首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The long-term probability of soil moisture stress in rainfed crops was mapped at 0.5° resolution over the Krishna River basin in southern India (258,948 km2). Measurements of actual evapotranspiration (Ea) from 90 lysimeter experiments at four locations in the basin were used to calibrate a non-linear regression model that predicted the combined crop coefficient (KcKs) as a function of the ratio of seasonal precipitation (P) to potential evapotranspiration (Ep). Crops included sorghum, pulses (mung bean, chickpea, soybean, pigeonpea) and oilseeds (safflower and sunflower). Ep was calculated with the Penman–Monteith equation using net radiation derived from two methods: (1) a surface radiation budget calculated from satellite imagery (EpSRB) and (2) empirical equations that use data from meteorological stations (EpGBE). The model of Ks as a function P/Ep was combined with a gridded time series of precipitation (0.5° resolution, 1901–2000) and maps of EpSRB to define the probability distributions of P, P/Ep and Ks for sorghum at each 0.5° cell over the basin. Sorghum, a C4 crop, had higher Ea and Ks values than the C3 plants (oilseeds, pulses) when precipitation was low (P < 1 mm d−1) but lower maximum Ea rates (3.3–4.5 mm d−1) compared with C3 crops (oilseeds and pulses, 4.3–4.9 mm d−1). The crop coefficient under adequate soil moisture (Kc) was higher than the FAO-56 crop coefficients by up to 56% for oilseeds and pulses. The seasonal soil moisture coefficient (Ks) for sorghum ranged from 1.0 under high rainfall (July–October) to 0.45 in dry seasons (November–March), showing strong soil moisture controls on Ea. EpSRB calculated at the lysimeter stations was 4–20% lower than EpGBE, with the largest difference in the dry season. Kc derived from EpSRB was only slightly (2–4%) higher than Kc derived from EpSRB, because the maximum Ea occurred during the monsoon when the differences between EpSRB and EpGBE were small. Approximately 20% of the basin area was expected to experience mild or greater soil moisture stress (Ks < 0.80) during the monsoon cropping season 1 year in every 2 years, while 70% of the basin experienced mild or greater stress 1 year in 10. The maps of soil moisture stress provide the basis for estimating the probability of drought and the benefits of supplemental irrigation.  相似文献   

2.
Reiji Kimura  Long Bai  Jiemin Wang 《CATENA》2009,77(3):292-296
We analyzed relationships among dust outbreaks, Normalized Difference Vegetation Indices (NDVI), and surface soil water content (0 to 2 cm depth) on the Loess Plateau, a significant dust source area of East Asia. World Surface Data for wind speed and current weather, coarse-resolution data for NDVI, and a three-layer soil model for surface soil water content were used. The threshold NDVI for preventing dust outbreaks was about 0.2 when the wind speed ranged from 7 to 8 m s− 1. This threshold NDVI corresponds to a vegetation cover of 18%. The threshold ratio of surface soil water content to the field capacity (θr) was about 0.2. Conditions facilitating dust outbreaks on the Loess Plateau are when NDVI is less than 0.2 with wind speed  7 m s− 1 and θr < 0.2, and when NDVI is greater than 0.2 with wind speed  9 m s− 1 and θr < 0.2.  相似文献   

3.
Inverting radiative transfer (R-T) models against remote sensing observations to retrieve key biogeophysical parameters such as leaf area index (LAI) is a common approach. Even if new inversion techniques allow the use of three-dimensional (3D) models for that purpose, one-dimensional (1D) models are still widely used because of their ease of implementation and computational efficiency. Nevertheless, they assume a random distribution of foliage elements whereas most canopies show a clumped organization. Due to that crude simplification in the representation of the canopy structure, sizeable discrepancies can occur between 1D simulations and real canopy reflectance, which may further lead to false LAI values. The present investigation aims to appraise to which extent the incorporation of a clumping index (noted λ) into 1D R-T model could improve the simulations of Bidirectional Reflectance Distribution Function (BRDF). Canopy BRDF is simulated here for three growth stages of a maize crop with the Discrete Anisotropic Radiative Transfer (DART) model in the visible and near infrared spectral bands, for two contrasted soil types (dark and bright) and different levels of heterogeneity to represent the canopy structure. 3D numerical scenes are based on in-situ structural measurements and associated BRDF simulations are thus considered as references. 1D scenarios assume either that leaves are randomly distributed (λ = 1) or clumped (λ < 1). If BRDF simulations seem globally reliable under the assumption of a random distribution in near infrared, it can also lead to relative errors on the total BRDF up to 30% in the red spectral band. It comes out that the use of a clumping index in a 1D reflectance model generally improves BRDF simulations in the red considering a bright soil, which seems relatively independent of LAI. In the near infrared, best results are usually obtained with homogeneous canopies, except with the dark soil. Clearly, influent factors are mainly the LAI and the spectral contrast between soil and leaves.  相似文献   

4.
Crop water parameters, including actual evapotranspiration, transpiration, soil evaporation, crop coefficients, evaporative fractions, aerodynamic resistances, surface resistances and percolation fluxes were estimated in a commercial mango orchard during two growing seasons in Northeast Brazil. The actual evapotranspiration (Ea) was obtained by the eddy covariance (EC) technique, while for the reference evapotranspiration (E0); the FAO Penman–Monteith equation was applied. The energy balance closure showed a gap of 12%. For water productivity analysis the Ea was then computed with the Bowen ratio determined from the eddy covariance fluxes. The mean accumulated Ea for the two seasons was 1419 mm year−1, which corresponded to a daily average rate of 3.7 mm day−1. The mean values of the crop coefficients based on evapotranspiration (Kc) and based on transpiration (Kcb) were 0.91 and 0.73, respectively. The single layer Kc was fitted with a degree days function. Twenty percent of evapotranspiration originated from direct soil evaporation. The evaporative fraction was 0.83 on average. The average relative water supply was 1.1, revealing that, in general, irrigation water supply was in good harmony with the crop water requirements. The resulting evapotranspiration deficit was 73–95 mm per season only. The mean aerodynamic resistance (ra) was 37 s m−1 and the bulk surface resistance (rs) was 135 s m−1. The mean unit yield was 45 tonne ha−1 being equivalent to a crop water productivity of 3.2 kg m−3 when based on Ea with an economic counterpart of US$ 3.27 m−3. The drawback of this highly productive use of water resources is an unavoidable percolation flux of approximately 300 mm per growing season that is detrimental to the downstream environment and water users.  相似文献   

5.
In view of the significance of agricultural soils in affecting global C balance, the impact of manipulation of the quality of exogenous inputs on soil CO2–C flux was studied in rice–barley annual rotation tropical dryland agroecosystem. Chemical fertilizer, Sesbania shoot (high quality resources), wheat straw (low quality resource) and Sesbania + wheat straw (high + low quality), all carrying equivalent recommended dose of N, were added to soil. A distinct seasonal variation in CO2–C flux was recorded in all treatments, flux being higher during rice period, and much reduced during barley and summer fallow periods. During rice period the mean CO2–C flux was greater in wheat straw (161% increase over control) and Sesbania + wheat straw (+129%) treatments; however, during barley and summer fallow periods differences among treatments were small. CO2–C flux was more influenced by seasonal variations in water-filled pore space compared to soil temperature. In contrast, the role of microbial biomass and live crop roots in regulating soil CO2–C flux was highly limited. Wheat straw input showed smaller microbial biomass with a tendency of rapid turnover rate resulting in highest cumulative CO2–C flux. The Sesbania input exhibited larger microbial biomass with slower turnover rate, leading to lower cumulative CO2–C flux. Addition of Sesbania to wheat straw showed higher cumulative CO2–C flux yet supported highest microbial biomass with lowest turnover rate indicating stabilization of microbial biomass. Although single application of wheat straw or Sesbania showed comparable net change in soil C (18% and 15% relative to control, respectively) and crop productivity (32% and 38%), yet they differed significantly in soil C balance (374 and −3 g C m−2 y−1 respectively), a response influenced by the recalcitrant and labile nature of the inputs. Combining the two inputs resulted in significant increment in net change in soil C (33% over control) and crop yield (49%) in addition to high C balance (152 g C m−2 y−1). It is suggested that appropriate mixing of high and low quality inputs may contribute to improved crop productivity and soil fertility in terms of soil C sequestration.  相似文献   

6.
Management of N is the key for sustainable and profitable wheat production in a low N soil. We report results of irrigated crop rotation experiment, conducted in the North West Frontier Province (NWFP), Pakistan, during 1999–2002 to evaluate effects of residue retention, fertilizer N application and mung bean (Vigna radiata) on crop and N yields of wheat and soil organic fertility in a mung bean–wheat sequence. Treatments were (a) crop residue retained (+residue) or (b) removed (−residue), (c) 120 kg N ha−1 applied to wheat, (d) 160 kg N ha−1 to maize or (e) no nitrogen applied. The cropping system was rotation of wheat with maize or wheat with mung bean. The experiment was laid out in a spit plot design. Postharvest incorporation of crop residues significantly (p < 0.05) increased the grain and straw yields of wheat during both years. On average, crop residues incorporation increased the wheat grain yield by 1.31 times and straw yield by 1.39 times. The wheat crop also responded strongly to the previous legume (mung bean) in terms of enhanced grain yield by 2.09 times and straw yield by 2.16 times over the previous cereal (maize) treatment. Application of fertilizer N to previous maize exerted strong carry over effect on grain (1.32 times) and straw yield (1.38 times) of the following wheat. Application of N fertilizer to current wheat produced on average 1.59 times more grain and 1.77 times more straw yield over the 0 N kg ha−1 treatment. The N uptake in wheat grain and straw was increased 1.31 and 1.64 times by residues treatment, 2.08 and 2.49 times by mung bean and 1.71 and 1.86 times by fertilizer N applied to wheat, respectively. The soil mineral N was increased 1.23 times by residues, 1.34 times by mung bean and 2.49 times by the application of fertilizer N to wheat. Similarly, the soil organic C was increased 1.04-fold by residues, 1.08 times by mung bean and 1.00 times by the application of fertilizer N. We concluded that retention of residues, application of fertilizer N and involvement of legumes in crop rotation greatly improves the N economy of the cropping system and enhances crop productivity in low N soils.  相似文献   

7.
An evapotranspiration (ET) model for sparsely vegetated canopies under partial root-zone irrigation (PRI) was developed and tested using measurements from a vineyard in the arid region of northwest China. This model (PRI-ET) was mainly based on the Shuttleworth–Wallace (S-W) model and took into consideration the differences in soil water content between furrow-irrigation ditch and ridge under the PRI scheme and variable canopy shading over the surface. Estimates of ET and its components (plant transpiration and soil evaporation) by the PRI-ET and S-W models were compared to ET, plant transpiration and soil evaporation measured by Bowen ratio–energy balance, heat-pulse sap flow sensor and micro-lysimeter, respectively. The PRI-ET model can estimate the vineyard ET and its components more accurately than the S-W model, indicating that the PRI-ET model is suitable for estimating vineyard ET under PRI.  相似文献   

8.
Cover crops are largely used in viticultural areas because of the many positive agronomic and environmental benefits they provide. However, there is insufficient data describing the amount of water they use. A portable chamber used as an open measurement system and its suitability to measure the cover crop evapotranspiration (E) in a vineyard are described in this study. The performance of the chamber was tested by a calibration experiment (R2 = 0.97). The lowest air flow rate used (9.2 l s−1) was found to be suitable to limit the chamber from overheating beyond 3.1 K above the outside temperature. Furthermore, an experiment was designed to compare the daily cover crop (Festuca arundinacea var. barfelix) water use measured by the chamber system with measurements using a mini-lysimeter (ML) method and with estimates using the FAO-56 PM equation (Eo). The experiment was carried out in one inter row of a vineyard over the course of 4 days following an irrigation event. Although the field experiment was limited to 4 days, the results obtained together with the calibration trials support the possibility of the chamber being a useful tool for measuring the cover crop E. The ability of the MLs to represent the water use of the cover crop in the rest of the vineyard was limited to the first two days of the experiment, after which time the soil water content inside the containers was significantly (p = 0.007, p = 0.03) lower than in the surrounding field.  相似文献   

9.
Soil and crop management practices may alter the quantity, quality, and placement of plant residues that influence soil C and N fractions. We examined the effects of two tillage practices [conventional till (CT) and no-till (NT)] and five crop rotations [continuous spring wheat (Triticum aestivum L.) (CW), spring wheat–fallow (W–F), spring wheat–lentil (Lens culinaris Medic.) (W–L), spring wheat–spring wheat–fallow (W–W–F), and spring wheat–pea (Pisum sativum L.)–fallow (W–P–F)] on transient land previously under 10 years of Conservation Reserve Program (CRP) planting on the amount of plant biomass (stems + leaves) returned to the soil from 1998 to 2003 and soil C and N fractions within the surface 20 cm in March 2004. A continued CRP planting was also included as another treatment for comparing soil C and N fractions. The C and N fractions included soil organic C (SOC), soil total N (STN), microbial biomass C and N (MBC and MBN), potential C and N mineralization (PCM and PNM), and NH4-N and NO3-N contents. A field experiment was conducted in a mixture of Scobey clay loam (fine-loamy, mixed, Aridic Argiborolls) and Kevin clay loam (fine, montmorillonitic, Aridic Argiborolls) in Havre, MT, USA. Plant biomass yield varied by crop rotation and year and mean annualized biomass was 45–50% higher in CW and W–F than in W–L. The SOC and PCM were not influenced by treatments. The MBC at 0–5 cm was 26% higher in W–W–F than in W–F. The STN and NO3-N at 5–20 cm and PNM at 0–5 cm were 17–1206% higher in CT with W–L than in other treatments. Similarly, MBN at 0–5 cm was higher in CT with W–L than in other treatments, except in CT with W–F and W–P–F. Reduction in the length of fallow period increased MBC and MBN but the presence of legumes, such as lentil and pea, in the crop rotation increased soil N fractions. Six years of tillage and crop rotation had minor influence on soil C and N storage between croplands and CRP planting but large differences in active soil C and N fractions.  相似文献   

10.
Precision agriculture techniques were employed to study the impact of the spatiotemporal variations of soil compaction on the performance of potato crop during its various growth stages. The study has been conducted on a 30 ha centre pivot irrigated potato field, located in Wadi Al-Dawasir area in Saudi Arabia. In situ soil compaction measurements were collected, in conjunction with Sentinel-2A satellite data, and correlated spatiotemporally against potato crop growth and yield parameters. The univariate and bivariate Moran's function (Moran's I), the linear regression and the analysis of variance (ANOVA) techniques were used to analyse the data and examine the interrelationships. The spatial correlations between the measured variables revealed high clustering, producing Moran's I of 0.87, 0.79 and 0.57 for soil compaction, yield and normalized difference vegetation index (NDVI), respectively. Compaction-yield relationship revealed a relatively high significant negative spatial correlation (Moran's I = 0.68). While, the spatial correlation between the average values of compaction and NDVI has negatively produced a Moran's I value of 0.45 (at 0.001 significance level), when 999 permutations were tested for all relationships. A significant positive correlation was observed between high compaction and high proportion of small size tubers, with R2 and P > F values of 0.65 and .0001, respectively. In contrast, a significant negative correlation has been obtained between high compaction and high proportion of large size tubers, with R2 and P > F values of 0.57 and .0001, respectively. Understanding the causes of disparity in the productivity of agricultural fields will help decision-makers and farmers to take proactive actions towards better agricultural practices.  相似文献   

11.
A field experiment was conducted for two crop cycles during 2003–2005 and 2004–2006 at the Indian Institute of Sugarcane Research, Lucknow in subtropical India. Trichoderma viride and Gluconacetobacter diazotrophicus amended farm yard manure (FYM) increased organic carbon (19.44 Mg ha−1) and available nitrogen (260 kg N ha−1) content of soil from 14.78 Mg ha−1 (OC) and 204 kg N ha−1 observed under farmer's practice (sole N application). Application of bioagents amended FYM improved soil porosity and reduced compaction (bulk density—1.39 Mg m−3 over 1.48 Mg m−3 under farmer's practice). Sugarcane ratoon crop removed the highest amount of nitrogen (N—165.7 kg ha−1), phosphorus (P—24.01 kg ha−1) and potassium (K—200.5 kg ha−1) in the plots receiving FYM with Trichoderma and Gluconacetobacter. Inoculation of FYM with bioagents improved population of ammonifying and nitrifying bacteria in the soil. Phosphorus and potassium uptake of the crop was greatest in the plots receiving FYM, Trichoderma and Gluconacetobacter. Bioagents (Trichoderma and Gluconacetobacter) amended FYM increased ratoon cane (70.2 Mg ha−1) and sugar yields (7.93 Mg ha−1) compared with control (62.3 and 7.06 Mg ha−1 ratoon cane and sugar yields, respectively).  相似文献   

12.
Short- and long-term field experiments are necessary to provide important information about how soil carbon sequestration is affected by soil tillage system; such systems can also be useful for developing sustainable crop production systems. In this study, we evaluated the short- and long-term effects of conservation tillage (CT) on soil organic carbon fractions and biological properties in a sandy clay loam soil. Both trials consisted of rainfed crop rotation systems (cereal–sunflower–legumes) located in semi-arid SW Spain. In both trials, results were compared to those obtained using traditional tillage (TT). Soil samples were taken in flowering and after harvesting of a pea crop and collected at three depths (0–5, 5–10 and 10–20 cm). The soil organic carbon fractions were measured by the determination of total organic carbon (TOC), active carbon (AC) and water soluble carbon (WSC). Biological status was evaluated by the measurement of soil microbial biomass carbon (MBC) and enzymatic activities [dehydrogenase activity (DHA), o-diphenol oxidase activity (DphOx), and β-glucosidase activity (β-glu)].The contents of AC and MBC in the long-term trial and contents of AC in the short-term trial were higher for CT than TT at 0–5 cm depth for both sampling periods. Furthermore, DHA and β-glucosidase values in the July sampling were higher in the topsoil under conservation management in both trials (short- and long-term). The parameters studied tended to decrease as depth increased for both tillage system (TT and CT) and in both trials with the exception of the DphOx values, which tended to be higher at deeper layers.Values of DHA and β-glu presented high correlation coefficients (r from 0.338 to 0.751, p ≤ 0.01) with AC, WSC and TOC values in the long-term trial. However, there was no correlation between either TOC or MBC and the other parameters in the short-term trial. In general, only stratification ratios of AC were higher in CT than in TT in both trials. The results of this study showed that AC content was the most sensitive and reliable indicator for assessing the impact of different soil management on soil quality in the two experiments (short- and long-term).Conservation management in dryland farming systems improved the quality of soil under our conditions, especially at the surface layers, by enhancing its storage of organic matter and its biological properties, mainly to long-term.  相似文献   

13.
Information on which management practices can enhance soil organic matter (SOM) content and quality can be useful for developing sustainable crop production systems. We tested the influence of 12 years of no-till (NT) versus conventional tillage (CT), and four crop sequences on the organic C pools of a Grey Luvisolic sandy loam soil in northwestern Alberta, Canada. The crop sequences were: continuous wheat (Triticum aestivum L.), field pea (Pisum sativum L.)–wheat–canola (Brassica rapa L.)–wheat, red clover (Trifolium pratense L.) green manure–wheat–canola–wheat/red clover and fallow–wheat–canola–wheat. Soil samples from 1992, when the study was initiated, and 1996, 2000 and 2004 were analyzed for total organic C (TOC), the light fraction (LF) and its C content, and water-soluble and mineralizable C. Total organic C in the top 15 cm of soil was higher in the red clover rotation than either the pea or fallow rotation by 1996. The tillage effect became significant only in 2004 with NT having a higher TOC than CT. The LF dry matter (DM) increased from 6.9 g kg−1 soil in 1992 to a range of 10–13 g kg−1 in 2000 and 2004. It was higher under NT than CT in 2 of 3 years and in the red clover rotation than the pea or fallow rotation in 1 of 3 years. The LF C content exhibited a similar trend as LF DM. The water-soluble and mineralizable C pools were not affected by tillage but decreased with time. Among crop rotations, the red clover rotation tended to result in higher levels of hot water-soluble and mineralizable C. It is concluded that tillage had a greater influence than crop rotation on the LF DM and LF C (as indicators of C storage), whereas the converse effect applied to mineralizable C and, to a lesser degree, hot water-soluble C (as indicators of SOM quality).  相似文献   

14.
A successful method of mapping within-field crop variability of shoot populations in wheat (Triticum aestivum) and barley (Hordeum vulgare L.) is demonstrated. The approach is extended to include a measure of green area index (GAI). These crop parameters and airborne remote sensing measures of the normalised difference vegetation index (NDVI) are shown to be linearly correlated. Measurements were made at key agronomic growth stages up to the period of anthesis and correlated using statistical linear regression based on a series of field calibration sites. Spatial averaging improves the estimation of the regression parameters and is best achieved by sub-sampling at each calibration site using three 0·25 m2 quadrats. Using the NDVI image to target the location of calibration sites, eight sites are shown to be sufficient, but they must be representative of the range in NDVI present in the field, and have a representative spatial distribution. Sampling the NDVI range is achieved by stratifying the NDVI image and then randomly selecting within each of the strata; ensuring a good spatial distribution is determined by visual interpretation of the image. Similarly, a block of adjacent fields can be successfully calibrated to provide multiple maps of within-field variability in each field using only eight points per block representative of the NDVI range and constraining the sampling to one calibration site per field. Compared to using 30 or more calibration sites, restricting samples to eight does not affect the estimation of the regression parameters as long as the criteria for selection outlined in this paper is adhered to. In repeated tests, the technique provided regression results with a value for the coefficient of determination of 0·7 in over 85% of cases. At farm scale, the results indicate an 80–90% probability of producing a map of within crop field variability with an accuracy of 75–99%. This approach provides a rapid tool for providing accurate and valuable management information in near real-time to the grower for better management and for immediate adoption in precision farming practices, and for determining variable rates of nitrogen, fungicide or plant growth regulators.  相似文献   

15.
Surface (0–15 cm) and subsurface (30–45 cm) soil samples from under canopy, edge of canopy and away from canopy of isolated Cordia africana Lam. and Croton macrostachyus Del. trees and their leaves were examined to investigate leaf nutrient content, root biomass and the contribution of trees on farms to soil fertility parameters in Badessa area, eastern Ethiopia. Leaves of C. macrostachyus had 20% higher P and 25% lower K contents than those of C. africana. The studied species had comparable leaf N content. Both species produced shallow lateral roots that extended beyond the canopy zone. Typically, higher fine root biomass was observed in the surface soils than the subsurface soils. Both species did not affect soil organic C, pH and cation exchange capacity. Surface and subsurface soils under tree canopies had 22–26 and 12–17% higher N, respectively, than the corresponding soils away from tree canopies. Surface soil available P under tree canopies was 34–50% higher than the corresponding soil away from canopies. Available P content of subsurface soil was improved only under C. africana canopy. The available P of surface soil under C. macrostachyus canopy was more than double that for C. africana. Trees of both species increased underneath surface and subsurface exchangeable K by 18–46% compared with the corresponding controls. In conclusion, C. macrostachyus and C. africana trees on farms keep soil nutrient high via protection against leaching, translocation of nutrients from deeper to the surface layer and accumulation of litter, which create a temporary nutrient pool in the surface soils under their canopies.  相似文献   

16.
Information on N cycling in dryland crops and soils as influenced by long-term tillage and cropping sequence is needed to quantify soil N sequestration, mineralization, and N balance to reduce N fertilization rate and N losses through soil processes. The 21-yr effects of the combinations of tillage and cropping sequences was evaluated on dryland crop grain and biomass (stems + leaves) N, soil surface residue N, soil N fractions, and N balance at the 0–20 cm depth in Dooley sandy loam (fine-loamy, mixed, frigid, Typic Argiboroll) in eastern Montana, USA. Treatments were no-tilled continuous spring wheat (Triticum aestivum L.) (NTCW), spring-tilled continuous spring wheat (STCW), fall- and spring-tilled continuous spring wheat (FSTCW), fall- and spring-tilled spring wheat–barley (Hordeum vulgare L.) (1984–1999) followed by spring wheat–pea (Pisum sativum L.) (2000–2004) (FSTW-B/P), and spring-tilled spring wheat–fallow (STW-F). Nitrogen fractions were soil total N (STN), particulate organic N (PON), microbial biomass N (MBN), potential N mineralization (PNM), NH4-N, and NO3-N. Annualized crop grain and biomass N varied with treatments and years and mean grain and biomass N from 1984 to 2004 were 14.3–21.2 kg N ha−1 greater in NTCW, STCW, FSTCW, and FSTW-B/P than in STW-F. Soil surface residue N was 9.1–15.2 kg N ha−1 greater in other treatments than in STW-F in 2004. The STN at 0–20 cm was 0.39–0.96 Mg N ha−1, PON 0.10–0.30 Mg N ha−1, and PNM 4.6–9.4 kg N ha−1 greater in other treatments than in STW-F. At 0–5 cm, STN, PON, and MBN were greater in STCW than in FSTW-B/P and STW-F. At 5–20 cm, STN and PON were greater in NTCW and STCW than in STW-F, PNM and MBN were greater in STCW than in NTCW and STW-F, and NO3-N was greater in FSTW-B/P than in NTCW and FSTCW. Estimated N loss through leaching, volatilization, or denitrification at 0–20 cm depth increased with increasing tillage frequency or greater with fallow than with continuous cropping and ranged from 9 kg N ha−1 yr−1 in NTCW to 46 kg N ha−1 yr−1 in STW-F. Long-term no-till or spring till with continuous cropping increased dryland crop grain and biomass N, soil surface residue N, N storage, and potential N mineralization, and reduced N loss compared with the conventional system, such as STW-F, at the surface 20 cm layer. Greater tillage frequency, followed by pea inclusion in the last 5 out of 21 yr in FSTW-B/P, however, increased N availability at the subsurface layer in 2004.  相似文献   

17.
A model for soil crumbling, called the capillary crumbling model (CCM) was introduced by Aluko and Koolen [Aluko, O.B., Koolen, A.J., 2000. The essential mechanics of capillary crumbling of structured agricultural soils. Soil Till. Res. 55, 117–126]. According to the CCM, the optimum soil water content for tillage (θOPT) may be defined as the water content at which the capillary bonding strength between aggregates is minimum. The objective of this study was to evaluate the CCM for the arable layer of 10 agricultural soils (sandy loam to clay textures) from semi-arid regions in western Iran. The results were compared with conventional soil workability limits such as 0.85 of the soil plastic limit (0.85θPL), Proctor critical water content (θProctor), 0.6 or 0.7 of water content at matric suction of 50 hPa (0.6–0.7θ50 hPa), and the Kretschmer optimum water content (θKretschmer = θPL − 0.15(θLL − θPL)) where θLL is the soil liquid limit. Repacked soil cores were prepared from intact soil aggregates (0.50–4.75 mm) to 0.9 of the critical bulk density (to represent the soil conditions before tillage). Tensile strength and matric suction of the cores were determined at different soil water contents obtained by slow drying. The CCM provided evidence for the physics and mechanics of crumbling in the studied soils. It revealed that effective stresses are the dominant inter-aggregates forces, at least for the wet range of soil water content. A fall in strength of inter-aggregate bonds (i.e. tensile strength) was recorded due to water emptying from structural pores in a narrow range of matric suction (hOPT) which was consistent with the model. With increasing soil organic matter and clay contents the fall became more distinct, indicating increased structural stability. The θOPT values determined by the CCM were found in the hOPT range 551–612 hPa corresponding to 0.91–0.79θPL, which was in agreement with published values for the soil workability limit. Negative correlations between hOPT and clay and organic matter contents clearly confirmed the increasing effect of soil structure on the enlargement of inter-aggregate pores. High correlations were observed between θOPT and 0.85θPL, θProctor or 0.7θ50 hPa. The results showed that the CCM might be recommended as a physically based method for the determination of θOPT. Considering the 1:1 relationships between θOPT and 0.85θPL or θProctor, and easy determination of θPL and θProctor, use of these indices is recommended in situations where the CCM is not applicable.  相似文献   

18.
A long-term (1983–2000) global dataset of Earth’s surface daily-integrated UV exposure was developed from a combination of ISCCP-D1 3 h reflectance measurements (in order to resolve the diurnal variation of cloud conditions) and TOMS total ozone amount. The inversion algorithm developed in our previous study was employed with modifications addressing the conversion of visible reflectance to UV albedo and narrowband UV albedo to broadband albedo over the range of 280–400 nm. Validation of the product was carried out using ground-based measurements at six stations. In general, good agreements between the estimated and measured daily UV exposure are found at most stations; the relative mean and root mean square (RMS) difference varies from 3 to 14% and from 20 to 45%, respectively. Among the stations, San Diego has a fairly low mean difference (9%) and the lowest RMS difference (33%), owing to the prevailing clear sky or uniform cloud cover condition. The RMS difference increases with cloud amount, which is largely caused by mismatch between satellite and ground-based measurements. The effect of diurnal variation in atmospheric opacity associated primarily with cloud on the estimation of daily erythemal UV doses is investigated with both ground-based measurements and ISCCP-D1 data. It is found that daily erythemal UV doses estimated from only a noontime satellite “snapshot” may incur errors larger than 20%, which may be reduced for long-term averaging.  相似文献   

19.
Soil water and nutrients play an important role in increasing sorghum (Sorghum bicolor L. Moench) yields in the Vertisols of semi-arid tropics during post-rainy season. The effects of tillage practices, organic materials and nitrogen fertilizer on soil properties, water conservation and yield of sorghum were evaluated during winter seasons of 1994–1995 and 1995–1996 on deep Vertisols at Bijapur in the semi-arid tropics of Karnataka State (Zone 3) of south India. Conservation and availability of water and nutrients during different stages of crop growth were increased by deeper tillage resulting in increased grain yield of winter sorghum. Medium and deep tillage increased the grain yield by 23% (1509 kg ha−1) and 57% (1919 kg ha−1) during 1994–1995 and 14% (1562 kg ha−1) and 34% (1835 kg ha−1) during 1995–1996, respectively, over shallow tillage. Water use efficiency increased from shallow (4.90 kg ha−1 mm−1) to deep tillage (7.30 kg ha−1 mm−1). Greater water use efficiency during 1994–1995 as compared to 1995–1996 was attributed to lower consumptive use of water during 1994–1995. Among organic materials, application of Leucaena loppings conserved larger amounts of water and increased winter sorghum yield and water use efficiency. Application of Leucaena loppings increased the winter sorghum grain yield by 9% (mean of 1994–1995 and 1995–1996) as compared to vermicompost. Significantly (P < 0.05) higher water use efficiency of 6.32 kg ha−1 mm−1 was observed in Leucaena loppings incorporated plots compared to 5.72 kg ha−1 mm−1 from vermicompost. Grain yield increased by 245 kg ha−1 with application of 25 kg N ha−1 in 1994–1995, and a further increase in N application to 50 kg ha−1 increased the grain yield by about 349 kg ha−1 in 1995–1996. Deep tillage with application of 25 kg N ha−1 resulted in significantly higher sorghum yield (2047 kg ha−1) than control during 1994–1995. Deep tillage with integrated nutrient management (organic and inorganic N sources) conserved higher amount of soil water and resulted in increased sorghum yields especially during drought years.  相似文献   

20.
Changes in residue management and incorporation of organic manures may help in carbon sequestration, restoring soil organic carbon (SOC) and sustaining the productivity of land under a cropping system. An experiment of multi-ratooning sugarcane (Saccharum officinarum L.) was initiated in 2003 in Inceptisols of Indian subtropics, to assess the effect of different organic manures and chemical fertilizer, on the crop productivity and soil quality. The annual sugarcane shoot biomass production in organic manure treatments was at par with the chemically fertilized treatment. Gross input of carbon (GIC) by the sugarcane crop was estimated to be 11.7–12.4 t ha−1 y−1 in different organic manure treatments compared to 8.4 and 5.0 t ha−1 y−1 in NPK and control treatments, respectively. The respiratory loss of C (RLC) increased linearly with increasing input of C in soil and it ranged from 3.3 to 4.1 t ha−1 y−1 in different treatments with maximum in FYM and minimum in control treatment. The sugarcane biomass added in the soil humified at a rate constant of 0.38 in sub-tropical conditions and an addition of 3.9 t C ha−1 y−1 is required to maintain SOC in equilibrium. After 5 years of sugarcane cropping (one plant + four ratoons) an increase of 2.3–17.1 t ha−1 in SOC over initial content was recorded with different treatments. Results in coming years from this long-term experiment shall add to the present calculated relationships between carbon addition and storage in sugarcane multi-ratooning crop production system under sub-tropical condition of India.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号