首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Mineral nutrient contents in vegetable-based foods are a concern in human diets, and depleted soil fertility and high-yielding cultivars are associated with low nutrient contents. This study explored if mineral nutrient concentrations of lettuce (Lactuca sativa L.) can be increased though selection of cultivars and nutritional regimes in greenhouse production. Cultivars including butterhead, romaine, and loose-leaf phenotypes of heritage and modern origins were studied. Hoagland solution, a commercial inorganic fertilizer, and a commercial organic fertilizer were the nutrient regimes. Heritage cultivars had about 10% higher phosphorus, potassium, calcium, magnesium, and zinc (P, K, Ca, Mg, and Zn) concentrations than modern cultivars. Differences in elemental concentrations occurred among phenotypes and nutritional regimes but with no consistent trend among elements for phenotypes or regimes. Some cultivars had twice the concentrations of nutrients of other cultivars. This work suggests that cultivars can be selected for production of mineral nutrient-rich lettuce.  相似文献   

2.
Abstract

For plant growth and composition, the effects of fertilizers including blood meal (BLO), cottonseed meal (CSM), dehydrated cow manure (COW), and urea (UREA) factored with lettuce (Lactuca sativa L.) of different morphological phenotypes including iceberg, romaine, loose head, and loose leaf were studied in a greenhouse. Lettuce growth increased with increasing nitrogen (N) applications from 0 to 800?mg N/pot (kg), but the top application of BLO, CSM, or UREA suppressed yields. Lettuce grown with BLO, CSM, or UREA had higher concentrations of N than with COW. Nitrate-N concentration in leaves of all varieties exceeded some standards at high application of organic fertilizer or urea except for COW. In general, increasing N application resulted in higher concentration of NH4-N in lettuce with increases in applications of fertilizers. Organic fertilizers and urea were equally effective in supporting growth and affecting nutrient accumulation in lettuce if sufficient N was supplied.  相似文献   

3.
This study determined the potential to increase Zn density of lettuce (Lactuca sativa L.) through cultivar selection and nutrient management. Organic fertilizer and Hoagland and Arnon no.1 solution factored with three zinc (Zn) levels provided as zinc sulfate (ZnSO4) were the fertilizer regimes in a greenhouse experiment. Modern cultivars had a 32% higher fresh head weight than heritage cultivars, but each accumulated the same Zn concentration (65 mg kg?1 dry wt). Butterhead phenotypes had a 38% lower yield than loose-leaf and had the highest Zn concentration (78 mg kg?1 dry wt) followed by romaine (66 mg kg?1 dry wt) and loose-leaf (53 mg kg?1 dry wt). Concentration of Zn did not differ between fertility regimes, being about 66 mg kg?1 dry wt with each regime. Differences in Zn concentrations were significant among individual cultivars with ranges from 42 mg g?1 dry wt to 91 mg kg?1 dry wt. ‘Tom Thumb’, ‘Adriana’, ‘Claremont’, and ‘Focea’ were the top in cultivar ranking, with mean Zn concentration of 63 mg kg?1 dry wt. The results signify that selection of cultivars may be utilized to increase Zn accumulation in lettuce but that nutritional regimes had little effect on accumulation.  相似文献   

4.
Depleted soil fertility and high-yielding cultivars have been associated with low mineral nutrient contents in vegetables. This study explored if mineral nutrient concentrations of lettuce (Lactuca sativa L.) can be increased though selection of cultivars and management of soil fertility. Cultivars including butterhead, romaine, and loose-leaf phenotypes of heritage and modern origins were studied. Conventional, compost, and organic regimes were assessed. Elements in whole heads were determined. Heritage cultivars had about 7% higher magnesium, sulfur, copper, and iron (Mg, S, Cu, and Fe) concentrations than modern cultivars with no differences occurring for phosphorus, potassium, calcium, sodium, zinc, manganese and boron (P, K, Ca, Na, Zn, Mn, and B). Differences for each element occurred among phenotypes and fertilization but with no consistent trends. Head weight had only minor effects on nutrient concentrations, but total accumulation increased with head size. Some cultivars had nearly twice the accumulation of nutrients as others. This work suggests that cultivars can be selected for production of nutrient-rich lettuce.  相似文献   

5.
营养液浓度对水培生菜生长和硝酸盐积累的影响   总被引:3,自引:3,他引:3  
该文研究了4种营养液浓度处理(山崎生菜配方的1/4(1/4s)、1/2(1/2s)、1(1s)和2(2s)单位)对水培生菜(品种为“弘农”和“绿领”)生长、硝酸盐积累和品质的影响。结果表明,1/2单位营养液浓度处理下生菜地上部和根的鲜重、叶长和叶宽最大,而2个单位营养液浓度处理下上述指标最小。不同营养液浓度处理下叶片硝酸盐积累的高低顺序为2s>1s>1/2s>1/4s,2个单位营养液浓度处理下生菜生长发育后期叶片中的SOD活性和MDA含量最高。对采收时生菜品质的分析表明,生菜体内的硝酸盐含量随着营养液浓度的增加而迅速上升,2个单位营养液浓度处理下生菜叶片中硝酸盐、可溶性糖和可溶性蛋白质R 含量最高。综合考虑产量和品质,采用1/2单位的山崎生菜配方是适合生菜水培的营养液配方。  相似文献   

6.
营养液浓度对水培生菜生长和硝酸盐积累的影响   总被引:1,自引:0,他引:1  
该文研究了4种营养液浓度处理(山崎生菜配方的1/4(1/4s)、1/2(1/2s)、1(1s)和2(2s)单位)对水培生菜(品种为“弘农”和“绿领”)生长、硝酸盐积累和品质的影响。结果表明,1/2单位营养液浓度处理下生菜地上部和根的鲜重、叶长和叶宽最大,而2个单位营养液浓度处理下上述指标最小。不同营养液浓度处理下叶片硝酸盐积累的高低顺序为2s>1s>1/2s>1/4s,2个单位营养液浓度处理下生菜生长发育后期叶片中的SOD活性和M DA含量最高。对采收时生菜品质的分析表明,生菜体内的硝酸盐含量随着营养液浓度的增加而迅速上升,2个单位营养液浓度处理下生菜叶片中硝酸盐、可溶性糖和可溶性蛋白质R含量最高。综合考虑产量和品质,采用1/2单位的山崎生菜配方是适合生菜水培的营养液配方。  相似文献   

7.
采用田间试验研究了不同施肥处理对莴笋产量、品质和经济效益的影响。结果表明,在CK(N15P5K10)基础上分别增施氮肥、磷肥、钾肥、硼肥或有机肥可使莴笋增产19.4%~66.4%,以施用有机肥菜籽粕增产作用最大。有机肥泥炭和菜籽粕处理使莴笋茎硝酸盐含量分别降低9.3%和18.0%。不同施肥处理均提高了莴笋叶和茎维生素C含量,菜籽粕处理莴笋叶维生素C含量增幅最大(为16.5%),泥炭和菜籽粕处理莴笋茎维生素C含量均显著高于其他处理。增施钾肥处理对提高莴笋叶还原糖含量作用最大(达10.0%),增施磷肥处理对提高莴笋茎还原糖含量效果显著。不同施肥处理均提高了莴笋叶必需氨基酸含量,硼肥( B)处理莴笋叶蛋氨酸/亮氨酸比值最高;泥炭处理对提高莴笋茎蛋氨酸/亮氨酸比值及甜味、鲜味氨基酸占氨基酸总量的比例效果最佳。菜籽粕处理莴笋施肥利润最高,增施钾肥处理产投比高于其他处理。  相似文献   

8.
Pedigree history of 146 lettuce (Lactuca sativa L.) cultivars registered in the U.S. by Plant Variety Protection and/or utility patent of the era from 2000 through 2010 facilitates determination of coefficient of parentage among these cultivars, identification of ancestral parental lines, and their genetic contribution. Principal ancestors of leaf lettuce developed in this era are the cultivars ‘Malibu’, ‘Waldmann’s Green’, and ‘Salad Bowl’ contributing 6.4, 6.1, and 3.5% of the genes, respectively. The cultivars ‘Parris Island Cos’ and ‘Tall Guzmaine’ are major ancestors of romaine lettuce, contributing 25.9 and 23.4% of the genes, respectively. Three crisphead lettuce ancestors identified are the cultivars ‘Vanguard’, ‘Salinas’, and ‘Calmar’, the former two descend from interspecific crosses of L. sativa with Lactuca virosa L. and Lactuca serriola L. Among these three, ‘Vanguard’ is the major ancestor contributing 23.8% of the genes to crisphead lettuce. The crisphead cultivar ‘Salinas’ was frequently crossed with romaine lettuce types and the romaine parental cultivar ‘Parris Island Cos’ was crossed with leaf types contributing to romaine and leaf lettuce genetic diversity, respectively. Genetic similarity was less within leaf cultivars (coefficient of parentage = 0.02) than found within romaine (0.15) and crisphead (0.13) cultivars registered in the U.S. during this era.  相似文献   

9.
The effect of suboptimal supply of nitrogen (N) and of replacing nitrate in the nutrient solution with ammonia on growth, yield, and nitrate concentration in green and red leaf lettuce was evaluated over two seasons (autumn and spring) using multiple regression analysis. The plants were grown in a greenhouse on a Nutrient Film Technique (NFT) system. Nitrogen concentrations in the nutrient solution were either 3?mM or 12?mM, and the form of N was varied as follows: 100% NO3, 50% NO3?+?50% NH4, and 100% NH4. In both seasons, the biomass (fresh weight) of lettuce heads increased with increasing NO3 concentrations and in autumn, NO3 even at 1.5?mM was sufficient for high yield. However, head dry weight was affected neither by the season nor by changes in the composition of the nutrient solution. The concentration of NO3 had no effect on root dry weight, but it decreased at higher concentrations of NH4. The number of leaves increased as the ratio of NO3 to NH4 in the nutrient solution increased and was higher in autumn because of the longer growth period. Increasing the concentration of NO3 in nutrient solution increased both total N and nitrate concentration in lettuce heads (dry weight) but decreased the concentration of total C. Also, leaf nitrate concentration was lower in spring than in autumn and decreased with increasing NH4 concentration. Nitrogen utilization efficiency was maximum when NH4 levels in the nutrient solution were either 0% or 50% irrespective of the season. Our results thus show that suboptimal N supply in autumn will not affect lettuce yield, and that nitrate concentration in leaves is lower when NH4 concentrations in nutrient solution are higher and also much lower in red lettuce than in green lettuce.  相似文献   

10.
Nitrogen is an essential nutrient for greenhouse-grown lettuce (Lactuca sativa L.); however, excessive nutrient availability causes disease and detrimental effects on the leaf and root development. In this study, nitrogen content of the lettuce leaves was estimated by determining the chlorophyll concentrations of the leaves using image processing technique. The Hoagland solution was used as a fertilizer in five different doses (control, quarter of the solution, half of the solution, standard solution, and two times more of the solution). Multilayer perceptron neural network (MLPNN) model was developed based on the red, green, and blue components of the color image captured to estimate chlorophyll content and chlorophyll concentration index (SPAD values). According to the obtained results, the MLPNN model was capable of estimating the lettuce leaf chlorophyll content with a reasonable accuracy. The coefficient of determination was 0.98, and mean square error was 0.006 in validation process.  相似文献   

11.
A process to obtain enriched antioxidant phenolic extracts from lettuce (baby, romaine, and iceberg cultivars) and chichory byproducts as a way to valorize these byproducts was developed. Two extraction protocols using water and methanol as solvent were used. Amberlite XAD-2 nonionic polymeric resin was used to purify the extracts. The extraction yield, phenolic content, and phenolic yield were evaluated as well as the antioxidant capacity of the extracts (DPPH, ABTS, and FRAP assays). Baby and romaine lettuce byproducts showed the highest water extract yields [27 and 26 g of freeze-dried extracts/kg of byproduct fresh weight (fw), respectively], whereas baby and iceberg lettuce showed highest methanol extract yields (31 and 23 g of freeze-dried extracts/kg of byproduct fw, respectively). Methanol extraction yielded a raw extract with a high phenolic content, the baby and chicory extracts being the richest with approximately 50 mg of phenolics/g of freeze-dried extract. Regarding the purified extracts, water extraction yielded a higher phenolic content, baby and chicory being also the highest with mean values of approximately 190 and 300 mg of phenolics/g of freeze-dried extract, respectively. Both raw and purified extracts from baby and chicory showed the higher antioxidant contents (DPPH, ABTS, and FRAP assays). The antioxidant capacity was linearly correlated with the phenolic content. The results obtained indicate that lettuce byproducts could be, from the industrial point of view, an interesting and cheap source of antioxidant phenolic extracts to funcionalize foodstuffs.  相似文献   

12.
The responses of lettuce (Lactuca sativa L. ‘Arroyo’) to organic nitrogen (N) fertilizers were investigated in a greenhouse. Fertilizers were blood meal (BLO), feather meal (FM), cottonseed meal, alfalfa meal, sewage sludge, compost, cow manure, a chemical fertilizer, and a treatment without fertilizer. Amounts of N from fertilizers were 100, 200, 400, or 800?mg per pot. Lettuce yield was higher for plants receiving fertilizers than with no fertilizer and increased with increased N applications, but high applications of BLO or FM suppressed yields. Nitrogen and nitrate increased in leaves as N supply increased with all fertilizers. Small changes in leaf nutrient contents other than N occurred among or with increased application of the various fertilizers. The soil carbon dioxide release and ammonia volatilization were high from fertilizers with high N concentrations. Organic fertilizers with high N increased lettuce growth at lower applications than those with low N content.  相似文献   

13.
Abstract

Nitrite (NO2 ?‐N) toxicity symptoms have been observed on lettuce (Lactuca sativa) at various locations in California. The objective was to evaluate the symptoms of ammonium (NH4 +‐N) and nitrite (NO2 ?‐N) toxicity on Sundevil iceberg lettuce and Paragon romaine lettuce and to determine lettuce growth and biomass production under different levels of NO2 ?‐N. Hydroponic studies under greenhouse conditions were conducted using nutrient solutions containing nitrate (NO3 ?‐N) and two other forms of nitrogen (NO2 ?‐N and NH4 +‐N) applied at a constant concentration (50 mg NL?1) or using different NO2 ?‐N levels (0, 5, 10, 20, 30, and 40 mg N L?1) and a constant NO3 ?‐N level (30 mg N L?1). Crown discoloration (brownish color) was observed for lettuce grown in both NO2 ?‐N and NH4 +‐N solutions approximately 3 weeks after transplanting into the hydroponic systems. Lettuce grown in NO3 ?‐N solution produced larger biomass and greater number of leaves per plant than lettuce grown in NO2 ?‐N or NH4 +‐N solutions. Increasing the concentration of NO2 ?‐N suppressed plant height, fresh and dry biomass yield, and number of leaves and increased the root vascular discoloration. Lettuce growth was reduced more than 50% at NO2 ?‐N concentrations greater than 30 mg N L?1. Even at 5 mg NO2 ?‐N L?1, growth was reduced 14 and 24% for romaine and iceberg lettuce, respectively, relative to that obtained in nitrate solution. Although concentrations between 5 and 40 mg NO2 ?‐N L ?1 reduced dry biomass similarly for both lettuce types, toxicity symptoms were more severe in iceberg lettuce than in romaine.  相似文献   

14.
ABSTRACT

The use of organic or reduced form of nitrogen (N) can have various beneficial effects in terms of plant nutrient uptake, metabolism, and environmental issues. In this study, the influence of soil application of reduced N-forms (ammonium, glycine, and glutamine) compared to nitrate and a no fertilizer treatment was evaluated on growth characteristics of sweet basil (Occimum basilicum L.) under a moderate lime soil conditions. The basil growth traits including root and shoot biomass were increased under application of reduced N-forms mainly glycine and glutamine compared to no fertilizer treatment. Application of reduced forms of nitrogen (ammonium, glycine, and glutamine) increased the leaf concentrations of potassium (K), magnesium (Mg), calcium (Ca), iron (Fe) and zinc (Zn), whereas the leaf N concentration was increased by ammonium and nitrate fertilization compared to unfertilized control plants. The results indicate that soil application of reduced N-forms particularly glycine and glutamine is superior to nitrate application.  相似文献   

15.
间作对气雾培生菜生长和硝酸盐积累的影响   总被引:2,自引:0,他引:2  
该文对生菜与樱桃萝卜间作和生菜单作模式下气雾培生菜相关指标进行了对比研究,并结合营养液中矿质元素含量的变化规律进一步分析了生菜与樱桃萝卜间作模式下生菜地上部分硝酸盐积累的主因素。结果表明:生菜与樱桃萝卜间作有利于提高生菜地上部分鲜质量,促进生菜叶片的展开以及生菜植株根总长度、根系表面积和根系体积等植株根系形态学参数的增大;生菜与樱桃萝卜间作增加了生菜SPAD值、净光合速率、气孔导度和蒸腾速率等光合指标,而对胞间CO2浓度无明显规律性影响;生菜与樱桃萝卜间作不同程度地降低了生菜硝酸盐含量,随着气雾培时间的推进,总体呈先降低后增加的趋势,而硝酸还原酶活性的变化趋势与硝酸盐含量的变化趋势相反;进行相关性分析得出,生菜与樱桃萝卜间作模式下生菜硝酸盐含量降低主要是由于硝酸还原酶活性的增加导致的,并且营养液中硝态氮消耗量、铵硝比和锰消耗量对硝酸还原酶活性影响较大,相关系数分别为0.882、0.762和0.851。研究结果揭示了生菜与樱桃萝卜间作模式对气雾培生菜生长和硝酸盐积累的影响,并探究了该模式下生菜硝酸盐积累的主因素,为生菜与樱桃萝卜间作模式的作用机理研究提供一定的理论基础。  相似文献   

16.
【目的】 随着水肥一体化施肥方式的应用,新疆棉花生产化肥投入量大大增加,有机肥投入不断降低。本研究探索用磷酸和硝酸浸提有机肥养分,利用酸性有机肥浸提液替代部分化肥的效果,为增加有机肥施用提供途径。 【方法】 以腐熟鸡粪有机肥为原料,在塑料桶内,分别用pH为1的硝酸和磷酸,按照浸提剂与有机肥的质量比为5∶1进行浸提,恒温箱内保持25℃恒温,每8小时搅拌一次,浸提持续2天。浸提结束后用0.038 mm尼龙网过滤,滤液用于滴灌施肥。以不施肥、施用常规化肥和硝酸有机肥浸提液作对照 (代号依次为CK、CK1和NAE-CK);设置有机肥浸提液替代全量的磷肥、2/3磷肥和1/3磷肥三个替代量,施肥量分别为4950 L/hm2、3300 L/hm2、1650 L/hm2 (代号:PAE、2/3PAE、1/3PAE);再以pH为1的硝酸和磷酸为对照 (HN-CK、HP-CK),所有施肥处理以化肥补足至总养分量一致。分别在第五次施肥后5天 (花铃期),第八次施肥后10天 (吐絮期),在距滴灌带滴头处 (0 cm) 以及距离滴头15 cm和30 cm处,分别采集0—20 cm、20—40 cm和40—60 cm土壤,测定土壤有机质、氮、磷、钾等有效养分含量。棉花成熟后每小区取植株3株,测植株氮磷钾吸收量,以实收产量计产。 【结果】 1) 施用两种有机肥浸提液与施用硝酸和磷酸浸提剂相比,土壤有机质含量增加了1.4%~16.8%,而单施对应的酸性浸提剂却使土壤有机质含量较CK降低10.2%~25.5%。2) 酸性有机肥浸提液代替部分化肥较常规施肥均不同程度提高了土壤水平0—30 cm与垂直0—60 cm范围内氮、磷、钾有效养分的含量,尤其对0—20 cm土壤的磷有明显的活化作用,增加了作物对其吸收量。1/3磷肥替代量处理对土壤养分最高提升6.3%,但差异不显著;2/3磷肥替代量和替代全部磷肥处理对土壤养分别最高提升35.3%和58.1%,差异均达到显著水平。3) 磷酸有机肥浸提液和磷酸浸提剂处理对土壤磷和钾有明显的活化作用,磷酸有机肥浸提液效果优于硝酸有机肥浸提液;有机肥浸提液的pH与土壤速效磷呈负相关 (–0.491*),浸提液有机质含量与土壤速效钾有显著正相关 (0.497*)。4) 施用4950 L/hm2的硝酸有机肥浸提液对氮的利用效率最高 (53.1%),4950 L/hm2的磷酸浸提剂对磷和钾的利用效率最高 (28.9%和344.8%)。 【结论】 有机肥浸提液作为一种新型酸性有机肥料,不仅适合新疆的滴灌施肥,还可以增加土壤有机质含量,活化新疆石灰性土壤的养分,尤其对于0—20 cm土壤的磷钾肥的利用效率提高显著。等施肥量下,磷酸有机肥浸提液对土壤的磷,钾活化效率高于硝酸有机浸提液,磷酸有机肥浸提液施肥量为3300 L/hm2时棉花产量最高,养分农学利用效率最高。   相似文献   

17.
In a field experiment, various strengths of Hoagland’s nutrient solutions were sprayed to mitigate the deleterious effects of nutrient stresses at different growth stages on mash bean cultivars. Hoagland’s nutrient solution strengths of 0, 25, 50, and 75% were applied at 7, 14, and 21?days after emergence on mash bean cultivars namely Mash-2 and Mash-88. Hoagland’s nutrient solution of 75% strength markedly increased the growth and yield of mash bean cultivars if applied at 21?days after crop emergence. The Mash-88 showed superiority in terms of growth and yield traits as compared to Mash-2. The results suggested that growth and yield was not enhanced effectively by a low strength of Hoagland’s nutrient solution applied at initial growth stages. It is concluded that foliar-applied Hoagland’s nutrient solution of 75% strength can be used as an efficient tool when applied at appropriate growth stage (21?days after emergence) to get optimal yield.  相似文献   

18.
  【目的】  土壤水分根据其随时间的变异情况可分为稳定性和波动性土壤水分,稳定的土壤水分有利于提高作物的水分利用效率。我们研究了土壤水分的时间变异影响油麦菜水分、养分吸收利用效率的机制。  【方法】  以油麦菜(Lactuca sativa L. var. longifolia)为供试作物于遮阳网室内进行盆栽试验。设两个供水处理:传统浇灌(traditional irrigation, TI)和负压灌溉(negative pressure irrigation,NPI),其所提供的土壤水分分别为波动性土壤水分和稳定性土壤水分。供水处理于油麦菜4叶期开始运行,用土壤水分仪测定土壤含水量,每两天测定一次,处理28天后收获。于NPI开始运行的第1、11、21和28 天,测定油麦菜株高、叶片数、最大叶长和最大叶宽,同时用LI-6400便携式光合仪测定油麦菜叶片净光合速率(Pn)、胞间CO2浓度(Ci)、蒸腾速率(Tr)和气孔导度(Gs),生化方法分析叶片抗旱生理指标游离脯氨酸(Pro)、丙二醛(MDA)、脱落酸(ABA)、水杨酸(SA)、可溶性蛋白(SP)和可溶性糖(SS)以及稳定碳同位素比值(δ13C)和分辨率(Δ13C)的变化。  【结果】  NPI和TI的累计灌水量和平均土壤体积含水量处于基本相同的水平,NPI土壤体积含水量的变异系数为5.0%,属于稳定性土壤水分,TI的变异系数为10.3%,属于波动性土壤水分。NPI处理油麦菜株高、最大叶长和最大叶宽分别显著高于TI 103.8%、155.4%和62.5%。NPI处理4次监测的各项光合参数值大多高于TI,第11 天的Tr和Gs值,以及收获时(处理第28天)的Ci均显著高于TI。收获时NPI处理油麦菜的产量、水分利用效率、叶片含磷量、氮磷钾养分吸收量和Δ13C明显高于TI,根冠比、脱落酸含量、可溶性糖含量和δ13C明显低于TI。Δ13C与水分利用效率呈正相关,与土壤水分变异系数呈显著负相关。  【结论】  相较于传统浇灌提供的波动性土壤水分,负压灌溉提供的稳定土壤水分降低或者避免了土壤水分胁迫,促进了油麦菜地上部的生长发育、光合作用、养分吸收和水分利用效率。  相似文献   

19.
The aim of this study was to investigate the effects of different fertilizing strategies applied during three successive cycles on lettuce growth and the nitrate evolution in the soil, leaching water, and the lettuce plant itself. Four fertilization treatments were compared: integrated production fertilization (IP), organic fertilization (ORG), slow-release N fertilizers (SRF), and plant-associative bacteria (PAB). The nitrate content of the pore water and leachate decreased toward harvesting time in each crop cycle. The accumulation of residual nitrates in the soil decreased in each successive cycle in all treatments. The greatest lettuce head weight was achieved by ORG and SRF in the first cycle and by IP in the third cycle; IP and SRF produced the greatest nitrate content in lettuce leaves, especially in the second and third cycles. The nitrate content of leaves fell in the last cycle, as nitrate levels in soil and in leaching fell in all treatments.  相似文献   

20.
采用水培方法,研究了毒死蜱对两种叶菜类蔬菜菠菜和生菜生长的影响、在不同培养液中的降解速度以及在蔬菜中的吸收和转移规律。结果表明,低浓度毒死蜱(1.0和10.0mg·L^-1)对两种供试蔬菜的生长没有明显影响,但高浓度毒死蜱(100.0mg·L^-1)对两种蔬菜的生长均有一定的影响,而且生菜对毒死蜱较菠菜更为敏感。两种蔬菜均能明显促进毒死蜱在溶液中的降解,在不同溶液中的降解速度如下:菠菜-培养液〉生菜-培养液〉塘水〉培养液。两种供试蔬菜对毒死蜱均有很强的吸收能力,而且具有相似的吸收规律。毒死蜱在菠菜根中达到最大吸收值所需的时间比生菜根所需的时间短,但在茎和叶中所需的时间两种蔬菜相同。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号