首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The contents of ten elements [Cd, Pb, W, Zn, Mn, As, Se, Cr, Cu, and organic carbon (Corg)] have been determined in the surficial sediments of Keratsini harbor, Saronikos Gulf, Greece. The contamination of the sediments was assessed on the basis of geoaccumulation index and to corresponding sediment quality guidelines (SQGs) effects range low/effects range median. The results revealed highly elevated Cd, Pb, W, Zn, As, Se, Cr, Cu, and Corg values (Cd, 190–1,763 mg kg?1; Pb, 521–1,263 mg kg?1; W, 38–100 mg kg?1; Zn, 409–6,725 mg kg?1; Mn, 95–1,101 mg kg?1; As, not detectable–1,813 mg kg?1; Se, not detectable–58 mg kg?1; Cr, 264–860 mg kg?1; Cu, 195–518 mg kg?1; and Corg, 0.69–4.41%). The enrichment of metals in the sediments results from the contribution of the central Athens sewage outfall through which the waste of the Attica basin ends up in Keratsini harbor as well as from industrial and ship contaminants.  相似文献   

2.
The effect of added heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) on the rate of decomposition of glutamic acid was studied in four Dutch soil types in order to determine if such measurements would serve as sensitive indicators of heavy metal pollution in soil. The time required to reach the maximum respiration rate (referred to as the decomposition time) with glutamic acid was linearly related to increasing concentrations of Ni in a sandy loam soil.Changes in decomposition time were measured 18 months after addition of 55, 400 or 1000 mg kg? of Cd, Cr, Cu, Ni, Pb or Zn respectively to sand, silty loam, clay and sandy peat soils. A significant increase in the decomposition time occurred with a concentration of 55 mg kg?1 of Cd, Cu or Zn in the sand soil. At 400mgkg?1 adverse effects in the various soils are distinct. The sensitivity of the decomposition time of glutamic acid as a method to measure soil pollution is discussed.  相似文献   

3.
Land pollution due to past mining activities is a major environmental issue in many European countries. The Aljustrel mine (SW Portugal), located in the western sector of the Iberian Pyrite Belt (IBP) presents a negative visual and environmental impact as a consequence of the mining activity that has developed since the Roman era. Its impacts are also a restraint on the life quality of the population. The exposure of pyrite and other sulphides to air are responsible for the pollution observed in soils, surface water and stream sediments. This paper investigates the pollution load of potential toxic elements in soil samples collected around the Aljustrel mining area. The aim is to assess the levels of soil contamination with respect to average concentrations of toxic elements in the region and to understand the partitioning and availability of pollutants in the area. The results showed severe soil contamination (mainly As, Cd, Cu, Pb and Zn). The concentrations of As (up to 3936 mg kg−1) and certain heavy metals (up to 5414 mg kg−1 Cu, 61·6 mg kg−1 Cd, 20 000 mg kg−1 Pb and 20 000 mg kg−1 Zn) are two orders of magnitude above the regional South Portuguese Zone (SPZ) background values. The median concentrations of As, Cd, Cu, Pb and Zn exceed the values established for world soils, the European Union, Portugal and Andalusia. The results suggest that the distribution patterns of Co, Cr and Ni element concentrations in the Aljustrel area are primarily influenced by the lithology and geochemistry nature of bedrock. The soil background of this geological domain is characterized by relatively high heavy metal contents, essentially derived from the parent rocks. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Heavy metal pollution of soils and sediments in Liaoning Province, Northeast China, was investigated. Fifty seven samples of agricultural soils and 8 samples of sediments were collected in 1996 from paddy or upland fields and irrigation channels, respectively, in Shenyang, Fushun, Liaoyang, Anshan, and Tieling regions, and concentrations of total and 0.1 mol L-1 HCI-extractable Cd, Cu, Pb, and Zn were analyzed using ICP spectrometry. Seventeen samples of unpolished rice were also collected from selected paddy fields and total concentrations of the four elements were determined.–

Both paddy and upland soils were polluted with Cd: average total concentration was 0.70, 0.57, and 0.53 mg kg-1 in the western and southern parts of Shenyang, and Anshan, respectively, and significantly higher than the background level of 0.32 mg kg-1. Cd concentrations of four samples exceeded even 1 mg kg-1, which corresponds to the critical level of Cd contamination in China. About 65% of the total Cd was extracted with 0.1 mol L-1 HCI, suggesting that Cd was relatively mobile compared with other metals. The level of Cd pollution was, however, lower than that previously reported and serious polIution was not observed for Cu, Pb, and Zn. Accordingly, Cd concentration in upland rice was within the range of the unpolluted level in this study. Nevertheless, Cd concentration in a sediment of irrigation channels in the western part of Shenyang exceeded 16 mg kg-1, indicating the possibility of further contamination of agricultural soils. In conclusion, soils and sediments were still polluted with Cd in the southern part of Shenyang, Anshan, and especially in the western part of Shenyang, and further countermeasures are urgently required to ensure safe food production in these regions.  相似文献   

5.
Abstract: The fraction distributions of heavy metals have attracted more attention because of the relationship between the toxicity and their speciation. Heavy‐metal fraction distributions in soil contaminated with mine tailings (soil A) and in soil irrigated with mine wastewater (soil B), before and after treatment with disodium ethylenediaminetetraacetic acid (EDTA), were analyzed with Tessier's sequential extraction procedures. The total contents of lead (Pb), cadmium (Cd), copper (Cu), and zinc (Zn) exceeded the maximum permissible levels by 5.1, 33.3, 3.1, and 8.0 times in soil A and by 2.6, 12.0, 0.2, and 1.9 times in soil B, respectively. The results showed that both soils had high levels of heavy‐metal pollution. Although the fractions were found in different distribution before extraction, the residual fraction was found to be the predominant fraction of the four heavy metals. There was a small amount of exchangeable fraction of heavy metals in both contaminated soils. Furthermore, in this study, the extraction efficiencies of Pb, Cd, and Cu were higher than those of Zn. After extraction, the concentrations of exchangeable Pb, Cd, Cu, and Zn increased 84.7 mg·kg?1, 0.3 mg·kg?1, 4.1 mg·kg?1, and 39.9 mg·kg?1 in soil A and 48.7 mg·kg?1, 0.6 mg·kg?1, 2.7 mg·kg?1, and 44.1 mg·kg?1 in soil B, respectively. The concentrations of carbonate, iron and manganese oxides, organic matter, and residue of heavy metals decreased. This implies that EDTA increased metal mobility and bioavailability and may lead to groundwater contamination.  相似文献   

6.
A tri-state mining region, including parts of Missouri, Oklahoma, and Kansas, was the site of intense lead and zinc mining and smelting activity until the 1950's. A study was initiated to characterize the heavy-metal contamination of soils in this area. Water-soluble, an index of plantavailable, total, and sequentially extractable metals; organic, and total carbon; and saturated paste pH were determined for mine tailings and soil samples. Mine tailings contained 81 to 89 mg kg?1 total Cd, 1 150 to 1 370 mg kg?1 total Pb, and 11 400 to 13 700 mg kg?1 total Zn. Total concentrations in soil samples were 15 to 86 mg kg?1 Cd, 35 to 1 620 mg kg?1 Pb, and 99 to 18 500 mg kg?1 Zn; and, DTPA extractable concentrations ranged from 0.6 to 10 mg kg?1 Cd, 7.8 to 68 mg kg?1 Pb, and 33 to 715 mg kg?1 Zn. Samples were sequentially extracted to approximate the proportions of the metals in the sulfide, carbonate, organic, sorbed, and exchangeable fractions. For Zn and Cd, concentrations were greatest in the sulfide fraction followed by carbonate, organic, sorbed, and exchangeable. Lead followed the same pattern, except higher concentrations were observed in the sorbed than the organic fractions.  相似文献   

7.
Arbuscular mycorrhizal fungi (AMF) hold a crucial role in ecosystems because they are involved in nutrient cycling between soil and plants. This work aimed at evaluating the impacts that atmospheric pollution by polycyclic aromatic hydrocarbons may have on infectivity of indigenous AMF in soils. Two agricultural soils (Maconcourt, La Bouzule) were exposed for 2?weeks to ambient air (control, C) or to atmospheric phenanthrene (PHE) deposition (180???g?m?3 air). After exposure, soils were divided into a top (0?C1?cm) and a bottom (1?C15?cm) layer fraction. AMF infectivities of soils were determined after 2?weeks of atmospheric exposition using leek (Allium porum) as bioassay plant. Atmospheric PHE was mainly recovered in the top layer of soil (500?C1,350???g?kg?1) of both soils and did not readily diffuse into the depth. Atmospheric contamination led to decreases in AMF infectivities of the top layer in both soils and affected the growth of leeks. Our results not only report evidence that infectivity of indigenous AMF is sensitive to PHE in soils but also emphasize that AMF are primary affected by the soil layer regardless to the pollution level.  相似文献   

8.
Phytoremediation is an attractive, economical alternative to soil removal and burial methods to remediate contaminated soil. The objective of this study was to investigate the effects of adding different rates of Bacillus megaterium on the capacity of Brassica napus plants to take up boron (B), lead (Pb), and cadmium (Cd) from polluted soils under field conditions. Field experiments were conducted using a randomized complete block design with control (without pollution and B. megaterium application) and B, Pb, and Cd in two doses (0 and 100 mg kg?1), B. megaterium with four doses (no application and 108 cfu B. megaterium ml?1 sprayed at 50 ml plot?1, 100 ml plot?1, 150 ml plot?1). Results indicated that soil pollution treatments significantly decreased seed (SDMY), shoot (SHDMY), root (RDMY), and total dry-matter yield (TDMY) of plants at 42.9, 3.8, 62.6, and 23.4% for B-polluted treatment; 25.8, 8.7, 17.6, and 14.2% for Pb-polluted treatment; and 33.2, 7.0, 14.0, and 16.4% for Cd-treatment without B. megaterium application, respectively. However, the application of B. megaterium ameliorated the negative effects of B, Pb, and Cd at 41.4, 52.7, and 10.9% for B; 24.4, 21.6, and 4.9% for Pb; and 22.8, 22.0, and 3.3% for Cd, respectively. The potentially bioavailable and relatively available fraction of soil B, Pb, and Cd increased with increases in the B. megaterium application but total fraction and stable fraction decreased. It is concluded that the seed and shoot parts of B. napus can be used as hyperaccumulators for plant B, Pb, and Cd remediation according to remediation factors but the shoot is the biggest part of the plant, and thus an important portion of the plant to remove B, Pb, and Cd from the B-, Pb-, and Cd-contaminated soils. To decrease desired concentration for 8 mg B kg?1, 4 mg Pb kg?1, and 3 mg Cd kg?1 in the active rooting zone of soil, approximately 2, 6, and 21 years would be necessary with only 150 ml plot?1 B. megaterium–sprayed soil cultivated with B. napus, respectively.  相似文献   

9.
Seasonal variability of Cu, Pb, and Zn concentrations in litter leachates and soil solutions was examined in an afforested zone surrounding a copper smelter in SW Poland. Litter leachates (with zero‐tension lysimeters) and soil solutions (with MacroRhizon suction‐cup samplers, installed at a depth of 25–30 cm) were collected monthly at three sites differing in contamination levels in the years 2009 and 2010 (total Cu: 2380, 439, and 200 mg kg–1, respectively). Concentrations of Cu in the litter leachate were correlated with dissolved organic C (DOC), whereas Zn and Pb were mainly related to leachate pH. Metal concentrations in the soil solution were weakly influenced by their total content in soils and the monthly fluctuations reached 300, 600, and 700% for Cu, Pb, and Zn, respectively. Metal concentrations in soil solutions (Cu 110–460 μg L–1; Zn 20–1190 μg L–1; Pb 0.5–36 μg L–1) were correlated with their contents in the litter leachates. Chemical speciation, using Visual Minteq 3.0, proved organically‐complexed forms even though the correlations between metal concentrations and soil solution pH and DOC were statistically insignificant. The flux of organically‐complexed metals from contaminated forest floors is believed to be a direct and crucial factor affecting the actual heavy metal concentrations and their forms in the soil solutions of the upper mineral soil horizons.  相似文献   

10.
The potential use of honey as an indicator in mineral prospecting and environmental contamination studies has been investigated. Silver, Cd, Cu, and Pb levels are reported in honeys collected throughout the U.K. The elemental content of honeys was investigated in relation to that in the soils collected from within the foraging area. For samples collected over two seasons the following concentrations were found Ag <0.1 to 6.5 ng g?1 (d.w.); Cd <0.3 to 300 ng g?1; Cu 35 to 6510 ng g?1; Pb <2 to 200 ng g?1. Considerable spatial and seasonal fluctuations were apparent. No correlations were observed between honey and soil concentrations for either Cu or Pb. It is concluded that the low concentrations of heavy metals in honey and their inherent variability (due to differences in floral source, foraging range, entrapment of atmospheric particulates on the flower, etc.) detract from the reliable use of honey as a monitoring tool. The relative merits of honeybees, pollen and beeswax for environmental monitoring or biogeochemical prospecting studies are also briefly discussed.  相似文献   

11.
广东大宝山矿区土壤重金属污染   总被引:28,自引:0,他引:28  
Soil contamination in the vicinity of the Dabaoshan Mine, Guangdong Province, China, was studied through determi- nation of total concentrations and chemical speciation of the toxic metals, Cu, Zn, Cd, and Pb, using inductively coupled plasma mass spectrometry. The results showed that over the past decades, the environmental pollution was caused by a combination of Cu, Zn, Cd, and Pb, with tailings and acid mine drainage being the main pollution sources affecting soils. Significantly higher levels (P ≤ 0.05) of Cu, Zn, Cd, and Pb were found in the tailings as compared with paddy, garden, and control soils, with averages of 1486, 2516, 6.42, and 429 mg kg^-1, respectively. These metals were continuously dispersed downstream from the tallings and waste waters, and therefore their concentrations in the paddy soils were as high as 567, 1 140, 2.48, and 191 mg kg^-1, respectively, being significantly higher (P ≤ 0.05) as compared with those in the garden soils. The results of sequential extraction of the above metals from all the soil types showed that the residual fraction was the dominant form. However, the amounts of metals that were bound to Fe-Mn oxides and organic matter were relatively higher than those bound to carbonates or those that existed in exchangeable forms. As metals could be transformed from an inert state to an active state, the potential environmental risk due to these metals would increase with time.  相似文献   

12.
The objective of this study was to test the suitability of a simple approach to identify the direction from where airborne heavy metals reach the study area as indication of their sources. We examined the distribution of heavy metals in soil profiles and along differently exposed transects. Samples were taken from 10 soils derived from the same parent material along N-, S-, and SE-exposed transects at 0—10, 10—20, and 20—40 cm depth and analyzed for total Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn concentrations. The heavy metal concentrations at 0—10 cm were larger than background concentrations in German arable soils except for Cr (Cd: 0.6—1.8 mg kg—1; Cr: 39—67; Cu: 40—77; Ni: 87—156; Pb: 48—94; Zn: 71—129; Fe: 26—34 g kg—1; Mn: 1.1—2.4). Decreasing Cd, Cu, Mn, and Pb concentrations with increasing soil depth pointed at atmospheric inputs. Aluminum and Ni concentrations increased with soil depth. Those of Fe, Cr, and Zn did not change with depth indicating that inputs at most equalled leaching losses. The Pb accumulation in the surface layer (i.e. the ratio between the Pb concentrations at 0—10 to those at 20—40 cm depth) was most pronounced at N-exposed sites; Pb obviously reached Mount Križna mainly by long-range transport from N where several industrial agglomerations are located. Substantial Cd, Cu, and Mn accumulations at the S- and SE-exposed sites indicated local sources such as mining near to the study area which probably are also the reason for slight Cr and Zn accumulations in the SE-exposed soils. Based on a principal component analysis of the total concentrations in the topsoils four metal groups may be distinguished: 1. Cr, Ni, Zn; 2. Mn, Cd; 3. Pb (positive loading), Cu (negative loading); 4. Al, Fe, indicating common sources and distribution patterns. The results demonstrate that the spatial distribution of soil heavy metal concentrations can be used as indication of the location of pollution sources.  相似文献   

13.

Purpose

Heavy metal content in soils could be a consequence of geogenic and different anthropogenic sources. In ancient times, soils in the Mediterranean region were affected by agriculture and viticulture, whereas more recently, industry and traffic might contribute more to their pollution. The aim of the study is to determine the extent of multisource heavy metal pollution in soils within the Koper area.

Materials and methods

Along the northern Adriatic Sea coast, around the port city of Koper/Capodistria, 24 topsoil samples were collected; sets of six samples representing four possible pollution sources: intensive agriculture, viticulture, port activities and industry. The parent material of the soil is mainly derived from the Eocene flysch weathered marls and calcarenites and the soil types are eutric. The chemical composition of the samples was determined by ICP-ES for oxides and several minor elements and by ICP-MS for heavy metals. The mineral composition of the selected samples was checked using X-ray powder diffraction. Different statistical analyses were performed on the normally distributed data.

Results and discussion

The mean concentrations of all samples are: Cr 215 mg kg?1, Ni 81 mg kg?1, Zn 67 mg kg?1, Cu 44 mg kg?1 and Pb and Co 18 mg kg?1. The ANOVA showed significant differences only in CaO, C/TOT, P2O5, Co and Pb between those locations within reach of the different contamination sources. The observed average values of heavy metals are well below Slovenia’s Directive limit for Cu, Pb and Zn, close to but not above it for Co and above the action value for Cr and Ni. According to Igeo, soils from all the sampling locations are uncontaminated with Co, Ni and Pb, and uncontaminated to moderately contaminated with Cu and Zn at one port location, and with Cr at all locations.

Conclusions

The very high Cr and Ni levels could still be geogenic because soils developed on Eocene flysch rocks are enriched in both metals. Cr and Ni are not correlated because of their different levels of sorption and retention in carbonate soils. Cr was retained and concentrated in the sand fraction but Ni has been mobilised in solution. The only serious threat to the environment seems to be an illegal waste dumping area near the port.  相似文献   

14.
Abstract

Heavy‐metal inhibition of nitrification in soils treated with reformulated nitrapyrin was investigated. Clarion and Okoboji soils were treated with ammonium sulfate [(NH4)2SO4] and a nitrification inhibitor. Copper(II) (Cu), Zinc(II) (Zn), Cadmium(II) (Cd), or Lead(II) (Pb) were added to each soil. A first‐order equation was used to calculate the maximum nitrification rate (K max), duration of lag period (t′), period of maximum nitrification (Δt), and the termination period of nitrification (t s). In the Clarion soil, the K max decreased from 12 mg kg?1 d?1 without the nitrification inhibitor to 4, 0.25, 0.86, and 0.27 mg kg?1 d?1, respectively, when the inhibitor and Cu, Zn, Pb, or Cd were applied. In the Okoboji soil, K max decreased from 22 mg kg?1 d?1 with no inhibitor to 6, 3, 4, and 2 mg kg?1 d?1, respectively, when an inhibitor and Cu, Zn, Pb, or Cd were added. The t′ varied from 8 to 25 d in the Clarion soil and from 5 to 25 d in the Okoboji soil, due to addition of Cu, Zn, Pb, or Cd and the inhibitor.  相似文献   

15.
This study was carried out to investigate the levels of copper (Cu) contamination in coffee fields in Kilimanjaro and Arusha regions, Tanzania, to increase the database on the contamination of soils by Cu-based fungicides in coffee fields. Surface (0–20 cm deep) soil samples were collected from different farms in Kilimanjaro and Arusha regions. Coffee, banana, and bean plant samples were collected from the locations of soil sampling. Soil and plant samples were analyzed at the Department of Soil Science, Sokoine University of Agriculture, Morogoro, Tanzania. It was found that the calcium chloride (CaCl2)–extractable Cu was less than the detection limit of flame atomic absorption spectrometry. Diethylenetriaminepentaacetic acid (DTPA)–extractable (24 to 366 mg Cu kg?1 soil) and aqua regia–extractable (80 to 806 mg Cu kg?1 soil) Cu levels were high enough to raise environmental alarm (based on European Union guidelines) in the Cu fungicide–treated soils as compared with natural Cu levels in untreated soils (1 to 12 mg Cu kg?1 soil for DTPA and 22 to 32 mg Cu kg?1 soil for aqua regia–extractable Cu). Coffee, banana, and bean plants grown on soils contaminated by Cu fungicides had varied concentrations of Cu that were greater than the concentrations of Cu in the plants collected from the uncontaminated soils. Stepwise regression analysis carried out to investigate the relationships between the soil properties and the concentrations of Cu in plants revealed a significant (P = 0.01) positive relationship (R2 = 0.4) between organic carbon and the concentration of Cu in banana leaves. Aqua regia–extractable Cu was positively correlated (P = 0.03, R2 = 0.4) with the concentrations of Cu in banana leaves. For bean leaves, electrical conductivity (EC) had a positive significant (P = 0.01) relationship (R2 = 0.56) with the concentrations of Cu in the plants. It is recommended that further research be carried out to investigate the dynamics and bioavailability of Cu for the different crops interplanted in the coffee fields.  相似文献   

16.
Forest soil organic horizons from old and young plantations in the Alltcailleach Forest, N.E. Scotland were first sampled in 1949/50 and resampled in 1987. Copper, Pb and Zn in the soils were determined simultaneously on the original (stored) and the resampled soils. Overall mean Cu and Pb concentrations increased from 12.7 to 15.3 and 49.5 to 60.8 mg kg?1 between 1949/50 and 1987. Zinc concentrations decreased from 76.4 to 60.7 mg kg?1. Amounts of all 3 heavy metals increased because of increases in the thickness of organic horizons. Mean accumulation rates for Cu, Pb and Zn were 39.1, 186 and 114 g ha?1 yr?1, respectively. The rate of accumulation of Pb was significantly related to the rate of accumulation of organic matter. Copper and Zn concentrations were directly correlated with pH and inversely correlated with C/N ratio, whereas Pb was inversely correlated with pH and directly correlated with % C and C/N ratio. The more acidic soil organic horizons therefore contained higher concentrations of Pb and lower concentrations of Cu and Zn.  相似文献   

17.
Soil heavy metal pollution, influenced by both natural and anthropogenic factors, significantly reduces environmental quality. In this study, Cr, Ni, Cu, As, Cd, and Pb in eight different land-use soils from Patuakhali District in Bangladesh were assessed. Concentrations of Cr, Ni, Cu, As, Cd, and Pb in soils were 1-87, 5-271, 4-181, 0-80, 0.2-24.0, and 5-276 mg kg-1, respectively, measured using an inductively coupled plasma-mass spectrometer. The enrichment factor, pollution load index (PLI), and contamination factor (Cfi) of metal i were used to assess the ecological risk posed by metals in soils. The PLI ranged from 0.78 to 2.66, indicating baseline levels to progressive deterioration of soil due to metal contamination. However, Cfi of Cd ranged from 1.8 to 12.0, which showed that the studied soils were strongly impacted by Cd. Considering the severity of the potential ecological risk of a single metal, the descending order was Cd > As > Pb > Cu > Ni > Cr. Soils under all land uses showed moderate to very high potential ecological risk.  相似文献   

18.
Heavy metal phytoextraction is a soil remediation technique, which makes use of plants in removing contamination from soil. The plants must thus be tolerant to heavy metals, adaptable to soil and climate characteristics, and able to take up large amounts of heavy metals. Most of the high biomass productive plants such as, maize, oat and sunflower are plants, which do not grow in cold climates or need intensive care. In this study three “weed” plants, Borago officinalis; Sinapis alba L. and Phacelia boratus were investigated for their ability to tolerate and accumulate high amounts of Cd and Pb. Pot experiments were performed with soil containing Cd and Pb at concentrations of up to 180 mg kg?1 and 2,400 mg kg?1 respectively. All three plants showed high levels of tolerance. Borago officinalis; and Sinapis alba L. accumulated 109 mg kg?1 and 123 mg kg?1 Cd, respectively at the highest Cd spiked soil concentration. Phacelia boratus reached a Cd concentration of 42 mg kg?1 at a Cd soil concentration of 100 mg kg?1. In the case of Pb, B. officinalis and S. alba L. displayed Pb concentrations of 25 mg kg?1 and 29 mg kg?1, respectively at the highest Pb spiked soil concentration. Although the Pb uptake in P. boratus reached up to 57 mg kg?1 at a Pb spiked soil concentration of 1,200 mg kg?1, it is not suitable for phytoextraction because of its too low biomass.  相似文献   

19.
Lead (Pb) pollution in and around Ulaanbaatar is of national concern, given that the Mongolian capital is home to nearly half of the country’s entire population. By comparison, Mongolian countryside is a pristine environment because of its sparse population and low industrial activity. The concentration of Pb in urban soils (average of 39.1 mg kg–1) was twice the values found (average 18.6 mg kg–1) in background territories (i.e., Mongolian rural sites). Furthermore, Pb contamination was examined by using Pb stable isotopic composition, and covariance of Pb isotopic ratios showed two groups between rural and urban soils as pristine and disturbed sites. The 206Pb/207Pb ratio, the most prominent fingerprint for Pb pollution, was 1.163–1.185 for the urban whereas values for rural soils (1.186–1.207) were analogue to the regional Pb isotopic signatures. Local coal sources and their combustion products, one of the potential Pb pollution sources in Ulaanbaatar, have significant radiogenic properties in terms of Pb isotopic composition and revealed an average of 1.25 for 206Pb/207Pb and 19.551 for 206Pb/204Pb ratios. Thus, contributions from coal firing activity to Pb pollution lower than it was assumed, and smaller range of these values measured in urban soils may be attributed to the mixing of less radiogenic Pb as a constituent of the leaded gasolines.  相似文献   

20.
Depth distributions of metals in soil profiles are indicative of weathering and soil genesis and anthropogenic pollution. We studied the depth distribution of total Al, Cd, Cu, Fe, Mn, Pb, and Zn concentrations in 8 Oxisols, 5 Andisols, 2 Mollisols, and 2 Alfisols of coffee plantation areas in Costa Rica. The concentrations of the mainly geo‐/pedogenic Al (means of 76 g kg—1 in the A horizons and of 106 g kg—1 in the lowermost sampled B horizons) and Fe (A: 56 g kg—1, B: 66 g kg—1) generally increased with profile depth. In spite of the regular application of Cu‐containing fungicides, Cu (A: 135 mg kg—1, B: 158 mg kg—1) showed accumulations in the A horizons of only three profiles. Higher Cd (A: 0.14 mg kg—1, B: 0.09 mg kg—1) and Pb concentrations (A: 7.3 mg kg—1, B: 5.5 mg kg—1) in most topsoils compared to the subsoils indicated anthropogenic inputs. The mean Mn (A: 1190 mg kg—1, B: 1150 mg kg—1) and Zn (A: 59 mg kg—1, B: 66 mg kg—1) concentrations varied little with depth. In general, the metal depth distribution in the studied tropical soils was similar to that of temperate soils although the weathering regime is quite different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号