首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Southern corn leaf blight (SCLB) caused by Cochliobolus heterostrophus is a fungal disease that impacts production of corn in China. Fungicides have been the main strategy to manage SCLB. In this study, 276 isolates of C. heterostrophus from seven locations in Fujian Province of China were tested for sensitivity to three demethylation inhibitor (DMI) fungicides. The results indicated that most of the isolates of C. heterostrophus tested were exceptionally sensitive to the three DMI fungicides. Correlation analysis revealed positive association between propiconazole and diniconazole (r?=?0.8145, P?<?0.0001), propiconazole and prochloraz (r?=?0.6190, P?<?0.0001), and diniconazole and prochloraz (r?=?0.5784, P?<?0.0001). However, there was no cross-resistance between these three DMI fungicides and the other six fungicides tested, which included carbendazol, chlorothalonil, mancozeb, iprodione, fluazinam, and pyraclostrobin. In a preventive pot experiment, one spray of 25% propiconazole emulsifiable concentrate (EC) with 250 μg active ingredient (a.i.) mL?1 applied 12 and 24 h before inoculation at the seedling (V6) stage reduced severity of SCLB by 85.60–89.21%. Nevertheless, the curative activity of propiconazole was much weaker (P?<?0.05) than its preventive efficacy. In greenhouse pot assays, one dose of propiconazole at 250 μg a.i. mL?1 was the most efficacious for controlling SCLB at the seedling and tasseling (VT) stages of corn, decreasing severity by 80.31%–84.85%, which was higher (P?<?0.05) compared to diniconazole, prochloraz, and other reference fungicides. Therefore, propiconazole appears to be very effective in reducing SCLB and should be applied as a preventive rather than therapeutic fungicide. Our findings provide essential information on the evolution of DMI resistance in C. heterostrophus in Fujian Province of China and may serve as a guide for early resistance monitoring in the future.  相似文献   

2.
In agricultural pathosystems resistant cultivars are typically only temporarily effective, as widespread growth of said cultivars drives selection for pathogen genotypes capable of infecting them. A gene-for-gene interaction between Z. tritici and wheat has been demonstrated for one cultivar; however results of studies into the relevance of these interactions in the field remain inconsistent. Because genetic drift does not appear to occur between Z. tritici populations that are not widely geographically separated, according to neutral genetic theory if adaptation to different host cultivars is occurring, reduced genetic variation, and some differentiation between populations sourced from different cultivars should be observed. Selectively neutral microsatellite markers were used to genotype 260 isolates of Z. tritici taken from two naturally infected randomized block trials of four different cultivars, representing a spectrum of resistance to Z. tritici from susceptible to resistant. By calculating genetic parameters such as overall heterozygosity and F ST from this genotypic data, the presented study aimed to determine if genetic drift or host selection is impacting on the genetic structure of the Irish Z. tritici population. Results indicated that diversity was distributed almost entirely within, rather than among populations, with little or no differentiation, and almost no clone isolates were present in the dataset. However this result was not reflected in the accessory chromosomes, where evidence of minor but significant genetic structure was found. This lack of structure in the core chromosomes and weak structure in the accessory chromosomes confirms that forces of genetic drift and selection are minor compared to sexual reproduction, in concurrence with multiple previous studies on other populations worldwide.  相似文献   

3.
Bread wheat (BW) and durum wheat (DW) are both strongly affected by Septoria tritici blotch caused by the hemibiotrophic fungus Zymoseptoria tritici. However, only the BW-Z. tritici pathosystem has been well studied so far. Here, we compared compatible interactions between Z. tritici and both BW and DW species at the cytological, biochemical and molecular levels. Fungal infection process investigations showed close spore germination and leaf penetration features in both interactions, although differences in the patterns of these events were observed. During the necrotrophic phase, disease severity and sporulation levels were associated in both interactions with increases of the two cell-wall degrading enzyme activities endo-β-1,4-xylanase and endo-β-1,3-glucanase as well as protease. An analysis of plant defense responses during the first five days post inoculation revealed inductions of GLUC, Chi4, POX and PAL and a repression of LOX gene expressions in both wheat species, although differences in kinetics and levels of induction or repression were observed. In addition, peroxidase, catalase, glucanase, phenylalanine ammonia-lyase and lipoxygenase activities were induced in both wheat species, while only weak accumulations of hydrogen peroxide and polyphenols were detected at the fungal penetration sites. Our study revealed overall a similarity in Z. tritici infection process and triggered wheat defense pathways on both pathosystems.  相似文献   

4.
Septoria tritici blotch caused by the fungus Zymoseptoria tritici (formerly Mycosphaerella graminicola) is one of the most yield-reducing diseases worldwide. Effective disease management involves the use of resistant cultivars and application of fungicides. In this study, the population structure and genetic diversity of 183 Z. tritici isolates from Denmark, Sweden, Finland and the Baltic countries were analysed by molecular markers. In population structure analysis, isolates from Denmark and Sweden were grouped together, whereas isolates from the Baltics and Finland were grouped together. Analysis of genetic diversity and ?-values confirmed the division of Nordic and Baltic regions. Danish isolates sampled from different regions and different varieties were not genetically different. However, significant genetic differences were detected between isolates sampled from different years in Denmark and for isolates sampled from specific cultivars in different years. Additionally, the frequency of several known point mutations in the gene cyp51, conferring decreased sensitivity to DMI fungicides, was investigated. Several of the examined mutations were detected at a lower frequency in Baltic isolates compared to Danish and Swedish isolates. Analysis of the Danish population revealed a significant increase in specific mutations over the years. Lastly, some mutations were significantly more frequent in isolates derived from certain varieties. By using different resistance sources in breeding programmes and application of a wide range of fungicides, a sustainable and efficient disease management can be obtained.  相似文献   

5.
Colletotrichum leaf disease of Hever brasiliensis (rubber tree) caused by C. gloeosporioides is one of the major causes of declining rubber tree yields. Little is known about the fungal molecular characters that are important for pathogenicity on rubber tree and fungicide resistance. In this study, we cloned the CgPBS2 gene, the key component of the Hog1 pathway which controls various aspects of osmoregulation and fungicide resistance in various fungal pathogens, including the causal agent of Colletotrichum leaf disease of rubber tree. We characterized the function of the CgPBS2 gene by reverse genetics. Because the Hog1 pathway plays an important role in stress responses, we obtained a CgPBS2 gene deletion mutant by PEG-mediated transformation of protoplasts after reducing the concentration of sucrose in the screening medium from 1.0 M to 0.2 M. Then, the complemented transformants and GFP-labelled CgPBS2 gene transformants were selected directly under highly hyperosmotic medium (PDA?+?1.5 M sorbitol) without using other selectable gene markers. Phenotypic observations showed that the CgPBS2 protein was mainly localized in the conidial cytoplasm of the CgPBS2-GFP transformants. In addition, disruption of CgPBS2 led to sensitivity to hyperosmosis and high salt concentration as well as resistance to the fungicide fludioxonil. No obvious difference in virulence was observed between the null mutant and the wild-type strain. These results provide insights into the role of the CgPBS2 gene in osmotic stress, salt stress and fludioxonil resistance and suggest that osmotic stress sensitivity can be used as a selection marker.  相似文献   

6.
In 2010, symptoms of cobweb disease were observed on cultivated Pleurotus eryngii crops in Spain. Based on morphological and genetic analyses, the causal agent of cobweb was identified as Cladobotryum mycophilum. Pathogenicity tests on fruit bodies were performed using conidial suspensions of three C. mycophilum isolates. The causal agent was re-isolated in 80–85 % of the fruit bodies inoculated internally and 15–40 % of those fruit bodies inoculated on the cap surface. The results pointed to a certain resistance of the P. eryngii cap surface to the mycelium of C. mycophilum. Two cropping trials inoculated with C. mycophilum were set up to evaluate the pathogenicity of the causal agent of cobweb in two casings. At the end of the growth cycle, 50–60 % of the inoculated blocks cased with mineral soil, and 20–33 % of the inoculated blocks cased with black peat showed cobweb symptoms. This difference in the appearance of the disease and its aggressiveness may be partly explained by different electrical conductivity values of the casing materials used. In vitro sensitivity of the C. mycophilum isolates and P. eryngii strains against four fungicides (chlorothalonil, prochloraz-Mn, thiabendazole and thiophanate-methyl) was assessed in radial growth experiments on fungicide-amended media. The most effective fungicides for inhibiting the in vitro growth of C. mycophilum were prochloraz-Mn and chlorothalonil, while prochloraz-Mn was also the most selective fungicide between P. eryngii and C. mycophilum, and chlorothalonil was the most toxic fungicide against the P. eryngii mycelium.  相似文献   

7.
Botrytis cinerea is a complex species prone to fungicide resistance and characterized by enormous genetic diversity. During 2013, 220 B. cinerea isolates causing gray mold were collected from greenhouse-grown crops in the regions of Ammochostos, Larnaca, and Limassol (Cyprus). Sensitivities of the sampled populations to seven botryticides with different modes of action were screened in vitro. The results of this in vitro screening highlighted the widespread phenomenon of fungicide resistance in greenhouses, since only 8.6 % of the isolates were sensitive to all botryticides. Resistance to thiophanate-methyl was the most prevalent, with frequencies ranging from 53.8 % to 80 %. Similarly, high resistance frequencies were observed for pyraclostrobin (27.1 to 78.9 %) and boscalid (28.2 to 66.2 %). Multiple fungicide resistant phenotypes were predominant, covering 67.3 % of the population, with frequencies of 80.0, 37.5, 53.8, 83.1, and 60.2 % in cucumber, eggplant, green bean, strawberry, and tomato, respectively. No fludioxonil-resistant isolates were observed. Botrytis cinerea and Botrytis group S genotypes comprised the gray mold population. B. cinerea was predominant within cucumber, eggplant and strawberry, whereas both genotypes were in equilibrium in green bean and tomato. However, Botrytis group S was found in all hosts. B. cinerea was the most prevalent in the majority of fungicide resistance phenotypes from strawberry, while genotype distributions within tomato were generally more balanced. B. pseudocinerea was not detected in the sampled population. Overall, frequency of the mating type allele MAT1–1 was higher to MAT1–2, underlying their unequal distribution in the population. However, cases of 1:1 distribution were apparent within particular subpopulations, suggesting that mating in the field cannot be excluded.  相似文献   

8.
Stripe rust is considered as the current major rust disease affecting winter cereal production across the world. A quick, reliable PCR-based marker was developed here to detect, identify and rapidly monitor Puccinia striiformis f. sp. tritici (Pst) in wheat-growing areas. Three respective sets of primers, designed from β-tubulin, squalene monooxygenase and ketopantoate reductase genes selected from the full genome of Puccinia striiformis f. sp. tritici, amplified sequences of 239, 358 and 1518 bp, respectively, in Pst pathotypes. A fragment of 1518 bp unique to Pst pathotypes was amplified using primer set PstKeto F1_30/Pst KetoR1_1547 and distinguished the pathogen clearly from different Puccinia spp. and other fungal pathogens. The detection limit of the marker (KetoPstRA1500, accession no. KU240073) by conventional PCR assay was 10 pg. This marker could detect the pathogen in the host before symptom expression. The sensitivity and utility of the marker were further enhanced in a qPCR-based assay that was developed with a newly designed primer set PstKeto F1_1246/Pst KetoR1_1547, which amplified a product of 302 bp and detected as little as 10 fg of DNA. This PCR/qPCR based marker is suitable for studying cultivar resistance, which requires accurate quantification of the pathogen in diseased host tissue.  相似文献   

9.
Anthracnose, which is caused by Colletotrichum acutatum, is a destructive disease of pepper. A preliminary study demonstrated that fludioxonil (a phenylpyrrole fungicide) has good activity against C. acutatum and thus has potential to be used as an alternative fungicide for the management of pepper anthracnose. However, there is no information regarding the baseline sensitivity and resistance risk of C. acutatum to fludioxonil. Thus, the sensitivities of 205 isolates of C. acutatum to fludioxonil were determined. The results showed that the frequency distributions of the EC50 values were unimodal, and the mean EC50 values for the inhibition of mycelial growth and spore germination were 0.031 μg/mL and 0.035 μg/mL, respectively. Three stable mutants with high resistance to fludioxonil were obtained in the laboratory. Two parameters, namely in vitro sporulation and the in vitro and in vivo germination of spores, showed significant difference (P < 0.01) when the mutants were compared to the sensitive isolates. Moreover, the mutants were more sensitive to osmotic stress compared to the parents. No significant differences (P ≥ 0.05) were detected in colony diameter, mycelia weight, pathogenicity or sporulation in vivo between the fludioxonil-resistant mutants and their corresponding parents. Cross-resistance occurred between fludioxonil, iprodione and procymidone. Overall, resistance risk of C. acutatum to fludioxonil was low to medium, and thus resistance management should be considered.  相似文献   

10.
The Rhizoctonia solani species consists of multinucleate isolates that belong to anastomosis groups AG1–AG3 and differ in virulence and host affinity. R. cerealis is a binucleate species of anastomosis group AG-D which causes sharp eyespot, a common plant disease in Poland. Rhizoctonia spp. is a ubiquitous soil pathogen that poses a significant threat for global crop production due to the absence of effective crop protection products. The aim of this study was to determine the virulence of R. solani and R. cerealis isolates towards Beta vulgaris, Zea mays, Triticum spelta and T. aestivum seedlings, to confirm the presence of endopolygalacturonase genes pg1 and pg5 in the genomes of the tested isolates and to evaluate the tested isolates’ sensitivity to triazole, strobilurin, imidazole and carboxamide fungicides. All tested isolates infected B. vulgaris seedlings. but none of them were virulent against Z. mays plants. R. solani isolates AG4 PL and AG2-2IIIB PL were characterized by the highest virulence (average infestation score of 2.37 and 2.53 points on a scale of 0–3 points) against sugar beet seedlings. The prevalence of infections caused by most of the analysed isolates (in particular R. solani AG4 J—11.8, and R. cerealis RC2—0.78) was higher in spelt than in bread wheat. The virulence of the analysed isolates was not correlated with the presence of pg1 and pg5 genes. The efficacy of the tested fungicides in controlling Rhizoctonia spp. infections was estimated at 100% (propiconazole + cyproconazole), 98.8% (penthiopyrad), 95.4% (tebuconazole) and 78.3% (azoxystrobin).  相似文献   

11.
Zonate leaf spot (Gloeocercospora sorghi) is a common disease in Sorghum bicolor producing areas of the U.S., but little is known about its biology, virulence and severity on S. bicolor, Zea mays, and related crop grassweeds. Greenhouse studies were conducted to determine and compare the virulence and severity of G. sorghi on 10 commercially available sorghum hybrids, four Z. mays hybrids and selected grassweed species including Sorghum bicolor (grain sorghum and shattercane biotypes) and Sorghum halepense (Johnsongrass), two of the most problematic arable weeds. Plants from the respective species were inoculated with a local G. sorghi isolate and maintained in a dew-chamber at 24 °C for 24 h and then incubated under greenhouse conditions for 4 weeks. Plants were observed for lesion expression and rated using a modified Horsfall-Barrett scale (0–10). The first symptoms of infection were visible within 24 h following inoculation on shattercane and S. bicolor hybrids. Symptoms consisted of small, non-diagnostic purple lesions on the leaves. Results showed that S. bicolor, S. halepense and shattercane were susceptible to G. sorghi. All other species tested in this study were not infected. More particularly, disease severity, increased from a rating of 3 to 10 on sorghum and from 2 to 7 on S. halepense between 2 and 23 days after inoculation, respectively. However, disease severity on shattercane increased rapidly from 3.5 to 10 between 2 and 8 days after inoculation, respectively. Among the sorghum hybrids tested, FFR-322 appeared to be the most resistant to G. sorghi while Pioneer 83G66 appeared to be the most susceptible. Z. mays hybrids were not infected by the fungus used in this study. G. sorghi could be used effectively to manage shattercane and S. halepense infestations occurring in Z. mays and S. bicolor fields consisting of specific G. sorghi-resistant hybrids.  相似文献   

12.
Phytophthora nicotianae is one of the most important soil-borne plant pathogens. Sporangia and zoospores of P. nicotianae are responsible for primary infection and disease dissemination. The disease caused by P. nicotianae was difficult to control by fungicide. Boron, an essential plant micronutrient, was found to have a direct effect on other pathogens. In this paper, the effects of B on the growth, antioxidant system and gene differential expression of P. nicotianae were tested. The results showed that 0.1 mM B could dramatically decrease the sporangiogenesis and zoosporogenesis of P. nicotianae. Mycelial growth of P. nicotianae was significantly inhibited when the concentration of B reached 8 mM. A high-quality differential expression sequence csn4 was obtained by gene differential expression analysis. Under the treated of B, csn4 expression was inhibited, activity of superoxide dismutase (SOD) and catalase (CAT) significantly decreased and the malondialdehyde (MDA) content notably increased compared to control. It is suggested that B could serve as a potential fungicide for the control of plant disease caused by P. nicotianae.  相似文献   

13.
Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is an important disease of wheat worldwide. Understanding the survival of Pst during the winter is critical for predicting Pst epidemics in the spring. We used a real-time quantitative PCR (qPCR) method to quantify Pst CYR32 biomass in infected wheat seedlings under several fluctuating temperature regimes (three average temperatures 0, ?5 and ?10 °C, each with two daily fluctuating amplitudes 8 and 13 °C). The survival of Pst CYR32 increased with increasing average temperature but also varied greatly with the amplitude – larger amplitude led to lower survival, particularly at 0 and ?5 °C. Nevertheless the survival at both amplitudes was still significantly greater than under the corresponding constant temperatures. There were small, albeit statistically significant, differences between the two cultivars (Xiaoyan 22, low winter-hardiness; Lantian 15, high winter-hardiness) in Pst CYR32 survival. This study indicated potential errors that could result from using daily average temperatures to predict Pst survival during the winter.  相似文献   

14.
Globisporangium Uzuhashi, Tojo & Kakish. (syn. Pythium Pringsheim) species cause many plant diseases, including Pythium damping-off, leaf and fruit blights, and root rots. Fungicide resistant isolates are selected by repeated use of a single active ingredient on infected crops without rotation. Previous studies demonstrated increased pathogenicity and radial growth in a mefenoxam resistant isolate of Pythium aphanidermatum when exposed to sub-lethal doses of fungicides and ethanol. In those studies, reproducibility of in vitro assays was difficult to achieve due to large variations among trials. This study aimed to examine two protocols for improved reproducibility during the assessment of biphasic dose-responses in mefenoxam-resistant isolates of Globisporangium ultimum and G. irregulare. Two different growth related endpoints, total growth area and total dry mass weight, were assessed. Assays were conducted using ten concentrations of mefenoxam ranging from 0.01 to 1,000 μg/ml. Statistically-significant stimulatory effects were observed in the two Globisporangium species using the two growth related endpoints. Because of its better reproducibility, mycelial growth area is recommended as an endpoint for future studies of chemical hormesis on growth of Globisporangium spp.  相似文献   

15.
The members of the Colletotrichum gloeosporioides species complex (CGSC), the dominant pathogens of apple bitter rot in Nagano prefecture, Japan, were reidentified and the relationship between the species and fungicide sensitivity was revealed. Based on phylogenetic analysis of the ApMat locus with the neighbor-joining (NJ) method, isolates from apple contained three species of the CGSC; C. fructicola, C. aenigma, C. siamense, and three clades of the CGSC: Clade V, S and K. Colletotrichum fructicola and Clade S dominated in Nagano Prefecture. Isolates of C. siamense, C. aenigma and Clade V, S and K remained sensitive to benomyl and quinone outside inhibitor (QoI) fungicides, while C. fructicola often developed resistance to benomyl and QoI fungicides. These results suggest that the development of fungicide resistance differs among members of the CGSC.  相似文献   

16.
Monilinia fructicola, the most destructive pathogen of the genus Monilinia, has recently been introduced into Serbia and many other European countries. Since then, many studies have been conducted to evaluate the characteristics of Monilinia species that have a role in the establishment and survival of the pathogen in new areas. The present study assessed the capacity of M. fructicola to repress and replace Monilinia laxa in Serbia based on: fungicide sensitivity, growth rate and aggressiveness at different temperatures, as well as frost hardiness of the isolates of both species. The results showed that the isolates of M. fructicola, compared to M. laxa, were significantly less sensitive to the following fungicides: iprodione, tebucanozole, chlorothalonil, azoxystrobin, fluopyram, and boscalid. In addition, M. laxa isolates exhibited little variation in sensitivity to all of the tested fungicides, whereas M. fructicola isolates displayed a wide range of sensitivity. The temperature of 5°C favored M. laxa growth and aggressiveness, while at 30°C M. fructicola grew faster and had higher lesion expansion rate. These results support an assumption that M. fructicola will continue to spread in Serbian orchards in coming years, particularly on stone fruits harvested during hot summer weather.  相似文献   

17.
We investigated incidences of Fusarium head blight (FHB) and concentrations of six mycotoxins (deoxynivalenol, nivalenol, 3-acetyldeoxynivalenol, T-2 toxin, HT-2 toxin and zearalenone) in wheat from 2010 to 2013. Field trials were conducted at the Experimental Station of Cultivar Testing in Chrz?stowo, Poland (53o11’N, 17o35’E). We examined the effects of four agronomic factors, including pre-crop type (corn, sugar beets and wheat), date of sowing (late autumn: November 8–December 9 or spring: March 29–April 19), fungicidal application (untreated or treated with two applications) and cultivar (Monsun, Cytra), on FHB index (FHBi) and mycotoxin levels in order to minimize the risk of wheat grain contamination by mycotoxins via integrated pest management methods. The dominant Fusarium species observed on wheat heads were F. culmorum, F. avenaceum (Gibberella avenacea) and F. graminearum (Gibberella zeae), at 21.1%, 17.2% and 7.1%, respectively. A monthly rainfall sum of 113.9 mm and a relatively low air temperature (monthly average 15.5 °C) resulted in the highest FHBi in untreated wheat (25.1%). Agronomic factors crucial for the FHB incidence were the pre-crop, fungicidal treatments and cultivar selection. In wheat planted after wheat or corn, the FHBi was higher compared with a pre-crop of sugar beet. A double application of fungicides at BBCH 30–32 with prothioconazole and spiroxamine and at a BBCH 65 with fluoxastrobin and prothioconazole effectively reduced the FHBi and mycotoxin concentrations, respectively, in grain. The cultivar ‘Cytra’ had a greater FHBi (10.4%) than ‘Monsun’ (4.6%), and grain infestations by Fusarium species were also greater in ‘Cytra’, at 16.5%, than in ‘Monsun’, at 11.2%. Untreated cv. Cytra grown after corn in spring produced grains with the highest amounts of the mycotoxins, deoxynivalenol, 3-acetyldeoxynivalenol, zearalenone and HT-2 (605, 103, 17.5 and 5.53 μg/kg, respectively). Total mycotoxin levels in wheat were correlated with five determinants: duration of the period between the end of flowering and the beginning of kernel abscission, FHBi, F. culmorum isolation, G. zeae isolation and Fusarium ratio (FR) as a % of total mould isolations. Although, the mean concentration of mycotoxins in grain did not exceed the maximum permissible values for unprocessed wheat our study suggests necessity to monitor and mitigate FHB risk for susceptible cultivars, when wheat spring sowing follows corn or wheat.  相似文献   

18.
19.
Pyrethrum seed has an important role in the transmission of Stagonosporopsis tanaceti, the cause of ray blight disease of pyrethrum. A TaqMan probe based polymerase chain reaction (PCR) assay was developed to quantify the level of S. tanaceti inocula in pyrethrum seed and seedlings. Primer pair (St_qF3, St_qR2) was designed based on the intergenic spacer (IGS) region of S. tanaceti, which produced a 125 bp amplicon specific to S. tanaceti. TaqMan PCR assay using St_qF3, St_qR2 and a probe St_qP was highly specific against the genomic DNA of S. tanaceti, but did not amplify DNA of 14 related Stagonosporopsis species or other foliar pathogens of pyrethrum. The sensitivity limit of this assay was measured using the cycle threshold (Ct) value which ranged from 17.59 for 10 nanograms (ng) to 36.34 for 100 femtograms (fg) genomic DNA of S. tanaceti. There was a significant negative correlation (r = ?0.999, P < 0.001) between the Ct value and the percent of S. tanaceti infected seed. In addition, this TaqMan PCR assay detected latent infection within seedlings. This assay could be applied to test commercial seed and seedlings before deciding on the appropriate management practices.  相似文献   

20.
The fungal community on the roots, stem bases, stems and grains of organically grown winter wheat was analysed using terminal restriction fragment length polymorphism (T-RFLP) combined with cloning and sequencing of the ITS region. The changes in the composition of fungi in different plant parts and over time as well as interactions between fungi were also investigated. Among 58 fungal taxa found the most common were Davidiella macrospora, Cladosporium spp., Tetracladium maxilliforme, Didymella exitialis, Microdochium nivale and an unidentified species within Ascomycetes. Several potential wheat pathogens were found: Fusarium spp. including F. poae and G. avenacea (F. avenaceum), Microdochium nivale, Oculimacula yallundae, Parastagonospora nodorum and Zymoseptoria tritici and most of them were present on all plant parts. Plant part affected the most the fungal colonization of wheat as was shown both by multivariate analysis of the whole fungal community as well as the analysis based on the identified species. The composition of fungal communities in different parts changed during the growing season but no pattern common for the whole crop could be observed. The most dynamic and significant changes were found among yeasts. Both positive and negative significant interactions between pairwise combinations of pathogens were observed. Positive significant associations were also found between pathogens and other fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号