首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study was undertaken to compare the viability and infectivity of Cryptosporidium parvum oocysts that had been stored for 1, 4, 7, 10, 13, 16, 20, 25 and 30 months at 4 degrees C in 2.5% potassium dichromate (Cr) or chlorinated tap water, respectively. An excystation protocol was performed in vitro to evaluate viability. One hundred and eighty female BABL/c mice were used to evaluate the infectivity of oocysts by investigating the prepatent period of C. parvum infection, the quantity of oocysts excreted, and the number of parasites that colonized the villi of the ileum. The results showed that C. parvum oocysts preserved in Cr for 1-16 months or in water for 1-13 months were capable of excystation in vitro and infection of mice. The excystation rates of oocysts and the prepatent periods in mice infected by oocysts stored in Cr and water were not significantly different (p>0.05), and there was a strong correlation between prepatent period and duration of oocyst storage (Cr: R2=0.92; water: R2=0.98). There were no significant differences in oocyst shedding from feces or parasitism of the terminal ilea of mice by Cryptosporidia between the two storage media (p>0.05). In conclusion, C. parvum oocysts may be stored at 4 degrees C in water instead of Cr for the purposes of laboratory research. However, the presence of viable C. parvum oocysts in water is a severe challenge to the drinking water treatment industry.  相似文献   

2.
Using in vitro excystation as a measure of viability, it was found that at 4 degrees C Sarcocystis gigantea sporocysts survived considerably better in tap water (85% excystation after 174 days) than in either 2.5% potassium dichromate (15% excystation after 174 days) or 2% sulphuric acid (0% excystation after 5 days). Although they were able to resist 48 h suspension at room temperature in most laboratory reagents and disinfectants tested, six (sulphuric acid, ammonia, methanol, ethanol, potassium hydroxide, sodium hydroxide, Medol) had substantial sporocysticidal properties. Further investigation with three of these showed that sporocyst excystation was reduced from 65% to less than 10% following contact with 2.5% sulphuric acid for 1 h or with 2% ammonia or 4% Medol for 4 h. Sporocysts were either killed or had their ability to excyst severely impaired by heating to 60 degrees C and 55 degrees C for 5 and 60 min, respectively, by exposure to ultraviolet radiation at a dose of 4000 ET, or by prolonged storage in water at 24 degrees C. Sporocysts exposed to either constant or intermittent freezing at -18 degrees C suffered a comparatively slow decline in excystation rate with time, as did those subjected to desiccation. The duration of survival of desiccated sporocysts was inversely related to relative humidity and after 245 days at 33% relative humidity and temperatures of 15 degrees C or 24 degrees C, 60% of such sporocysts excysted.  相似文献   

3.
Gamma-interferon knockout mice have become the model animal used for studies on Sarcocystis neurona. In order to determine the viability of S. neurona sporocysts and to evaluate the course of the disease in these mice, sporocysts were collected from opossums (Didelphis virginiana), processed, and stored for varying periods of time. Gamma-interferon knockout mice were then inoculated orally with different isolates at different doses. These animals were observed daily for clinical signs until they died or it appeared necessary to humanely euthanize them. 15 of 17 (88%) mice died or showed clinical signs consistent with neurologic disease. The clinical neurologic symptoms observed in these mice appeared to be similar to those observed in horses. 15 of 17 (88%) mice were euthanized or dead by day 35 and organisms were observed in the brains of 13 of 17 (77%) mice. Dose appeared not to effect clinical signs, but did effect the amount of time in which the course of disease was completed with some isolates. The minimum effective dose in this study was 500 orally inoculated sporocysts. Efforts to titrate to smaller doses were not attempted. Direct correlation can be made between molecularly characterized S. neurona sporocysts and their ability to cause neurologic disease in gamma-interferon knockout mice.  相似文献   

4.
Gamma interferon knockout (KO) mice (n=74) were fed a lethal dose of approximately 1000 sporocysts of the SN15-OP isolate of Sarcocystis neurona. Groups of mice were given pelleted rodent feed containing 50ppm of diclazuril at different times before and after feeding sporocysts. All mice were examined at necropsy and their tissues were examined immunohistochemically for S. neurona infection. Twenty mice were fed sporocysts and given diclazuril starting 5 days before feeding sporocysts and continuing 30-39 days post-infection (p.i.). One mouse died of causes unrelated to S. neurona with no demonstrable parasites; the remaining 19 mice remained clinically normal and S. neurona organisms were not found in their tissues. Sarcocystis neurona organisms were not demonstrable by bioassay of the brains of these 19 mice in uninfected KO mice. Sarcocystis neurona organisms were not found in tissues of five mice treated with diclazuril, starting 7 days after feeding sporocysts and continuing up to 39 days p.i. Therapy was less efficient when diclazuril was given 10 days p.i. Sarcocystis neurona organisms were found in two of 19 mice treated with diclazuril starting 10 days after feeding sporocysts, in two of five mice starting therapy 12 days p.i., and in 10 of 10 mice when treatment was delayed until 15 days p.i. All 15 mice fed S. neurona, but not given diclazuril, developed neural sarcocystosis and were euthanized 22-30 days after feeding sporocysts. Six mice not fed S. neurona, but given diclazuril for 44 days, remained clinically normal. Results indicate that diclazuril can kill the early stages of S. neurona.  相似文献   

5.
Sarcocystis species sporocysts were found in intestinal scrapings from 24 of 72 opossums (Didelphis virginiana) from rural Mississippi. The number of sporocysts in each opossum varied from a few ( < 100000) to 187 million. Sporocysts from 24 opossums were bioassayed for Sarcocystis neurona infections by feeding to gamma-interferon knockout (KO) mice. S. neurona was detected in the brains of KO mice fed sporocysts from 19 opossums by immunohistochemical staining with anti-S. neurona specific polyclonal rabbit serum, and by in vitro culture from the brains of KO mice fed sporocysts. The isolates of S. neurona from opossums were designated SN16-OP to SN34-OP. Merozoites from 17 of 19 isolates tested at the 25/396 locus were identical to previously described S. neurona isolates from horses. The high prevalence of S. neurona sparocysts in D. virginiana suggests that this opossum constitutes an ample reservoir of infection in the southern United States.  相似文献   

6.
Studies on the in vitro excystation of Sarcocystis gigantea sporocysts revealed that pretreatment before exposure to trypsin and bile was an essential prerequisite. However, in contrast to Sarcocystis tenella and Sarcocystis capracanis, incubation in cysteine hydrochloride under CO2 was largely unsuccessful for excysting Sarcocystis gigantea: of the pretreatments tested, only exposure to sodium hypochlorite proved effective. Excystation from sodium hypochlorite-pretreated S. gigantea sporocysts took place in trypsin and bile between temperatures of 30 and 43 degrees C and occurred rapidly at 39 degrees C. While the presence of bile or bile salts was essential for this process, that of trypsin was not, although more sporocysts excysted in its presence than in its absence. Excystation occurred in the presence of all bile types tested but not when Tween 80 was substituted for bile. The highest levels of excystation were recorded when cattle or sheep bile or sodium taurocholate were used and the lowest when chicken or pig bile were employed. Neither the concentration of sheep bile above 2.5%, nor hydrogen ion concentration (pH range 5.0-10.0) appeared to have any marked effect on the level of excystation obtained.  相似文献   

7.
微小隐孢子虫卵囊(CPO)保存在4℃自来水中1~30个月,通过体外脱囊技术检测CPO的脱囊率评价其活性,通过检测CPO感染免疫抑制BALB/c小鼠的潜伏期、排卵囊数量和末端回肠绒毛中的隐孢子虫数量来评价其感染性。结果表明,保存在自来水中1~13个月的CPO出现脱囊;小鼠在感染保存1~13个月的CPO后3~8 d开始排出大量的CPO,在末端回肠绒毛中寄生有大量的隐孢子虫;CPO的保存时间与潜伏期之间存在强烈的相关性(r2=0.98)。因此,CPO在自来水中能保持活性和感染性至少13个月,水是保存CPO的良好介质,水中活性CPO的长期存在对饮用水工业是一个严重的挑战。  相似文献   

8.
The purpose of this study was to evaluate the effect of cooling ovarian tissue on pig pre-antral follicles. Ovaries were maintained in saline solution (0.9%) at 4 or 20 degrees C for 6, 12 or 18 h. After storage, pre-antral follicles were morphologically evaluated. While primordial follicles were not affected by the storage, the percentage of morphologically normal growing follicles was significantly reduced in ovarian tissue stored at 20 degrees C for 12 or 18 h. To test the viability of stored follicles, growing follicles isolated from ovaries stored at 4 degrees C for 18 h and at 20 degrees C for 6 h were cultured for 3 days. Follicles stored in either condition presented the same growth pattern in vitro as fresh follicles. We conclude that storage of pig ovaries at 4 degrees C for up to 18 h or at 20 degrees C for up to 6 h does not affect the morphology of growing follicles or their ability to grow in vitro.  相似文献   

9.
Dogs fed buffalo heart muscle containing sarcocysts of Sarcosystis levinei and heated at 65-75 degrees C did not shed sporocysts, whereas other dogs fed infected heart muscle heated between 40 and 60 degrees C shed sporocysts. Dogs fed infected heart muscle stored at -4 degrees C for 48 h did not shed sporocysts, but those fed similar infected tissues stored at -2 degrees C for 24 h shed sporocysts. The results indicate that sarcocysts of S. levinei are rendered noninfective by heating to 65 degrees C or by freezing at -4 degrees C.  相似文献   

10.
Neurologic disease in horses caused by Sarcocystis neurona is difficult to diagnose, treat, or prevent, due to the lack of knowledge about the pathogenesis of the disease. This in turn is confounded by the lack of a reliable equine model of equine protozoal myeloencephalitis (EPM). Epidemiologic studies have implicated stress as a risk factor for this disease, thus, the role of transport stress was evaluated for incorporation into an equine model for EPM. Sporocysts from feral opossums were bioassayed in interferon-gamma gene knockout (KO) mice to determine minimum number of viable S. neurona sporocysts in the inoculum. A minimum of 80,000 viable S. neurona sporocysts were fed to each of the nine horses. A total of 12 S. neurona antibody negative horses were divided into four groups (1-4). Three horses (group 1) were fed sporocysts on the day of arrival at the study site, three horses were fed sporocysts 14 days after acclimatization (group 2), three horses were given sporocysts and dexamethasone 14 days after acclimatization (group 3) and three horses were controls (group 4). All horses fed sporocysts in the study developed antibodies to S. neurona in serum and cerebrospinal fluid (CSF) and developed clinical signs of neurologic disease. The most severe clinical signs were in horses in group 1 subjected to transport stress. The least severe neurologic signs were in horses treated with dexamethasone (group 3). Clinical signs improved in four horses from two treatment groups by the time of euthanasia (group 1, day 44; group 3, day 47). Post-mortem examinations, and tissues that were collected for light microscopy, immunohistochemistry, tissue cultures, and bioassay in KO mice, revealed no direct evidence of S. neurona infection. However, there were lesions compatible with S. neurona infection in horses. The results of this investigation suggest that stress can play a role in the pathogenesis of EPM. There is also evidence to suggest that horses in nature may clear the organism routinely, which may explain the relatively high number of normal horses with CSF antibodies to S. neurona compared to the prevalence of EPM.  相似文献   

11.
Sarcocystis neurona was isolated from sporocysts from two of eight South American opossums, Didelphis albiventris, from Brazil. Interferon gamma gene knock out (KO) mice fed sporocysts from two opossums developed neurologic sarcocystosis. S. neurona was demonstrated in the brains of infected KO mice by immunohistochemical staining with anti-S. neurona antibody. The parasite was cultivated in cell culture and S. neurona DNA was isolated from cultured merozoites. This is the first report of isolation of S. neurona from Brazil and the first report from its new host, D. albiventris.  相似文献   

12.
Fifteen gamma-interferon gene knockout mice were each orally inoculated with 5 x 10(3) Sarcocystis sporocysts derived from Virginia opossums (Didelphis virginiana) fed nine-banded armadillo (Dasypus novemcinctus) muscle containing sarcocysts. Three mice were inoculated with similarly obtained homogenates, but in which no sporocysts were detected. Mouse M8 was pregnant when inoculated and gave birth during the trial. Fifteen of 15 (100%) mice inoculated with sporocysts developed neurologic signs and/or died by day 30 d.p.i. One of 3 (33.3%) mice inoculated with homogenates in which no sporocysts were detected developed clinical signs and died at 34 d.p.i. All young of mouse M8 had maternally acquired antibodies to Sarcocystis neurona, but none developed clinical neurologic signs or had protozoal parasites in their tissues. All brains from mice that developed clinical signs contained merozoites that reacted positively to S. neurona antibodies using immunohistochemical techniques. Evidence from this study further supports the nine-banded armadillo being an intermediate host of S. neurona.  相似文献   

13.
Migration and development of Sarcocystis neurona was studied in 50 gamma interferon knockout mice fed graded doses of S. neurona sporocysts from the intestine of a naturally infected opossum. Mice were examined at necropsy 1-62 days after feeding sporocysts (DAFS). All tissue sections were reacted with anti-S. neurona-specific polyclonal rabbit serum in an immunohistochemical (IHC) test. Between 1 and 3 DAFS, organisms were seen mainly in intestines. Between 4 and 11 DAFS, organisms were seen in several visceral tissues. Beginning with 13 DAFS, schizonts and merozoites were present in sections of brains of all infected mice. All regions of the brain were parasitized but the hind brain was most severely affected. S. neurona was found in the spinal cord of all 10 mice examined 22-30 DAFS. Of the 28 infected mice examined 20-62 DAFS, S. neurona was found in the brains of all 28, lungs of 14, hearts of 8 and eyes of 3. More organisms were seen in IHC-stained sections than in sections stained with hematoxylin and eosin. Treatment of tissues with glutaraldehyde, Karnovsky fixative, and ethylene diamino tetra acetic acid (EDTA, used for decalcification) did not affect staining of organisms by IHC.  相似文献   

14.
In vivo studies on the excystation of Sarcocystis gigantea and S. tenella sporocysts indicated that this process was, as in vitro, a diphasic one involving both pretreatment and treatment phases. The studies also tended to support in vitro observations that the requirements for the excystation of these two species are quite different. The results suggested that for neither species was the pretreatment stimulus likely to be provided by conditions in the rumen alone. However, exposure to abomasal conditions only induced moderate levels of excystation in both when they were subsequently treated with trypsin and bile. For S. gigantea, 0.25 to 4 h abomasal exposure was most effective; for S. tenella, 24 hours. The stimuli necessary to complete the excystation process could, apparently, be provided by 1 h placement in the duodenum for S. gigantea but not for S. tenella.  相似文献   

15.
Equine protozoal myeloencephalitis (EPM) is a serious neurological disease of horses in the Americas. The apicomplexan protozoan most commonly associated with EPM is Sarcocystis neurona. A direct agglutination test (SAT) was developed to detect antibodies to S. neurona in experimentally infected animals. Merozoites of the SN6 strain of S. neurona collected from cell culture were used as antigen and 2-mercaptoethanol was added to the antigen suspension to destroy IgM antibodies when mixed with test sera. Mice fed sporocysts of S. speeri or S. falcatula-like sporocysts from opossums did not seroconvert in the SAT. The sensitivity of the SAT was 100% and the specificity was 90% in mice.  相似文献   

16.
We tested the hypothesis that brown-headed cowbirds (Molothrus ater) harbor Sarcocystis neurona, the agent of equine protozoal myeloencephalitis (EPM), and act as intermediate hosts for this parasite. In summer 1999, wild caught brown-headed cowbirds were collected and necropsied to determine infection rate with Sarcocystis spp. by macroscopic inspection. Seven of 381 (1.8%) birds had grossly visible sarcocysts in leg muscles with none in breast muscles. Histopathology revealed two classes of sarcocysts in leg muscles, thin-walled and thick-walled suggesting two species. Electron microscopy showed that thick-walled cysts had characteristics of S. falcatula and thin-walled cysts had characteristics of S. neurona. Thereafter, several experiments were conducted to confirm that cowbirds had viable S. neurona that could be transmitted to an intermediate host and cause disease. Specific-pathogen-free opossums fed cowbird leg muscle that was enriched for muscle either with or without visible sarcocysts all shed high numbers of sporocysts by 4 weeks after infection, while the control opossum fed cowbird breast muscle was negative. These sporocysts were apparently of two size classes, 11.4+/-0.7 microm by 7.6+/-0.4 microm (n=25) and 12.6+/-0.6 microm by 8.0+/-0 microm (n=25). When these sporocysts were excysted and introduced into equine dermal cell tissue culture, schizogony occurred, most merozoites survived and replicated long term and merozoites sampled from the cultures with long-term growth were indistinguishable from known S. neurona isolates. A cowbird Sarcocystis isolate, Michigan Cowbird 1 (MICB1), derived from thin-walled sarcocysts from cowbirds that was passaged in SPF opossums and tissue culture went on to produce neurological disease in IFNgamma knockout mice indistinguishable from that of the positive control inoculated with S. neurona. This, together with the knowledge that S. falcatula does not cause lesions in IFNgamma knockout mice, showed that cowbird leg muscles had a Sarcocystis that fulfills the first aim of Koch's postulates to produce disease similar to S. neurona. Two molecular assays provided further support that both S. neurona and S. falcatula were present in cowbird leg muscles. In a blinded study, PCR-RFLP of RAPD-derived DNA designed to discriminate between S. neurona and S. falcatula showed that fresh sporocysts from the opossum feeding trial had both Sarcocystis species. Visible, thick-walled sarcocysts from cowbird leg muscle were positive for S. falcatula but not S. neurona; thin-walled sarcocysts typed as S. neurona. In 1999, DNA was extracted from leg muscles of 100 wild caught cowbirds and subjected to a PCR targeting an S. neurona specific sequence of the small subunit ribosomal RNA (SSU rRNA) gene. In control spiking experiments, this assay detected DNA from 10 S. neurona merozoites in 0.5g of muscle. In the 1999 experiment, 23 of 79 (29.1%) individual cowbird leg muscle samples were positive by this S. neurona-specific PCR. Finally, in June of 2000, 265 cowbird leg muscle samples were tested by histopathology for the presence of thick- and thin-walled sarcocysts. Seven percent (18/265) had only thick-walled sarcocysts, 0.8% (2/265) had only thin-walled sarcocysts and 1.9% (5/265) had both. The other half of these leg muscles when tested by PCR-RFLP of RAPD-derived DNA and SSU rRNA PCR showed a good correlation with histopathological results and the two molecular typing methods concurred; 9.8% (26/265) of cowbirds had sarcocysts in muscle, 7.9% (21/265) had S. falcatula sarcocysts, 1.1% (3/265) had S. neurona sarcocysts, and 0.8% (2/265) had both. These results show that some cowbirds have S. neurona as well as S. falcatula in their leg muscles and can act as intermediate hosts for both parasites.  相似文献   

17.
The interaction between the sporocysts of Sarcocystis muris and mouse peritoneal macrophages was studied both in vitro and in vivo in an attempt to determine whether or not resident peritoneal macrophages might effect the excystation of S. muris sporozoites from sporocysts injected intraperitoneally. Sporocysts of S. muris were phagocytosed by peritoneal macrophages both in vitro and in vivo. The addition of either unheated mouse serum or fetal calf serum did not significantly alter the level of phagocytosis. The percentage of phagocytosis in vivo and by thioglycolate-, proteose peptone- and BCG-elicited macrophages in vitro was greater than that shown by unstimulated macrophages in vitro. After 8 h incubation in vivo and in vitro a small proportion of sporocysts (less than 5%) was seen to have collapsed walls and up to 5% to have stained sporozoites, suggesting increased permeability of the sporocyst wall. The significance of increased permeability of the cyst wall in the process of sporozoite excystation is discussed.  相似文献   

18.
Equine protozoal myeloencephalitis (EPM) is a neurologic syndrome in horses from the Americas and is usually caused by infection with the apicomplexan parasite, Sarcocystis neurona. Little is known about the role of immunobiological mediators to this parasite. Nitric oxide (NO) is important in resistance to many intracellular parasites. We, therefore, investigated the role of inducible and endothelial NO in resistance to clinical disease caused by S. neurona in mice. Groups of interferon-gamma gene knockout (IFN-gamma-KO) mice, inducible nitric oxide synthase gene knockout (iNOS-KO) mice, endothelial nitric oxide synthase gene knockout (eNOS-KO) and appropriate genetic background mice (BALB/c or C57BL/6) were orally fed sporocysts or Hanks balanced salt solution. Mice were observed for signs of clinical disease and examined at necropsy. Clinical disease and deaths occurred only in the IFN-gamma-KO mice. Microscopic lesions were seen only in the brains of IFN-gamma-KO mice. Results of this study indicate that iNOS and eNOS are not major mediators of resistance to S. neurona infections. Results of this study suggest that IFN-gamma mediated immunity to S. neurona may be mediated by non-NO-dependent mechanisms.  相似文献   

19.
OBJECTIVE: To evaluate the effect of intermittent oral administration of ponazuril on immunoconversion against Sarcocystis neurona in horses inoculated intragastrically with S neurona sporocysts. ANIMALS: 20 healthy horses that were seronegative for S neurona-specific IgG. PROCEDURES: 5 control horses were neither inoculated with sporocysts nor treated. Other horses (5 horses/group) each received 612,500 S neurona sporocysts via nasogastric tube (day 0) and were not treated or were administered ponazuril (20 mg/kg, PO) every 7 days (beginning on day 5) or every 14 days (beginning on day 12) for 12 weeks. Blood and CSF samples were collected on day - 1 and then every 14 days after challenge for western blot assessment of immunoconversion. Clinical signs of equine protozoal myeloencephalitis (EPM) were monitored, and tissues were examined histologically after euthanasia. Results: Sera from all challenged horses yielded positive western blot results within 56 days. Immunoconversion in CSF was detected in only 2 of 5 horses that were treated weekly; all other challenged horses immunoconverted within 84 days. Weekly administration of ponazuril significantly reduced the antibody response against the S neurona 17-kd antigen in CSF. Neurologic signs consistent with EPM did not develop in any group; likewise, histologic examination of CNS tissue did not reveal protozoa or consistent degenerative or inflammatory changes. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of ponazuril every 7 days, but not every 14 days, significantly decreased intrathecal anti-S neurona antibody responses in horses inoculated with S neurona sporocysts. Protocols involving intermittent administration of ponazuril may have application in prevention of EPM.  相似文献   

20.
A study was conducted to assess viability and mitochondrial status of boar spermatozoa stored at 5 degrees C and 16 degrees C. Gel-free ejaculates, collected from 3 mature boars, were extended in a standard diluent (K3) supplemented with a low-density lipoprotein fraction (LDF) isolated from egg yolk, and stored for 96 h at 5 degrees C and 16 degrees C. Motility analysis was conducted after semen dilution (D0) and on D1-D4 of storage. A double staining method, rhodamine 123 (R123) and propidium iodide (PI), was used to assess sperm viability and mitochondrial status. Sperm viability was also assessed using Hoechst 33,258 (H33258) stain. In fresh semen samples, the percentage of motility was significantly correlated with the percentage of viable spermatozoa with functional mitochondria (R123-PI), viable spermatozoa determined by H33258 staining and ATP content (r = 0.88, p < or = 0.01; r = 0.69, p < or = 0.05; r = 0.77, p < or = 0.01, respectively). The ATP content was also positively correlated with the percentage of viable spermatozoa with functional mitochondria (r = 0.76, p < or = 0.01). Sperm cells progressively lost motility, viability and mitochondrial capacity when stored in the supportive media at 5 degrees C and 16 degrees C. Motility estimates were lower (p < or = 0.05) than the percentage of viable spermatozoa with functional mitochondria during storage in K3 and LDF-based diluents on D4 and D3-D4, respectively. Deterioration in motility and membrane integrity was less marked in spermatozoa stored in LDF-based diluents. Spermatozoa doubly-stained with R123-PI appeared to possess some functional mitochondria, particularly in LDF-based diluent semen. Estimates of sperm viability, as determined by R123-PI staining, were equivalent (p > or = 0.05) to estimates made using H33258 staining. A decrease in mitochondrial activity, as measured by R123 uptake, was accompanied by lower ATP content in spermatozoa stored in K3 and LDF-based diluents after 48 h and 72 h of storage, respectively. Fluorometric measurements of viability and mitochondrial status of boar spermatozoa during liquid storage seem to provide reliable information about the sperm functional membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号