共查询到20条相似文献,搜索用时 92 毫秒
1.
2.
3.
基于ETM~+的遥感影像信息提取研究 总被引:2,自引:0,他引:2
以沈阳市苏家屯区为试验区,对ETM+图像的光谱信息和纹理信息进行综合分析,以达到提高影像分类精度的目的.利用光谱信息提取水体、植被;采用基于灰度共生矩阵的纹理量的分类法,通过TM5波段提取灰度共生矩阵和灰度联合矩阵,计算并提取最能反映类别差异的纹理量值将光谱信息混淆的水田、旱田、居民地用分离,得到最终的分类结果.结果表明:将纹理特征应用于图像分类中可区分光谱混淆的地类,光谱与纹理特征结合得到的分类精度要高于单纯光谱的分类精度. 相似文献
4.
5.
采用自主开发设计的森林资源规划调查系统,在大的地性线与已有林班线为边界控制条件下,对常用于森林资源调查的SPOT5遥感影像进行了多尺度、多层次逐级分割,获取了影像对象.同时,综合运用分割对象的光谱、空间特征和纹理特征形成分类规则,在此基础上进行小班区划,试验结果表明,该方法得到了较好的小班区划精度. 相似文献
6.
7.
以湖南省攸县为研究区,利用2009、2010年SPOT5影像,在抽样可靠性指标为95%的情况下,设计系统抽样方案、分层抽样方案和简单随机抽样,通过SVM进行图像分类,并结合2009年湖南省连续清查数据对方案进行精度验证,得到适合研究区的抽样方案。结果表明:3种抽样方案中,适宜攸县森林资源调查的最优方案为,以抽样间隔为4 km × 6 km (第Ⅰ层)、4 km × 4 km (第Ⅱ层)、4 km × 4 km (第Ⅲ层)进行的分层抽样,总体分类精度达到90.48%。其中,在系统抽样中,抽样间隔为4 km × 4 km和2 km × 2 km的方案总体精度均为88.10%,但前者训练样本数较少,表明在实际调查中,训练样本的数量与抽样的总体精度不是一直呈正相关。在分层抽样中,适合各层的最优抽样方案不一定相同,并且与系统抽样的最优方案也不一定相同。当抽样间隔相同时,分层抽样的总体精度要高于系统抽样的总体精度,但训练样本数少于系统抽样的训练样本数。所以在实际调查中,采用分层抽样较系统抽样,得到的精度较高,并且耗费的人力物力较少,较为高效。 相似文献
8.
高分辨率影像城区建筑物提取研究 总被引:1,自引:0,他引:1
【目的】探讨高分辨率遥感影像城区建筑物提取方法,为快速获取城区建筑物分布和辅助制订城区发展规划提供参考。【方法】以陕西杨凌西北农林科技大学北校区为研究对象,采用知识规则与支持向量机(Support vector machines,SVM)相结合的面向对象分析方法,从QuickBird影像中提取建筑物,并与基于SVM的面向对象分析方法及传统的基于像元的分类方法进行比较。【结果】采用知识规则与SVM相结合的面向对象分析方法所得的分类结果表明,提取建筑物总体精度达到90.68%,Kappa系数为0.81,较基于SVM的面向对象分析方法、SVM、最大似然法、K均值法总体精度分别提高了10.38%,15.31%,26.4%和29.2%。【结论】基于知识规则和SVM相结合的面向对象分析方法精度高、速度快,可快速获取建筑物的分布情况。 相似文献
9.
10.
以浙江省湖州市东林镇的SPOT5遥感影像为基础数据,利用几种融合后的影像进行土地利用变更调查,根据其精度对比结果,建议针对不同地物,采用不同方法融合的影像进行变更调查,以提高利用遥感影像进行土地利用变更调查的精度.同时,对利用SPOT5遥感影像进行土地利用变更调查,并输出1:1万成果图的可行性进行了讨论. 相似文献
11.
针对传统支持向量机方法中存在的野值噪声敏感问题,提出了一种基于紧密度的Grey-Sigmoid核函数支持向量机,不仅考虑样本与所属类中心之间的关系,还考虑了各个样本之间的距离。通过样本之间的紧密度来描述各个样本之间的关系,利用包围同一类样本的最小超球半径来衡量样本间的紧密度,样本灰度依据样本在球中的位置确定。通过对田间小麦全蚀病的遥感图像分类的实验验证,证明Grey-Sigmoid核函数和传统的Sigmoid核函数相比,计算速度更快,且精度没有明显损失。 相似文献
12.
基于图像处理技术,对4种苜蓿叶部病害进行识别研究。利用结合K中值聚类算法和线性判别分析的分割方法对病斑图像作分割,获得了较好的分割效果。结果表明:该分割方法在由4种病害图像数据集整合成的汇总图像数据集上综合得分的平均值和中值分别为0.877 1和0.899 7;召回率的平均值和中值分别为0.829 4和0.851 4;准确率的平均值和中值分别为0.924 9和0.942 4。进一步提取病斑图像的颜色特征、形状特征和纹理特征共计129个,利用朴素贝叶斯方法和线性判别分析方法建立病害识别模型,并结合顺序前向选择方法实现特征筛选,分别获得最优特征子集;同时利用这2个最优特征子集,结合支持向量机(Support vector machine,SVM)建立病害识别模型。比较各模型的识别效果,发现利用所建线性判别分析模型下的最优特征子集,结合SVM建立的病害识别模型识别效果最好,训练集识别正确率为96.18%,测试集识别正确率为93.10%。由此可见,本研究所建基于图像处理技术的病害识别模型可用于识别上述4种苜蓿叶部病害,为苜蓿病害的诊断和鉴别提供了一定依据。 相似文献
13.
以吉林省延边朝鲜族自治州汪清县的主要针叶纯林树种为研究对象,结合Landsat 8 OLI数据和地面调查数据,通过提取半径为15 m圆形样地林分尺度下的遥感特征变量实现对地上生物量的估算。首先提取128块样地内的34个遥感特征,其次采用随机森林特征重要性分析遥感特征的贡献率,再利用BP神经网络算法的2种训练算法、SVM支持向量机的3种核函数构建地上生物量模型,最后利用32个测试样本评价模型的估算精度。结果表明,BP神经网络的L-M训练算法和贝叶斯正则化训练算法的R2分别为0.602 9、0.672 1,RMSE分别为5.096 9、4.263 7,MAE分别为4.166 9、3.211 8;SVM支持向量机的线性核函数、RBF核函数、多项式核函数的R2分别为0.585 8、0.561 9、0.487 7,RMSE分别为5.859 4、5.600 9、5.763 7,MAE分别为4.24、3.89、4.176。以贝叶斯正则化训练算法构建地上生物量模型的估测精度最佳;BP神经网络算法比SVM向量机更适用于本研究;同一种机器学习算法不同的训练函数存在差异性。 相似文献
14.
基于纹理特征和支持向量机的玉米病害的识别 总被引:4,自引:0,他引:4
针对玉米病害叶片彩色纹理图像的特点,提出一种将支持向量机和色度矩分析应用于玉米病害识别的方法。首先利用色度矩提取玉米病害叶片纹理图像的特征向量,然后将支持向量机分类方法应用于病害的识别。玉米病害纹理图像识别实验结果表明:支持向量机分类方法对于病害分类训练样本较少时,具有良好的分类能力和泛化能力,适合于玉米病害的分类。不同分类核函数的相互比较分析表明,径向基核函数最适合于玉米病害的分类识别。 相似文献
15.
基于TM影像的喀什地区土地利用分类 总被引:1,自引:0,他引:1
以喀什地区为研究区,选取2010年9景TM影像为遥感信息源,利用支持向量机法对喀什地区的土地进行分类。最终分成7个类别,并用混淆矩阵对分类结果作精度评价,总体分类精度为85.28%,Kappa系数为82.79%。结果表明,利用支持向量机分类方法对TM影像进行喀什地区土地利用分类与制图是可行的,能较真实地反映该地区植被和土地利用的基本特征。 相似文献
16.
采用2007年6月云南省勐腊县TM遥感数据,利用EnMAP box进行了支持向量机的图像分类研究,以网格搜索法寻找最优参数,在设定的范围内,求得了最优C和g参数,用此参数进行支持向量机的遥感图像土地覆盖分类。结果表明:SVM方法较最大似然分类方法具有较高的分类精度,特别是阔叶林和橡胶林的精度明显优于最大似然分类方法;对于面积较小的次要类型,2种分类方法的精度基本保持一致;SVM的总体精度相对于最大似然分类提高了119%。 相似文献
17.
基于决策树的土地利用分类方法研究 总被引:4,自引:0,他引:4
以新疆乌鲁木齐市部分区域为研究区,利用主成分分析法对Spot-5影像进行数据压缩,运用灰度共生矩阵对第一主成份进行纹理信息提取,分析Landsat-7影像的光谱特征值及NDVI和NDBI特征值,确定各类地物的综合阈值,最后运用决策树分类法对Landsat-7影像进行分类.将分类结果与最大然法分类结果相比较,结果表明,决策数分类较最大似然法分类的精度提高了5.66; ,Kappa 系数提高了7.89; .说明决策树分类能够灵活、有效运用纹理等辅助信息,更好地区分光谱特征相似的目标地物,具有更高的准确性. 相似文献
18.
19.
为提出一种在自然环境条件下基于采集图像的颜色一阶与二阶矩和纹理LBP算子改进模式综合特征参数的大麦病害识别方法,以甘肃河西地区发生的大麦白粉病、云纹病和条锈病为研究对象,采用颜色矩和LBP算子均匀模式综合特征参数来提取大麦病斑的颜色和纹理特征,并将该特征向量作为输入向量构建以径向基为核函数的支持向量机(SVM)分类器模型。利用SVM分类模型对采集到的355幅病害图像进行实例分析,结果表明当径向基参数时,大麦病害整体识别正确率达84.7458%。本研究为农田大麦病害诊断提供了有效的分析手段,验证分类模型在大麦病害研究中的可行性,并可为其他农作物病害诊断提供借鉴和参考。 相似文献
20.
【目的】对林木冠层图像采用NCSPSO-AFSA优化支持向量机(SVM)进行图像分割,提取树干分割图,以进一步提高分割效果。【方法】对现有的小生境和交叉算子的粒子群算法(NCSPSO)进行优化,并与人工鱼群算(AFSA)混合,寻找最优惩罚系数C和高斯核函数中的参数γ;然后运用SVM方法对训练样本进行综合训练,以建立最佳分类模型;最后对香樟树、马褂木和杨树的冠层图像进行分割,并与AFSA算法、NCSPSO算法的分割效果进行比较。【结果】AFSA、NCSPSO、NCSPSO-AFSA算法的平均运行时间分别为178.909,154.661和97.213s,平均分割准确率分别为90.83%,94.08%和98.90%,表明改进的NCSPSO-AFSA混合算法在效率上较其他2种算法提高了63%以上,而且分割准确率提高了5%~8%。【结论】运用NCSPSO-AFSA优化SVM方法对林木冠层图像进行树干图像分割,可得到最佳分割效果。 相似文献