首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Arabidopsis thaliana exhibits a durable resistance called nonhost resistance against nonadapted fungal pathogens. A. thaliana activates preinvasive resistance and terminates entry attempts by nonadapted fungi belonging to the genus Colletotrichum, which cause anthracnose disease in many plants. In the interaction between A. thaliana and nonadapted C. tropicale, the preinvasive resistance involves the PENETRATION 2-related antifungal secondary metabolite pathway and the ENHANCED DISEASE RESISTANCE 1-dependent antifungal peptide pathway. The development of invasive hyphae by C. tropicale owing to the reduction of preinvasive resistance then triggers the blockage of further hyphal expansion via the activation of the second layer of resistance, i.e., postinvasive resistance, which guarantees the robustness of the nonhost resistance of A. thaliana against Colletotrichum pathogens. Both the tryptophan-derived metabolic pathway and glutathione synthesis play critical roles in the postinvasive resistance against C. tropicale, although the molecular mechanism of postinvasive resistance remains to be elucidated. In this review, we describe the current understanding of the molecular background of the Arabidopsis nonhost resistance against Colletotrichum fungi and discuss perspectives for future research on this durable resistance.  相似文献   

2.
Colletotrichum gloeosporioides is the causal agent of Camellia oleifera anthracnose, mainly infecting fruits and leaves. The fungus secretes degrading enzymes to destroy the cuticle of aerial plant parts and help infect the host successfully. To validate whether a cutinase gene (CglCUT1) was required for cutinase activity and pathogenicity of C. gloeosporioides, the CglCUT1 gene was cloned and analyzed. The characterization of CglCUT1 predicted protein suggests that the cloned DNA encoded a cutinase in C. gloeosporioides affecting C. oleifera. The CglCUT1 showed a high homology to those from C. gloeosporioides causing papaya anthracnose and C. capsici causing pepper anthracnose, as well as those of other ascomycetes. The whole CglCUT1 gene was knocked-out and the knockout mutant (?CglCUT39) was subsequently complemented using Agrobacterium tumefaciens mediated transformation. The knockout transformants exhibited significant decreases in cutinase activity and virulence compared with the wild-type strain. The complemented transformants of the disrupted transformant ?CglCUT39 showed a significant increase in cutinase activity and virulence compared with the disrupted transformant ?CglCUT39. This study suggests that the CglCUT1 gene has a positive effect on fungal virulence of the hemibiotrophic C. gloeosporioides on C. oleifera.  相似文献   

3.
The aim of this study was to identify the Colletotrichum species associated with anthracnose symptoms in coffee (Coffea arabica L.) plantations in northern Puebla, Mexico. In 2013, five surveys were conducted in different production areas and at different altitudes. Symptomatic leaves, shoots, and ripe and unripe fruits of the coffee variety Red Caturra were collected. Isolates were obtained and the Colletotrichum species were identified morphologically and characterized by multilocus sequence analyses of the ACT, CAL, GAPDH, and TUB2 genes and the rDNA region. Additionally, pathogenicity tests were conducted using six isolates. We identified C. gigasporum, C. gloeosporioides, C. karstii (two isolates), C. siamense, and C. theobromicola. This is the first report of these five species infecting leaves of coffee. The symptoms caused by these species were characterized, but the species causing Coffee Berry Disease was not found. This is the first report of a complex of species affecting coffee plants in the same geographical area in Mexico, and suggests that other complexes of species may be important pathogens in coffee-producing areas elsewhere.  相似文献   

4.
Type IV pili of X. fastidiosa are regulated by pilG, a response regulator protein putatively involved in chemotaxis-like operon sensing stimuli through signal transduction pathways. To elucidate the roles of pilG in pathogenicity of X. fastidiosa, the pilG-deletion mutant XfΔpilG and complemented strain XfΔpilG-C were generated. While all strains had similar growth curves in vitro, XfΔpliG showed significant reduction in cell-matrix adherence and biofilm production compared with wild-type X. fastidiosa and XfΔpilG-C. The genes pilE, pilU, pilT, and pilS were down-regulated in XfΔpliG when compared with its complemented strain and wild-type X. fastidiosa. Finally, no Pierce’s disease symptoms were observed in grapevines inoculated with XfΔpilG, whereas grapevines inoculated with the wild-type X. fastidiosa and complemented strain of XfΔpilG-C developed typical Pierce’s Disease (PD) symptoms. The results indicate that pilG has a role in X. fastidiosa virulence in grapevines.  相似文献   

5.
Fusarium wilt, one of the destructive diseases of cucumber can be effectively controlled by using biocontrol agents such as Trichoderma harzianum. However, the mechanisms controlling T. harzianum-induced enhanced resistance remain largely unknown in cucumber plants. Here we screened the potent T. harzianum isolate TH58 that could effectively control F. oxysporum (FO). Glasshouse efficacy trials also showed that TH58 decreased disease incidence by 69.7 %. FO induced ROS over accumulation, while TH58 inoculation suppressed ROS over accumulation and improved root cell viability under F. oxysporum infection. TH58 inoculation could reverse the FO-induced cell division block and regulate the proportional distribution of nuclear DNA content through inducing 2C fraction. Moreover, the expression levels of cell cycle-related genes such as CDKA, CDKB, CycA, CycB, CycD3;1 and CycD3;2 in TH58 - pre-inoculated seedlings were up-regulated compared with those infected with FO alone. Taken together, these results suggest that T. harzianum improved plant resistance against Fusarium wilt disease via alterations in nuclear DNA content and cell cycle-related genes expression that might maintain a lower ROS accumulation and higher root cell viability in cucumber seedlings.  相似文献   

6.
Infection by Pyrenophora teres f. teres (Ptt) or P. teres f. maculata (Ptm), the causal agents of the net and spot forms of net blotch of barley, respectively, can result in significant yield losses. The genetic structure of a collection of 128 Ptt and 92 Ptm isolates from the western Canadian provinces of Alberta (55 Ptt, 27 Ptm), Saskatchewan (58 Ptt, 46 Ptm) and Manitoba (15 Ptt, 19 Ptm) were analyzed by simple sequence repeat (SSR) marker analysis. Thirteen SSR loci were examined and found to be polymorphic within both Ptt and Ptm populations. In total, 110 distinct alleles were identified, with 19 of these shared between Ptt and Ptm, 75 specific to Ptt, and 16 specific to Ptm. Genotypic diversity was relatively high, with a clonal fraction of approximately 10 % within Ptt and Ptm populations. Significant genetic differentiation (PhiPT = 0.230, P = 0.001) was found among all populations; 77 % of genetic variation occurred within populations and 23 % between populations. Lower, but still significant genetic differentiation (PhiPT = 0.038, P = 0.001) was detected in Ptt, with 96 % of genetic variation occurring within populations. No significant genetic differentiation (PhiPT = 0.010, P = 0.177) was observed among Ptm populations. Isolates clustered in two distinct groups conforming to Ptt or Ptm, with no intermediate cluster. The high number of haplotypes observed, combined with an equal mating type ratio for both forms of the fungus, suggests that P. teres goes through regular cycles of sexual recombination in western Canada.  相似文献   

7.
Zonate leaf spot (Gloeocercospora sorghi) is a common disease in Sorghum bicolor producing areas of the U.S., but little is known about its biology, virulence and severity on S. bicolor, Zea mays, and related crop grassweeds. Greenhouse studies were conducted to determine and compare the virulence and severity of G. sorghi on 10 commercially available sorghum hybrids, four Z. mays hybrids and selected grassweed species including Sorghum bicolor (grain sorghum and shattercane biotypes) and Sorghum halepense (Johnsongrass), two of the most problematic arable weeds. Plants from the respective species were inoculated with a local G. sorghi isolate and maintained in a dew-chamber at 24 °C for 24 h and then incubated under greenhouse conditions for 4 weeks. Plants were observed for lesion expression and rated using a modified Horsfall-Barrett scale (0–10). The first symptoms of infection were visible within 24 h following inoculation on shattercane and S. bicolor hybrids. Symptoms consisted of small, non-diagnostic purple lesions on the leaves. Results showed that S. bicolor, S. halepense and shattercane were susceptible to G. sorghi. All other species tested in this study were not infected. More particularly, disease severity, increased from a rating of 3 to 10 on sorghum and from 2 to 7 on S. halepense between 2 and 23 days after inoculation, respectively. However, disease severity on shattercane increased rapidly from 3.5 to 10 between 2 and 8 days after inoculation, respectively. Among the sorghum hybrids tested, FFR-322 appeared to be the most resistant to G. sorghi while Pioneer 83G66 appeared to be the most susceptible. Z. mays hybrids were not infected by the fungus used in this study. G. sorghi could be used effectively to manage shattercane and S. halepense infestations occurring in Z. mays and S. bicolor fields consisting of specific G. sorghi-resistant hybrids.  相似文献   

8.
Wilt disease of lentil caused by Fusarium oxysporum f.sp. lentis (Fol) is one of the most important diseases affecting lentil worldwide. Differential response of six lentil accessions with reported differences in the level of resistance to Fol was studied micro and macroscopically. Penetration took place through root epidermal cells without formation of any specific structure. Hyphae reached the stele within two days after inoculation (dai) and subsequently invaded xylem bundles having colonised the endodermis, vascular system and even vascular parenchyma phloem already by 4 dai. Resistance was observed as a quantitative trait in all studied accessions resulting from varying levels of xylem occlusion with gum-like substances and of degree of colonization observed only after 4 dai. An indication of a qualitative resistance was detected in accession BGE019696 inoculated with pathotype 1 as a fast secretion of phenolic compounds at 4 dai. Plasmolysis of cytoplasm, lignification and accumulation of phenolic compounds, gum-like substances and/or tyloses were observed from 15 to 30 dai. As a result of the various operative mechanisms, significantly lower numbers of propagules were recovered from roots by 15 dai, and a retardation of disease was measured as lower disease index by 30 dai in plants inoculated with pathotype 1, but not in those inoculated with pathotype 7.  相似文献   

9.
Small cardamom (Elettaria cardamomum Maton) is extensively cultivated in the Western Ghats of South India either as a monocrop under the forest trees or as an intercrop along with arecanut and coffee plantations. Colletotrichum species responsible for severe outbreaks of anthracnose on small cardamom in South India are reported. Small cardamom anthracnose, popularly known as “Chenthal”, manifests itself on the foliage as yellowish lesions, which later coalesce to form large blighted areas. In advanced stages, the affected leaves dry up giving a burnt appearance to the plant. Twenty-five isolates of Colletotrichum were isolated from leaves of small cardamom in Karnataka, Kerala and Tamil Nadu states of India. The isolates were characterized through morphological studies and multilocus phylogenetic analysis (ITS, ACT, CHS-1, GAPDH, TUB2, CYLH3, GS and ApMat gene regions) to test whether different species are present and identified: C. karstii (2 isolates), C. gloeosporioides (1), C. siamense (7), C. syzygicola (6), Colletotrichum sp (5), and C. guajavae (4), as the cause of anthracnose on small cardamom for the first time. Pathogenicity of the six species was confirmed. To our knowledge, this is the first detailed study of Colletotrichum species which cause anthracnose diseases on small cardamom.  相似文献   

10.
Ascochyta blight of lentil (Lens culinaris ssp. culinaris) is caused by Ascochyta lentis. The disease causes severe damage to all aerial parts of the plant and may lead to total crop loss during extremely severe epidemics. To identify qualitative differences in resistance within Australian lentil crops, variation in virulence was examined among 17 isolates of A. lentis on six differential lentil genotypes (ILL7537, ILL5588 (cv. Northfield), ILL6002, ILL5722 (cv. Digger), ILL481 (cv. Indianhead) and CIPA203 (cv. Nipper)). Six distinct virulence patterns were identified, with Pathotype I (AL4) being highly virulent, causing disease on all genotypes except ILL7537 and pathotype VI (Kewell) exhibiting low virulence on all genotypes. Histopathology studies were carried out to further understand interaction differences between isolate-host combinations and add to the knowledge of possible resistance mechanisms underlying lentil’s defence to the pathogen. The infection process was compared between lentil genotypes with different levels of resistance and isolates with different levels of virulence. Microscopic and biochemical differences were observed between compatible and incompatible interactions, which were related to time-after-inoculation, with slower responses noted in susceptible lentil genotypes. Relatively fast release of reactive oxygen species (ROS) and a subsequent hypersensitive response (HR) was central to initial defence at the point of penetration in the most resistant lentil genotypes.  相似文献   

11.
Nicandra physaloides, a common weed in South America, was found to be infected by an isolate of Tomato severe rugose virus (ToSRV), a bipartite begomovirus. The plants developed severe yellow rugose mosaic and were collected in São Paulo State, Brazil. This isolate of ToSRV was transmitted by Bemisia tabaci B biotype from infected plants of N. physaloides to healthy plants of N. physaloides and tomato in a glasshouse. This is the first report of natural infection of N. physaloides by ToSRV in Brazil.  相似文献   

12.
Anthracnose fruit rot caused by Colletotrichum spp. is a serious post-harvest disease of chili fruits (Capsicum spp.). One hundred-thirty isolates of Colletotrichum spp. were isolated from anthracnose of green and red cayenne pepper (Capsicum annuum) and bird’s eye chili (Capsicum frutescens). The isolates were morphologically identified as Colletotrichum acutatum sensu lato (62 isolates), Colletotrichum truncatum (54 isolates), and Colletotrichum gloeosporioides sensu lato (14 isolates). Molecular identification and phylogenetic analyses were based on internal transcribed spacer regions, β-tubulin, actin, and glyceraldehyde-3-phosphate dehydrogenase genes, and the isolates were re-identified as C. scovillei (58 isolates), C. truncatum (54 isolates), C. siamense (11 isolates), C. fioriniae (four isolates), and C. fructicola (3 isolates). Maximum likelihood trees using combined sequences showed that isolates of the same species grouped in the same main clade with the isolates used for comparison. Pathogenicity testing showed that the tested isolates from each species were pathogenic towards green and red Capsicum annuum and Capsicum frutescens upon treatment of wounded fruit, using both the mycelial plug and conidial suspension methods. Only five isolates of C. truncatum and seven isolates of C. scovillei were found to be pathogenic upon treatment of unwounded fruit. The occurrence of five Colletotrichum spp. (C. siamense, C. fructicola, C. scovillei, C. fioriniae, and C. truncatum) associated with chili anthracnose in Peninsular Malaysia indicates that correct species identification is important to formulate not only effective disease management, but also effective quarantine policy.  相似文献   

13.
Miscanthus x giganteus is a fast growing, perennial energy crop for temperate climates. Because of its high annual biomass production rates and its characteristics as a low-input crop, an expansion of field cultivation can be anticipated to cover increasing demands for sustainable biomass production. However, knowledge about pathogens that could have an impact on biomass production is still limited for M. giganteus. Here, we report about the isolation of the filamentous fungus Apinisia graminicola from necrotic leaf lesions of M. giganteus grown on a field trial plot in Northern Germany. Inoculation assays with the isolated A. graminicola strain confirmed its capacity to cause a leaf spot disease on M. giganteus. Additional inoculation assays revealed that A. graminicola also caused necrotic lesions on leaves of the model grass Brachypodium distachyon. Generally, symptoms of A. graminicola-caused leaf spot disease were stronger on B. distachyon compared to M. giganteus. Incubation temperatures above 22 °C during A. graminicola infection resulted in stronger disease symptoms on both, M. giganteus and B. distachyon leaves. Microscopic analysis of cross sectioned, infected leaf tissue revealed an epiphytic mycelium formation on the surface and an endophytic colonization of the mesophyll leave tissue, especially in M. giganteus. Our results revealed that the isolated A. graminicola strain is a causal agent of a leaf spot disease on grass leaves. Its potential on endophytic growth in M. giganteus might open new possibilities in studying this type of plant-fungal interaction on a cellular and molecular level in an energy crop.  相似文献   

14.
The receptor-like cytoplasmic kinases (RLCK family VII) are required for plant defense against various pathogens. Previously, OsPBL1 (ORYZA SATIVA ARABIDOPSIS PBS1-LIKE 1) was isolated from rice as a potential RSV (rice stripe virus) resistant factor, but its physiological roles in plant defense are yet to be investigated. In this study, we demonstrated that OsPBL1increased defense against P. syringae in transgenic Arabidopsis. To ascertain the role of OsPBL1 gene in plant defense, OsPBL1 tagged with HA (i.e. Hemagglutinin) was overexpressed in Arabidopsis and examined for the resistance against Pseudomonas syringae pv. tomato DC3000 (i.e. Pst DC3000). At 3 dpi of Pst DC3000, transgenic Arabidopsis lines exhibited the reduced chlorotic lesion and propagation of P. syringae, compared to wild type. Elevated pathogen resistance of transgenic lines was correlated with increased H2O2 accumulation and callose deposition on the infected leaves. It was also revealed that expression levels of salicylic acid dependent genes such as PR1, PR2, and PR5, were induced higher in transgenic lines than wild type. Taken together, our data suggested that OsPBL1 exerted the role in defense against pathogen attacks in plant via mainly facilitating salicylic acid dependent pathway.  相似文献   

15.
Pyricularia oryzae (rice blast) conidial development at pre-penetration stage determines success or otherwise of infection inside the rice host plants. Studies on conidial germination and growth on the leaf surface in commercial rice (Oryza sativa) report differently, dependent upon host type and level of blast resistance. Although wild rice (O. australiensis) is known to be an alternative host of blast, the interaction between P. oryzae conidia and wild O. australiensis on its leaf surface has not been previously studied. We found significant (P?<?0.001) differences in conidial development between two blast isolates with different virulence in terms of conidial germination, germ tube growth and appressoria formation on both wild and cultivated rice. Conidial germination at 6 h post-inoculation (hpi) for the virulent isolate was significantly (P?<?0.001) delayed. Germ tubes of the avirulent isolate conidia grew significantly (P?<?0.001) faster and with significantly (P?<?0.001) longer germ tubes than from virulent conidia. Appressoria development for the virulent isolate was significantly (P?<?0.001) faster at its later growth stages of 12 and 18 hpi when approximately 100% of germ tubes formed appressoria. In contrast, formation rate of appressoria for the avirulent isolate was significantly (P?<?0.001) slower and only reached 76% of germ tubes forming appressoria. Appressoria formation on O. australiensis was significantly (P?<?0.001) greater than the formation on O. sativa for both virulent and avirulent P. oryzae at 12 hpi, a clear indication that host type influences the extent of appressoria formation.  相似文献   

16.
17.
18.
Colletotrichum fructicola is a major causal agent among anthracnose pathogens of strawberry in Nara, Japan. We hypothesized that a wide range of weeds growing in and around strawberry fields are inoculum sources of the disease and investigated their potential as hosts of C. fructicola. We also examined the influence of herbicide treatment on C. fructicola sporulation on weeds. The fungus was detected on 31 of 541 (5.7%) leaves sampled from 13 weed species from 2005 to 2008. The fungus was most frequently isolated from leaves of Amaranthus blitum with an isolation frequency of 17.9%; inoculation of A. blitum with the pathogen caused brown leaf spots. Other weeds such as Digitaria ciliaris, Galinsoga ciliata, Solidago altissima, Erigeron annuus, and Sonchus oleraceus were found to harbor the fungus at lower rates (4.3–8.1%) without symptoms. C. fructicola formed acervuli on leaves of A. blitum, D. ciliaris, and S. oleraceus after plants were killed by a herbicide (glyphosate). These results demonstrated that infected weeds associated with strawberry cultivation are potential inoculum sources of C. fructicola, especially after herbicide treatment.  相似文献   

19.
In previous research, concentrated metabolites produced by bacteria of the genera Xenorhabdus and Photorhabdus (which are symbionts of entomopathogenic nematodes) were reported to be highly suppressive to fungal and oomycete plant pathogens. Conceivably, application of non-concentrated bacterial filtrates would be more economically feasible compared to using concentrated metabolites. We evaluated the potency of 10 % v/v cell-free supernatants of the bacteria X. bovienii, X. nematophila, X. cabanillasii, X. szentirmaii, P. temperata, P. luminescens (VS) and P. luminescens (K22) against Fusicladium carpophilum (peach scab), F. effusum (pecan scab), Monilinia fructicola (brown rot), Glomerella cingulata (anthracnose) and Armillaria tabescens (root rot). A bioactive compound derived from Photorhabdus bacteria, trans-cinnamic acid (TCA), was also compared with the bacterial filtrates. Fungal colony size based on manual measurements was compared for accuracy to measurements taken by image analysis. Supernatants of Xenorhabdus spp. exhibited stronger suppressive effects on spore germination and vegetative growth when compared with Photorhabdus spp. Overall, TCA was the most effective treatment; vegetative growth was completely inhibited by TCA (1.27 mg/ml). TCA treatments also suppressed spore germination of F. carpophylium and F. effussum by approximately 90 %. The efficacy of supernatants varied among Xenorhabdus species depending on the species tested, but X. szentirmaii filtrates tended to cause greater inhibition relative to the other bacteria supernatants. Manual measurement of colony diameter required at least two replicate estimates of the colony to avoid a type II error. Area measurements were slightly overestimated based on ruler measurements, but did not affect the outcome of the analysis. Supernatants of Xenorhabdus spp., Photorhabdus spp., or TCA, did not cause any phytotoxic effects when applied to various plant species in the greenhouse. Our results indicate the potential of using TCA or Xenorhabdus cell free supernatants as bio-fungicides. Such a product, based on bacterial culture supernatants, would be economically viable, marketable and easily applicable by the end-users in many situations.  相似文献   

20.
Drimia maritima (squill) is a historically important medicinal plant. During the spring of 2016, small, yellow leaf spots, which became brown and finally necrotic, were observed on squill plants in Kohgiluyeh and Boyer-Ahmad Provinces in Iran. A fungus was consistently isolated from infected leaves and identified as Alternaria alternata based on morphological and phylogenetic analyses. Pathogenicity tests confirmed A. alternata to be the causal agent of the newly observed leaf spot disease. This is the first report of leaf spot on D. maritima caused by A. alternata in the world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号