and intensity of the circulation system that transported air masses to Greenland [defined here as the polar circulation index (PCI)] and in the extent of ocean ice cover. Massive iceberg discharge events previously defined from the marine record are correlated with notable expansions of ocean ice cover and increases in PCI. During stadials without discharge events, ocean ice cover appears to reach some common maximum level. The massive aerosol loadings and dramatic variations in ocean ice cover documented in ice cores should be included in climate modeling.  相似文献   

6.
Carefully selected ice core data from Greenland can be used to reconstruct an annual proxy North Atlantic oscillation (NAO) index. This index for the past 350 years indicates that the NAO is an intermittent climate oscillation with temporally active (coherent) and passive (incoherent) phases. No indication for a single, persistent, multiannual NAO frequency is found. In active phases, most of the energy is located in the frequency band with periods less than about 15 years. In addition, variability on time scales of 80 to 90 years has been observed since the mid-19th century.  相似文献   

7.
The tropical ocean plays a major role in global climate. It is therefore crucial to establish the precise phase between tropical and high-latitude climate variability during past abrupt climate events in order to gain insight into the mechanisms of global climate change. Here we present alkenone sea surface temperature (SST) records from the tropical South China Sea that show an abrupt temperature increase of at least 1 degrees C at the end of the last glacial period. Within the recognized dating uncertainties, this SST increase is synchronous with the B?lling warming observed at 14.6 thousand years ago in the Greenland Ice Sheet Project 2 ice core.  相似文献   

8.
A methane record from the GISP2 ice core reveals that millennial-scale variations in atmospheric methane concentration characterized much of the past 110,00 years. As previously observed in a shorter record from central Greenland, abrupt concentration shifts of about 50 to 300 parts per billion by volume were coeval with most of the interstadial warming events (better known as Dansgaard-Oeschger events) recorded in the GISP2 ice core throughout the last glacial period. The magnitude of the rapid concentration shifts varied on a longer time scale in a manner consistent with variations in Northern Hemisphere summer insolation, which suggests that insolation may have modulated the effects of interstadial climate change on the terrestrial biosphere.  相似文献   

9.
Sea-level rise from melting of polar ice sheets is one of the largest potential threats of future climate change. Polar warming by the year 2100 may reach levels similar to those of 130,000 to 127,000 years ago that were associated with sea levels several meters above modern levels; both the Greenland Ice Sheet and portions of the Antarctic Ice Sheet may be vulnerable. The record of past ice-sheet melting indicates that the rate of future melting and related sea-level rise could be faster than widely thought.  相似文献   

10.
Oxygen-isotope ratios of a stalagmite from Socotra Island in the Indian Ocean provide a record of changes in monsoon precipitation and climate for the time period from 42 to 55 thousand years before the present. The pattern of precipitation bears a striking resemblance to the oxygen-isotope record from Greenland ice cores, with increased tropical precipitation associated with warm periods in the high northern latitudes. The largest change, at the onset of interstadial 12, occurred very rapidly, in about 25 years. The chronology of the events found in our record requires a reevaluation of previously published time scales for climate events during this period.  相似文献   

11.
Centennial climate variability over the last ice age exhibits clear bipolar behavior. High-resolution analyses of marine sediment cores from the Iberian margin trace a number of associated changes simultaneously. Proxies of sea surface temperature and water mass distribution, as well as relative biomarker content, demonstrate that this typical north-south coupling was pervasive for the cold phases of climate during the past 420,000 years. Cold episodes after relatively warm and largely ice-free periods occurred when the predominance of deep water formation changed from northern to southern sources. These results reinforce the connection between rapid climate changes at Mediterranean latitudes and century-to-millennial variability in northern and southern polar regions.  相似文献   

12.
Sedimentary time series of color reflectance and major element chemistry from the anoxic Cariaco Basin off the coast of northern Venezuela record large and abrupt shifts in the hydrologic cycle of the tropical Atlantic during the past 90,000 years. Marine productivity maxima and increased precipitation and riverine discharge from northern South America are closely linked to interstadial (warm) climate events of marine isotope stage 3, as recorded in Greenland ice cores. Increased precipitation at this latitude during interstadials suggests the potential for greater moisture export from the Atlantic to Pacific, which could have affected the salinity balance of the Atlantic and increased thermohaline heat transport to high northern latitudes. This supports the notion that tropical feedbacks played an important role in modulating global climate during the last glacial period.  相似文献   

13.
Large, abrupt shifts in the (l8)O/(16)O ratio found in Greenland ice must reflect real features of the climate system variability. These isotopic shifts can be viewed as a result of air temperature fluctuations, but determination of the cause of the changes-the most crucial issue for future climate concerns-requires a detailed understanding of the controls on isotopes in precipitation. Results from general circulation model experiments suggest that the sources of Greenland precipitation varied with different climate states, allowing dynamic atmospheric mechanisms for influencing the ice core isotope shifts.  相似文献   

14.
A new greenland deep ice core   总被引:1,自引:0,他引:1  
The polar ice sheets are rich sources of information on past atmospheric conditions, including paleoclimates. A new deep ice core has been drilled in south Greenland. Comparison of the oxygen isotopic profile with that from camp Century and with a deep-sea foraminifera record indicates that the new core reaches back to about 90,000 years before present in a continuous sequence. The details in the Wisconsin part of the ice core records seem to be climatically, significant, and the general trends reveal all of the relevant Emiliani stages recorded in deep-sea cores. The redated Camp Century record suggests a dramatic termination of the Eem/Sangamon interglacial.  相似文献   

15.
Geomagnetic field strength is expected to affect the production rate of cosmogenic isotopes such as beryllium-10, carbon-14, or chlorine-36. Chlorine-36 data from the Greenland Ice Core Project (GRIP) ice core agree well with a production rate calculation based on a paleomagnetic reconstruction for the past 100,000 years over both long- and short-term variations. A chlorine-36 peak at 38,000 years ago previously found in the beryllium-10 record from the Vostok ice core can be explained by a period of low geomagnetic field intensity.  相似文献   

16.
A precise relative chronology for Greenland and West Antarctic paleotemperature is extended to 90,000 years ago, based on correlation of atmospheric methane records from the Greenland Ice Sheet Project 2 and Byrd ice cores. Over this period, the onset of seven major millennial-scale warmings in Antarctica preceded the onset of Greenland warmings by 1500 to 3000 years. In general, Antarctic temperatures increased gradually while Greenland temperatures were decreasing or constant, and the termination of Antarctic warming was apparently coincident with the onset of rapid warming in Greenland. This pattern provides further evidence for the operation of a "bipolar see-saw" in air temperatures and an oceanic teleconnection between the hemispheres on millennial time scales.  相似文献   

17.
Foraminiferal oxygen isotope and pollen analyses from a deep-sea sequence off southwest Portugal show that the duration of temperate stages on land over the past 350,000 years varied considerably. The record shows forest contractions during intervals of low ice volume, coeval with declines in atmospheric methane, after which tree populations did not always recover. What emerges is that, although the broad timing of interglacials is consistent with orbital theory, their specific duration may be dictated by millennial variability. This complicates the prediction of the natural duration of interglacials, at least until the origin of this climate variability is understood.  相似文献   

18.
Enhanced modern heat transfer to the Arctic by warm Atlantic Water   总被引:3,自引:0,他引:3  
The Arctic is responding more rapidly to global warming than most other areas on our planet. Northward-flowing Atlantic Water is the major means of heat advection toward the Arctic and strongly affects the sea ice distribution. Records of its natural variability are critical for the understanding of feedback mechanisms and the future of the Arctic climate system, but continuous historical records reach back only ~150 years. Here, we present a multidecadal-scale record of ocean temperature variations during the past 2000 years, derived from marine sediments off Western Svalbard (79°N). We find that early-21st-century temperatures of Atlantic Water entering the Arctic Ocean are unprecedented over the past 2000 years and are presumably linked to the Arctic amplification of global warming.  相似文献   

19.
A depth-age scale and an accumulation history for the Holocene have been established on the Greenland Ice Sheet Project 2 (GISP2) deep core, providing the most continuously dated record of annual layer accumulation currently available. The depth-age scale was obtained with the use of various independent techniques to count annual layers in the core. An annual record of surface accumulation during the Holocene was obtained by correcting the observed layer thicknesses for flow-thinning. Fluctuations in accumulation provide a continuous and detailed record of climate variability over central Greenland during the Holocene. Climate events, including "Little Ice Age" type events, are examined.  相似文献   

20.
The response of the Greenland ice sheet to global warming is a source of concern notably because of its potential contribution to changes in the sea level. We demonstrated the natural vulnerability of the ice sheet by using pollen records from marine sediment off southwest Greenland that indicate important changes of the vegetation in Greenland over the past million years. The vegetation that developed over southern Greenland during the last interglacial period is consistent with model experiments, suggesting a reduced volume of the Greenland ice sheet. Abundant spruce pollen indicates that boreal coniferous forest developed some 400,000 years ago during the "warm" interval of marine isotope stage 11, providing a time frame for the development and decline of boreal ecosystems over a nearly ice-free Greenland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号