首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
中国主要小麦品种春化基因的STS标记鉴定   总被引:2,自引:0,他引:2  
本文选取来自中国各麦区的260份小麦品种,用STS标记对其Vrn-A1、Vrn-B1、Vrn-D1和Vrn-B3四个春化基因位点进行检测,并结合小麦田间生长情况记录,探讨春化基因的4个位点显隐性情况对品种冬春性的影响.结果表明,各位点显性基因频率以Vrn-D1位点最高,而Vrn-A1和Vrn-B1显性等位基因对品种冬春性的影响高于Vrn-D1和Vrn-B3基因,且所含显性春化基因越多的品种生长习性越偏向春性.另发现,Vrn-A1仅存在于春性品种中;而对于冬性品种来说,各位点均不含显性春化基因.本文标记鉴定结果与田间冬春性观察具有较高的一致性,在小麦育种及品种推广中具有较高的指导意义和应用价值.  相似文献   

2.
春化和光周期基因等位变异在23个国家小麦品种中的分布   总被引:2,自引:1,他引:1  
为促进国外资源在我国小麦育种中的有效利用,以小麦春化基因Vrn-A1、Vrn-B1、Vrn-D1和Vrn-B3及光周期位点Ppd-D1标记对23个国家的755份品种检测,同时在河南安阳秋播,观察抽穗期和成熟期。分子标记检测结果表明,Vrn-A1、Vrn-B1、Vrn-D1和vrn-A1+vrn-B1+ vrn-D1的分布频率分别为13.0%、21.1%、15.6%和64.2%,显性等位变异Vrn-B3在检测材料中缺失。春化基因显性等位变异Vrn-A1、Vrn-B1和Vrn-D1主要分布在中国春麦区和长江中上游冬麦区、意大利、印度、日本、加拿大、墨西哥、智利、阿根廷和澳大利亚,上述地区的小麦一般为春性类型;春化位点均为隐性等位变异或vrn-A1+vrn-D1+Vrn-B1的品种主要分布在中国北方、美国中部和南部、德国、法国、挪威、乌克兰、俄罗斯、伊朗、土耳其、匈牙利、保加利亚、罗马尼亚和塞尔维亚,这些地区的小麦为冬性类型。光周期迟钝型Ppd-D1a的分布频率为55.2%。光周期敏感等位变异Ppd-D1b主要分布在纬度较高的地区,即美国各麦区以及德国、挪威、匈牙利、中国东北、加拿大、智利和阿根廷,来自其余麦区的品种均携带光周期迟钝等位变异Ppd-D1a;携带Ppd-D1a的品种在河南安阳大部分能够成熟,而携带Ppd-D1b的品种在河南安阳基本不能成熟。在安阳春化显性等位变异Vrn-A1a未加速小麦抽穗,而携带Vrn-B1和Vrn-D1等位变异的部分春化需求品种能够正常抽穗,主要因安阳生长季节的温度能够满足春化需求。  相似文献   

3.
为了解河南小麦栽培历史上主推小麦品种春化及光周期基因种类及分布特点,采用STS分子标记鉴定了河南小麦栽培历史上主推的43个品种的4种春化基因Vrn-A1、Vrn-B1、Vrn-D1、Vrn-B3和1个光周期基因Ppd-D1位点的显隐性。结果表明:Vrn-A1、Vrn-B3基因位点均为隐性,Vrn-B1和Vrn-D1显性基因频率分别为7.0%、51.1%,光周期显性基因Ppd-D1a频率为93.0%,研究结果说明河南历史上主推的小麦品种中,隐性春化基因和光周期不敏感的显性基因占主导。鉴定结果还表明,43份品种的春化基因与光周期基因组合有4类,第一类为vrn-A1+Vrn-B1+vrn-D1+vrn-B3+Ppd-D1a;第二类为vrn-A1+vrn-B1+Vrn-D1+vrn-B3+Ppd-D1a;第三类为vrn-A1+vrn-B1+vrn-B3+Vrn-D1+Ppd-D1b;第四类为vrn-A1+vrn-B1+vrn-B3+vrn-D1+Ppd-D1a,其所占频率依次为:7.0%、44.2%、7.0%、41.9%。春性品种至少携带一个显性春化基因Vrn-B1或Vrn-D1,且其光周期基因一定是光周期不敏感基因Ppd-D1a;冬性品种的4个春化基因位点均为隐性或仅含显性春化基因Vrn-D1,光周期敏感的隐性基因Ppd-D1b只在冬性品种中检出。通过鉴定小麦春化基因及光周期基因,我们明确了河南小麦栽培历史上主推品种的春化和光周期基因的种类、组成特点及品种演变趋势,对改良小麦品种适应性具有重要参考价值。  相似文献   

4.
为促进国外种质资源在我国的有效利用,将14个国家的100份代表性小麦品种在国内的8个代表性地点种植,调查抽穗期、成熟期和株高,并以4个春化基因(Vrn-A1、Vrn-B1、Vrn-D1和Vrn-B3)、1个光周期基因(Ppd-D1a)及2个矮秆基因(Rht-B1b和Rht-D1b)的分子标记检测所有品种的基因型。春化基因Vrn-A1a、Vrn-B1、Vrn-D1和vrn-A1+vrn-B1+ vrn-D1的分布频率分别为8.0%、21.0%、21.0%和64.0%;显性等位变异Vrn-A1a、Vrn-B1和Vrn-D1主要存在于来自中国春麦区及意大利、印度、加拿大、墨西哥和澳大利亚的品种中,这些品种一般为春性类型;春化位点均为隐性等位变异或vrn-A1+vrn-D1+Vrn-B1的品种主要分布在中国冬麦区、美国冬麦区、俄罗斯冬麦区,以及英国、法国、德国、罗马尼亚、土耳其和匈牙利,这些地区的小麦均为冬性类型。秋播时,供试品种均能正常抽穗,且携带春化显性变异的材料较隐性类型抽穗早,显性等位变异表现加性效应,4个春化位点均为隐性变异的一些欧美材料因抽穗太晚在杨凌和成都不能正常成熟;而春播时,显性等位变异基因型抽穗的频率高,隐性等位变异基因型基本不能抽穗。光周期不敏感基因Ppd-D1a的分布频率为68.0%,主要分布在中国、法国、罗马尼亚、俄罗斯、墨西哥、澳大利亚和印度,而光周期敏感等位变异Ppd-D1b主要分布在英国、德国、匈牙利和加拿大等中高纬度地区;携带Ppd-D1a的品种较携带Ppd-D1b的品种抽穗早,大多数Ppd-D1a品种在长日照和短日照条件下均能成熟,大部分Ppd-D1b品种在短日照条件下不能成熟。Rht-B1b和Rht-D1b基因的分布频率分别为43.0%和35.0%,其中Rht-B1b主要分布于美国、罗马尼亚、土耳其、意大利、墨西哥和澳大利亚,Rht-D1b主要分布于中国、德国、英国、意大利和印度。一般来说,一个国家的品种携带Rht-B1b或Rht-D1b之一,而这2个基因在高纬度地区分布频率较低。Rht-B1b、Rht-D1b和Ppd-D1a的降秆作用均达显著水平,Rht-B1b和Rht-D1b的加性效应突出。  相似文献   

5.
春化基因Vrn-B1是决定黄淮冬麦区小麦品种冬春性的主要基因之一, 研究其不同显性等位变异的低温春化作用效应及分布, 对该区小麦品种选育和推广具有重要意义。以等位变异Vrn-B1a品种皖麦33与等位变异Vrn-B1b品种豫麦34为亲本构建杂交组合, 对其F2代进行5~35 d的低温春化处理, 并在温室(22±3℃,16 h昼/8 h夜)鉴定抽穗期, 结合分子标记分析低温春化处理时间对各等位变异型抽穗期的影响。同时对228个黄淮冬麦区小麦品种进行相关位点分子检测, 分析该基因等位变异的分布特点。各春化处理均使两种等位变异小麦植株的抽穗期提前, 但Vrn-B1a抽穗时间比Vrn-B1b晚约2 d。从春化处理当天至处理后25 d, 2种等位变异类型的抽穗时间均随春化时间的延长而缩短; 继续延长春化时间, 抽穗期不再缩短, 表明满足两种等位变异完成春化的低温时间为20~25 d。在228个品种中, Vrn-B1位点有214个(93.9%)隐性和14个(6.1%)显性等位变异。其中, 显性等位变异Vrn-B1a有6个, 占总品种数的2.6%; Vrn-B1b有8个, 占总品种数的3.5%。在黄淮冬麦区小麦品种中, 春化基因Vrn-B1位点至少存在Vrn-B1a和Vrn-B1b两种显性等位变异类型, 两种等位变异类型纯合小麦植株的抽穗时间不同。  相似文献   

6.
为了解小麦春化基因Vrn-1的遗传效应,以15个不同类型的小麦品种为试材,研究了不同春化处理对小麦发育进程的影响,并采用分子标记鉴定了上述品种的Vrn-1等位基因组成.结果表明,不同Vrn-1等位基因组合的小麦品种抽穗期存在很大差异;3个显性Vrn-1等位基因的遗传效应表现为Vrn-A1>Vrn-D1>Vrn-B1;春...  相似文献   

7.
为了将分子标记技术尽快应用到小麦育种工作中,利用高通量KASP (Kompetitive allele specific PCR)标记检测了河北省153份审定小麦品种的光周期、春化、株高、粒重、穗发芽、抗旱和抗病相关基因。结果表明在Ppd-B1和Ppd-D1光周期位点分别检测到24个和5个光周期不敏感品种。Vrn-D1b春化基因占比45.1%,Vrn-A1位点3个标记检测春化基因占比分别是0.7%,6.5%和6.5%。株高基因中Rht-B1位点2个标记检测矮杆基因占比分别是41.2%和7.2%,Rht-D1b矮杆基因占比35.9%。TaSus2-2B、TaGs3-D1、TaCKX-D1、TaGASR7-A1、TaCwi-4A、TaCwi-5D、TaMoc-A1和TaTGW6是与粒重有关的8个基因,优异等位变异占比分别是22.9%、58.8%、57.5%、7.2%、66.0%、100%、29.4%和89.5%。控制穗发芽基因TaPHS1、TaMFT-A1和TaVp1B1各开发2个KASP标记,检测抗穗发芽基因占比分别是54.9%和53.6%、64.7%和89.5%、56.2%和2.6%,控制穗发芽基因TaSdr-B1位点优异等位变异占比25.5%。两个与抗旱相关的基因TaDREB-B1和Ta1-feh w3优异等位变异占比分别是49.0%和39.9%。抗叶锈病基因Lr14a和Lr68优异等位变异占比分别是41.8%和26.8%;Lr34基因开发了2个KASP标记,仅一个标记检测Lr34抗性基因,占比0.7%;Lr15抗条锈病基因占比2.0%;Fhb抗赤霉病基因占比3.9%;抗小麦黄斑叶枯病基因Tsn1占比63.4%。综上所述,KASP标记高效检测小麦重要农艺性状的优异等位变异,在河北省小麦重要农艺性状改良方面将有良好的应用前景。  相似文献   

8.
用STS标记检测春化基因Vrn-A1在中国小麦中的分布   总被引:2,自引:1,他引:1  
张晓科  夏先春  何中虎  周阳 《作物学报》2006,32(7):1038-1043
在证实Vrn-A1春化基因的STS标记与CAPS标记结果一致的基础上,用STS标记检测了全国主要麦区历史上大面积推广和当前主栽的250份品种的春化基因Vrn-A1。结果表明,中国品种Vrn-A1基因平均分布频率为36.8%,不同麦区的分布频率不同,依次为东北春麦区=北部春麦区=西北春麦区(100%)>新疆冬春麦区(42.9%)>西南冬麦区(35.3%)>黄淮冬麦区(19.8%)>长江中下游冬麦区(17.4%)>北部冬麦区(3.0%),这与冬春特性有关。在长江中下游冬麦区和西南冬麦区品种中,Vrn-A1基因分布频率随着时间推移呈降低趋势;在黄淮冬麦区品种中,20世纪50到70年代呈上升趋势,随后呈下降趋势。在年最大推广面积大于66.7万hm2的58份品种中,Vrn-A1基因的频率为27.6%。这些信息有助于改良小麦品种的适应性和提高产量潜力。  相似文献   

9.
通过对小麦品种石麦12春化特性的遗传和分子标记研究,探索黄淮冬麦区小麦冬、春性改良途径和分子标记辅助选择技术。石麦12与冬性品种石家庄8号杂交后代F2:3株系中的春性株系、冬春性分离株系、冬性株系的分离比例符合1∶2∶1,表明石麦12具有一个显性春化基因,经已知春化基因的基因特异性标记鉴定为Vrn-D1。利用Vrn-D1的基因特异性标记对上述F2:3株系进行冬、春性鉴定的结果与表型鉴定结果一致,说明该分子标记可用于小麦冬、春性改良中对Vrn-D1的辅助选择。在高海拔、长日照地区夏播是小麦冬、春性表型鉴定的一个快速、简便途径。  相似文献   

10.
为明确普通小麦春化基因的时空表达特性,以强冬性品种济麦19、冬性品种钱交麦、半冬性品种泰山1号、偏春性品种济麦20和春性品种中国春为实验材料,利用q RT-PCR技术,分析了VERNALIZATION1(Vrn1)、VERNALIZATION2(Vrn2)和VERNALIZATION3(Vrn3)的时空表达特性。结果表明在普通小麦中,Vrn1基因在四类小麦的表达量由高至低为幼穗、旗叶、普通叶片、茎秆。未春化时,冬性越强的品种,Vrn1、Vrn3基因的起始表达量越低,Vrn2基因的起始表达量越高。随着春化过程的进行,Vrn1和Vrn3基因上调表达,并在春化25 d时出现表达加速上调现象;Vrn2基因下调表达。小麦冬性越强,Vrn基因表达量变化越明显。在脱春化过程中,随着高温时间的增加,Vrn和Vrn3基因下调表达,Vrn2基因表达变化不明显。该结果为进一步分析普通小麦春化发育的分子调控机理提供了重要信息。  相似文献   

11.
为进一步完善普通小麦春化特性理论基础,从不同春化特性小麦品种RNA-Seq结果中筛选得到一个春化诱导上调表达的EST序列Unigene3230,经NCBI比对与小麦wcor14a基因序列一致。为进一步明确该基因在春化过程中的功能,利用荧光定量PCR分析了wcor14a基因在非生物胁迫下的表达特性,结果显示,wcor14a基因能够响应低温、ABA、干旱等非生物胁迫。对wcor14a基因在不同春化发育特性小麦品种中的表达分析表明,该基因在不同发育特性小麦品种中的表达总体表现为春性半冬性冬性强冬性,而且表达时间表现为冬性和强冬性早于春性和半冬性。  相似文献   

12.
2001-2015年河南省审定小麦品种产量构成分析   总被引:1,自引:0,他引:1  
金艳 《中国种业》2016,(4):41-43
为了解近年来河南省审定的小麦新品种的情况,揭示小麦产量构成因素对产量影响的相对重要性,对2001-2015年河南审定的109个半冬性小麦品种和52个弱春性小麦品种的产量及主要性状指标进行相关和通径分析。结果表明:半冬性小麦品种产量主要性状与产量的相关顺序为株高穗粒数千粒重有效穗数;弱春性品种的相关顺序为穗粒数千粒重有效穗数株高。小麦新品种3个产量构成因素对产量的直接通径系数都为正值,产量三因素间的间接作用都为负值,这与简单相关的分析结果一致。根据分析结果结合河南省生态条件及当前的栽培习性,今后在小麦新品种选育上,重点选择多粒型、千粒重高的大穗型品种,同时注意三要素的协调发展,尤其注重有效穗数与千粒重的协调。生产上根据小麦种性区分对待,在半冬性小麦生产中可以通过栽培措施提高穗粒数和千粒重来提高产量,弱春性小麦生产上重点通过提高穗粒数和有效穗数来获得高产。  相似文献   

13.
孙道杰  冯毅  王辉  闵东红  李学军 《作物学报》2008,34(11):1953-1957
春化基因VRN-B3是小麦开花素基因TaFT,为探索该基因在品种间的保守性及其与小麦开花早晚的关系,根据TaFT基因序列(GenBank accession No.: DQ890162)设计特异PCR引物,扩增了13个品种中该基因的编码区。通过测序和序列比对,发现不同品种间该基因编码区的DNA序列存在多态性,序列翻译发现5个品种的表达产物FT蛋白发生变异。利用中国春的非整倍体材料将TaFT基因定位在7BS染色体上。参考品种的冬春性及开花时间,推测冬性品种正常的FT蛋白(同DQ890162翻译的氨基酸序列一致)可加速开花,FT蛋白变异则延迟开花;春性品种的FT蛋白变异与否对开花期影响不大,推测TaFT基因的效应可能被春性品种的显性春化基因所掩盖。  相似文献   

14.
孙道杰  冯毅  王辉  闵东红  李学军 《作物学报》2008,34(11):1953-1957
春化基因VRN-B3是小麦开花素基因TaFT,为探索该基因在品种间的保守性及其与小麦开花早晚的关系,根据TaFT基因序列(GenBank accession No.: DQ890162)设计特异PCR引物,扩增了13个品种中该基因的编码区。通过测序和序列比对,发现不同品种间该基因编码区的DNA序列存在多态性,序列翻译发现5个品种的表达产物FT蛋白发生变异。利用中国春的非整倍体材料将TaFT基因定位在7BS染色体上。参考品种的冬春性及开花时间,推测冬性品种正常的FT蛋白(同DQ890162翻译的氨基酸序列一致)可加速开花,FT蛋白变异则延迟开花;春性品种的FT蛋白变异与否对开花期影响不大,推测TaFT基因的效应可能被春性品种的显性春化基因所掩盖。  相似文献   

15.
黄淮麦区小麦品种(系)产量性状与分子标记的关联分析   总被引:5,自引:0,他引:5  
为了获得与小麦产量性状关联的分子标记,筛选相关标记的等位变异,以128份黄淮麦区小麦品种(系)为材料,在4个环境下鉴定产量性状,并选用在小麦全基因组21条染色体上的64个SSR标记、27个EST-SSR标记和47个功能标记检测所有材料的基因型。91个SSR和EST-SSR标记共检测到315个等位变异,单个引物检测到2~7个等位变异,平均3.5个;47个功能标记共检测到107个等位变异,单个引物检测到2~5个等位变异,平均2.3个。关联分析表明,49个位点与4个环境的产量性状及其均值显著关联(P≤0.005),其中38个位点在2个或以上环境或均值下被重复验证,16个位点与2个或以上性状相关联。对相对稳定的等位变异作进一步分析,发掘了一批与产量性状相关的优异等位变异,如降低株高的等位变异Ax2*-null和UMN19*-A362,增加穗长的等位变异barc21-A220,增加可育小穗数的等位变异gpw2111-A156,增加总小穗数的等位变异swes65-A120,增加穗数的等位变异VRN-A1*-A1068,增加穗粒数的等位变异cfd5-A215和增加千粒重的等位变异wmc626-A170。研究结果对利用分子标记辅助选择进行小麦产量性状的遗传改良具有一定的指导意义。  相似文献   

16.
小麦6-SFT是果聚糖合成的关键酶基因。以23份六倍体普通小麦(AABBDD)、5份D基因组材料(DD)为多样性代表群体材料,通过测序分析小麦6-SFT-D基因的序列多态性,根据多态性开发6-SFT-D基因的功能标记,分析由154份六倍体普通小麦构成的自然群体的6-SFT-D基因单倍型(haplotype)与表型性状的关联特性和基因累加效应。在28份多样性代表群体中,共检测到6-SFT-D基因的4个多态性位点,均为单核苷酸多态性(SNP)位点,构成3种6-SFT-D基因单倍型;而在自然群体中只检测到6-SFT-D的两种单倍型。根据6-SFT-D基因2850 bp位点的T/C变异开发等位变异特异PCR标记。关联分析表明,6-SFT-D单倍型分别与灌溉条件下的千粒重和穗长显著关联,单倍型Hap I是提高千粒重的优异等位变异;在雨养和灌溉条件下,同时具有6-SFT-D与6-SFT-A2优异等位变异小麦材料的千粒重显著高于其他基因型材料,说明6-SFT-D和6-SFT-A2优异等位变异对于提高千粒重表现累加效应。  相似文献   

17.
小麦株高相关性状与SNP标记全基因组关联分析   总被引:4,自引:0,他引:4  
陈广凤  陈建省  田纪春 《作物学报》2015,41(10):1500-1509
株高是影响小麦产量和控制倒伏的重要因素,研究小麦株高相关性状的遗传机制对高产育种具有指导意义。以205份中国冬麦区小麦品种(系)为材料,利用分布于小麦全基因组的24 355个单核苷酸多态性(SNP)标记对株高相关性状进行关联分析。共发现38个与株高相关性状显著关联(P0.0001)的SNP,分布在1B、2A、2B、3A、3B、3D、4A、4B、5A和6D染色体上。其中,11个位点至少在2个环境中稳定表达,可用于开发CAPS标记。同时,发掘了一批株高性状相关基因的优异等位变异,如降低株高的等位变异Bob White_c48009_52,平均降低株高12.9 cm;控制穗下节间长的等位变异BS00039422_51-C和IAAV1698-A,分别调控穗下节间长5.9 cm和6.6 cm。本研究发掘的控制小麦株高基因位点为在分子水平上研究小麦株高复杂性状提供了有价值的参考。  相似文献   

18.
揭示新疆小麦改良品种与地方品种在主要农艺性状相关基因上的遗传变异对进一步改良和利用新疆育成品种具有重要意义。本研究利用52个功能标记对136份新疆小麦改良品种和地方品种分析发现, 与适应性相关的矮秆等位变异Rht-B1bRht-D1b、半冬性生长习性相关等位变异Vrn-D1b、T1BL·1RS易位系, 与品质相关的高脂肪氧化酶活性等位变异TaLox-B1a、低多酚氧化酶活性等位变异Ppo-D1a、低黄色素含量等位变异Psy-A1b以及与高粒重等位变异Hap-H (TaSus-2B)仅分布在改良品种中, 而且光周期不敏感等位变异Ppd-D1a (77.6%)、优质麦谷蛋白亚基Dx5+Dy10 (35.4%)和硬质等位变异Pin-D1b (25.0%), 以及高千粒重等位变异TaCwi-A1a (63.3%)、Hap-4A-T (Tacwi-4A) (33.8%)、Hap-5D-C (TaCWI-5D) (93.7%)、Hap-2 (TaGS1a) (77.9%)、TaGS-D1a (78.5%)、TaGS5-A1b (50.0%)和TaTGW6-A1a (92.1%)在改良品种中分布频率明显高于地方品种。大部分优异等位变异分布频率随着育种时期的推进呈现不连续性上升趋势。在适应性与品质相关基因方面, 春性改良品种的优异等位变异频率高于冬性改良品种。功能标记分析显示改良品种的遗传多样性高于地方品种。136份新疆小麦资源被聚为改良品种和地方品种两类, 改良品种被进一步聚为冬性和春性两类, 说明新疆改良品种与地方品种间存在明显的遗传差异。本研究鉴定的优异等位基因和等位基因组合为进一步改良新疆小麦品种提供了重要信息。  相似文献   

19.
河南小麦品种穗粒数性状的动态变化及全基因组关联分析   总被引:1,自引:0,他引:1  
穗粒数是小麦产量构成的重要因子,研究小麦穗粒数及其相关性状的变化规律与遗传机制对于高产育种具有指导意义。以198份河南种植或审定的小麦品种(系)为材料,在4个环境下鉴定穗粒数相关性状表现,选用660K SNP芯片检测材料的基因型并进行全基因组关联分析。发现穗粒数存在着广泛的变异,穗粒数、穗长、总小穗数、可育小穗数和不育小穗数的广义遗传力分别为77.43%、87.54%、85.45%、79.70%和68.08%,2002年以前、2003-2008年、2009-2014年和2015年以来育成品种的平均穗粒数分别为35.71个、36.85个、37.40个和37.98个,随着育种时期的推进总小穗数和可育小穗数也表现出逐渐提高的趋势。共发现41个和穗粒数等性状相关联的位点,分布在除了1D、3A、3D、4B和4D的16条染色体上,单个关联位点的表型变异贡献率(R2)范围为6.19%~20.83%,其中10个位点至少在2个环境中稳定表达。对关联位点进一步分析发掘了多个与穗粒数性状相关的优异等位变异,如7A上AX-109368219(A)能增加穗粒数1.86粒,2A上AX-111674224(C)能提高总小穗数0.96个,2D上AX-111582877(G)能提高可育小穗数0.73个。研究揭示近五十年河南小麦穗粒数性状的动态变化及其规律,获得了多个和穗粒数等性状关联位点及等位变异,为小麦产量性状的遗传改良及分子设计育种提供了技术支持和基因资源。  相似文献   

20.
OsDep1 (dense and erect panicle 1)控制水稻产量性状,影响穗长、直立性和着粒密度。根据水稻OsDep1基因序列,采用同源克隆技术克隆了普通小麦第5同源群染色体上的TaDep1基因,它包含5个外显子和4个内含子,与水稻OsDep1基因结构相似。TaDep1-A1、TaDep1-B1和TaDep1-D1的编码序列长度分别为918、888和900 bp,编码305、295和299个氨基酸残基。在普通小麦品种中检测到5个TaDep1-A1等位变异、4个TaDep1-B1等位变异和2个TaDep1-D1等位变异。根据TaDep1-A1和TaDep1-B1位点不同等位变异间的SNP和InDel,开发了3对显性互补标记和1个共显性标记,可以准确鉴别不同等位基因。共显性标记dep19是根据TaDep1-B1第5外显子一个30 bp的InDel开发的,可准确区分TaDep1-B1c与TaDep1-B1a、TaDep1-B1b和TaDep1-B1d。用这些标记对406份小麦品种进行检测,不同基因型的千粒重、株高、穗长、小穗数和穗节间均差异不显著,说明TaDep1基因与我国现有小麦品种的产量性状相关不显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号