首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Plant nutrient deficiencies are the main yield‐limiting factors in highly weathered acid soils around the world. Five greenhouse experiments were conducted on an Oxisol to identify nutrient deficiencies in common bean, upland rice, corn, wheat, and soybean. The treatments consisted of 13 fertility levels including an adequate level and remaining without application of one of the essential plant macro‐ or micronutrients. Dry matter yield of tops of all the crop species was affected by fertility treatments; however, significant effects of treatments were obtained in the case of common bean, upland rice, and corn. Based on tops dry weight under different treatments compared to adequate fertility level (AFL), the most yield‐limiting nutrients were in the order of phosphorus (P) > calcium (Ca) > magnesium (Mg) > boron (B) > zinc (Zn) for common bean, P > molybdenum (Mo) for upland rice, and P for corn. For the wheat crop, there was substantial decrease in tops dry weight in the absence of Ca, P, and potassium (K) nutrients. In the case of soybean, substantial tops dry weight reduction was due to deficiency in the order of P >Ca>Zn.  相似文献   

2.
Liming reduces acidity neutralizes aluminum (Al3+) and manganese (Mn2+) toxicities and increases calcium (Ca2+) and magnesium (Mg2+) concentrations in many acid soils of the world. However, it reduces the availability of other cationic micronutrients that are essential for plant growth. Therefore, an experiment was conducted in greenhouse conditions for assessing the effects of higher lime rates in foliar and grain boron (B), copper (Cu), iron (Fe), manganese (Mn), and zinc (Zn) concentrations of 15 soybean genotypes [Glycine max (L) Merrill]. The lime rates were calculated to raise base saturation (V) to 40 and 70%. The soybean genotypes were classified as efficient and moderately efficient in lime-use, the most efficient cultivar was BRS 295RR, and the least efficient was TMG 7161RR and BMX Força RR. The lime rates × genotypes interaction was significant for foliar Cu. The grain the interactions were significant for B, Cu, Fe, and Mn concentrations. Foliar and grain B, Cu, Fe, Mn, and Zn concentrations varied significantly among the genotypes. The Ca and Mg concentrations in the leaf, grain, and soil showed a positive correlation with foliar B concentrations and a negative correlation with leaf and grain Cu, Mn, and Zn concentrations.  相似文献   

3.
The relative distribution of 22 mineral elements in the roots, nodules and shoots of the soybean (Glycine max L. Merr. cv. Tsurumusume) at R1 (beginning of the flowering stage) and R7 (beginning of the mature stage) was investigated in response to ammonium and manure N treatment. Plants receiving only atmospheric nitrogen served as the negative control. The addition of ammonium sulfate to the soil caused soil acidification, induced Al and Mn toxicities, and significantly reduced the biomass production in roots and nodules. Ca, Mg, Fe, Mn, Cu, and Zn concentrations were significantly higher in shoots, and those of Mo and Co higher in nodules. The addition of manure to the soil significantly enhanced the levels of Sr, Ba, Cr, and Cd in shoots, whereas the concentration of Cs was decreased at R7. Moreover, when the soybean developed from R1 to R7, the levels of essential elements in nodules decreased, whereas those of nonessential elements increased, irrespective of the nitrogen source. Furthermore, the variation in the concentrations of many elements was not consistent for nodules and roots when soybean developed from R1 to R7. The variation of Mn, Zn, B, and Al concentrations was independent of N treatments. However, Ca, Fe, Cu, Mo, and Se levels were affected strongly by N treatments. This study is the first to document the dynamic variation of the soybean ionome in nodules, roots, and shoots from vegetative to reproductive stage of soybean.  相似文献   

4.
In plants, iron (Fe) and manganese (Mn) have many functions, as the transport and electron transference during photosynthesis, and their deficiencies affect the chlorophyll formation, plant growth and grain yield (GY). We carried out two experiments under greenhouse conditions with the aim of determining the influence of Fe and Mn on nutritional status, physiological components, soil chemical properties and yield components of soybean plants. In both experiments, five Fe and Mn rates were used. The GY, shoot dry weight yield (SDWY), the number of grain per pot (NGP), photosynthesis rate (A) and chlorophyll content were influenced by Fe rates, while GY, SDWY, root length and A were influenced by Mn rates. Iron and Mn concentrations in leaves and grains increased with rates of Fe and nutrients. The Mehlich 1 and DTPA-TEA extractants were efficient to determine the Fe and Mn available in the soil.  相似文献   

5.
Inadequate plant nutrition and biotic stress are key threats to current and future crop yields. Zinc (Zn) deficiency and toxicity in major crop plants have been documented, but there is limited information on how pathogen and pest damage may be affected by differing plant Zn levels. In our study, we used soybean plants as a host, a soybean pest, and three soybean pathogens to determine whether plant Zn levels change pest and disease assessments. Two soybean cultivars were grown in sand culture with a soluble nutrient solution that ranged from Zn‐deficient to toxic. Detached leaves from these plants were either inoculated with Aphis glycines, the soybean aphid, Xanthomonas axonopodis pv. glycines, a bacterium that causes bacterial pustule, Sclerotinia sclerotiorum, the necrotrophic fungus responsible for stem rot, or Phakopsora pachyrhizi, a biotrophic obligate pathogen that causes soybean rust. There were significant (P < 5%) effects on aphid colonization, positive counts for bacterial pustule, S. sclerotiorum leaf area affected, and numbers of rust lesions associated with the Zn treatments. Plants grown with the physiologically optimal levels of Zn (2 µM) had less (P < 5%) soybean aphids cm?2 leaflet than plants grown without Zn, at 0.1× Zn (0.2 µM), or at 100× Zn fertilization (200 µM). Plants grown with the normal fertilization of Zn or 100× Zn had fewer (P < 5%) positive counts for bacterial pustule and less lesion area affected by S. sclerotiorum than plants grown without Zn or fertilized with 0.1× Zn. For soybean rust, plants grown with the physiologically optimal fertilization of Zn or 100× Zn had higher (P < 5%) lesions cm?2 on leaflets from plants grown without Zn or fertilized with 0.1× Zn. These results indicate different Zn nutrition levels in soybean significantly affected aphid and disease development.  相似文献   

6.
养分平衡是养分管理的必要环节,对增加作物产量和提高品质具有重要的作用.本文综述了硫(S)素与其他营养元素之间的交互作用对作物养分吸收、产量和质量的影响.S 与N或Ca、 K、Zn之间交互作用对养分吸收和利用是协同的,而S 与Mg、Mo、Cu、、Se、Fe、Sb、Cd、B、Br之间交互作用对养分吸收和利用是拮抗的.然而,S 与 P或Se之间的交互作用对养分吸收和利用是协同还是拮抗取决于作物种类、生长阶段和养分的浓度.N、S配施可以促进蛋白质的合成,提高作物产量和品质.由于S素与其他营养元素之间存在的这种拮抗作用,因此施用S肥可以减轻污染土壤重金属对蔬菜的毒害作用或加剧缺S土壤上蔬菜B和Mo的缺乏.  相似文献   

7.
The aim of this study was to determine the potential of the endophytic actinomycetes that produce plant growth promoters used as co-inoculants with Bradyrhizobium japonicum to promote the growth of soybean. These endophytes exhibited the potential to enhance plant growth, nitrogenase activity of root nodules and plant nutrient uptake. Co-inoculum of B. japonicum with Nocardia alba conferred the maximum yield of root and shoot dry weight. All single-inoculated actinomycetes strains had the ability to enhance plant growth. Noc. alba and Nonomuraea rubra increased total plant dry weight up to 2.14-fold and 2.11-fold, respectively, when compared to the uninoculated controls. Co-inoculations of B. japonicum with each of Noc. alba, Non. Rubra, and Actinomadura glauciflava increased acetylene reduction activity up to 1.7 to 2.7-fold. For plant mineral composition, all of co-inoculation treatments significantly increased the nutrient levels of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe) and zinc (Zn) within a soybean plant.  相似文献   

8.
Glyphosate is a widely used nonselective herbicide for the control of agricultural weeds. It is being increasingly used in glyphosate resistant genetically modified plants. However, there are few studies on its effects on the nutritional status of soybean, particularly on the uptake of zinc (Zn). Two experiments were conducted under field conditions in a Typic Quartzipsamment and an Orthic Ferralsol to investigate the effect of glyphosate application × Zn interaction on soil fertility, yield components, seed yield (SY), shoot dry weight (SDW) yield, and nutritional status of soybean. The five Zn rates 0, 3, 6, 9, and 12 kg ha?1 were used in two soybean varieties [BRS 133 (conventional—NGM) and its essentially derived transgenic line BRS 245RR (GM), which was divided into: with (+Gly) and without (–Gly) glyphosate application. Only the P (phosphorus) and Zn available concentrations in the soil were impacted by Zn rates. However, the available P concentration only decreased in the soil planted with GM soybean. Mehlich 1 and diethylenetriaminepenta acetic acid–triethanolamine (DTPA–TEA), 7.3 extractants were effective to determine the available Zn. In the two crop sites, the number of pods per plant (NPP) and the SDW yield were affected by the interaction varieties × Zn. SY was influenced by the application of the herbicide, reducing a potential phytotoxic effect with the use of high rates. Regarding the nutrients, only the foliar calcium (Ca), boron (B), iron (Fe), and manganese (Mn) concentrations were negatively affected by glyphosate, and in the case of Zn, the difference occurred only between the varieties BRS 133 and BRS 245RR.  相似文献   

9.
Phosphorus deficiency is one of the Important growth limiting factors in crop production in many regions of the world. The objective of this study was to evaluate responses of alfalfa (Medicago sativa L.), red clover (Trifoilum pratense L.), common bean (Phaseolus vulgaris L.), wheat (Triticum aestivum L.) and rice (Oryza sativa L.) to concentrations of P in nutrient solution. The P treatments applied were 5, 50, 100, 200 and 400 μM P. All crop species significantly responded to an increase in external P concentrations. The optimum P concentration for maximum growth varied with crop species, but it was higher for legumes than for cereals. Rice needs minimum as red clover maximum P concentration for maximum growth in nutrient solution as compared to other crops species. Concentrations of K, Zn and Mn were significantly affected in all crop species with P addition. Suggesting positive effects of P in ameliorating Mn toxicity if this element is present in growth medium. Increasing concentrations of P in growth medium produce negative effect on K and Zn nutrition. Growth parameters and plant nutrients concentration and uptake correlation studies showed that legumes are more responsive to P fertilization as compared to cereals.  相似文献   

10.
The increasing frequency of dry periods in many regions of the world and the problems associated with salinity in irrigated areas frequently result in the consecutive occurrence of drought and salinity on cultivated land. Currently, 50% of all irrigation schemes are affected by salinity. Nutrient disturbances under both drought and salinity reduce plant growth by affecting the availability, transport, and partitioning of nutrients. However, drought and salinity can differentially affect the mineral nutrition of plants. Salinity may cause nutrient deficiencies or imbalances, due to the competition of Na+ and Cl with nutrients such as K+, Ca2+, and NO . Drought, on the other hand, can affect nutrient uptake and impair acropetal translocation of some nutrients. Despite contradictory reports on the effects of nutrient supply on plant growth under saline or drought conditions, it is generally accepted that an increased nutrient supply will not improve plant growth when the nutrient is already present in sufficient amounts in the soil and when the drought or salt stress is severe. A better understanding of the role of mineral nutrients in plant resistance to drought and salinity will contribute to an improved fertilizer management in arid and semi‐arid areas and in regions suffering from temporary drought. This paper reviews the current state of knowledge on plant nutrition under drought and salinity conditions. Specific topics include: (1) the effects of drought and salt stress on nutrient availability, uptake, transport, and accumulation in plants, (2) the interactions between nutrient supply and drought‐ or salt‐stress response, and (3) means to increase nutrient availability under drought and salinity by breeding and molecular approaches.  相似文献   

11.
The purpose of the present work was to evaluate effects of zinc application on growth and uptake and distribution of mineral nutrients under salinity stress [0, 33, 66, and 99 mM sodium chloride (NaCl)] in soybean plants. Results showed that, salinity levels caused a significant decrease in shoot dry and fresh weight in non-zinc application plants. Whereas, zinc application on plants exposed to salinity stress improved the shoot dry and fresh weight. Potassium (K) concentration, K/sodium (Na) and calcium (Ca)/Na ratios significantly decreased, while sodium (Na) concentration increased in root, shoot, and seed as soil salinity increased. Phosphorus (P) concentration significantly decreased in shoot under salinity stress. Moreover, calcium (Ca) significantly decreased in root, but increased in seed with increased salinization. Iron (Fe) concentration significantly decreased in all organs of plant (root, shoot, and seed) in response to salinity levels. Zinc (Zn) concentration of plant was not significantly affected by salinity stress. Copper (Cu) concentration significantly decreased by salinity in root. Nonetheless, manganese (Mn) concentration of root, shoot, and seed was not affected by experimental treatments. Zinc application increased Ca/Na (shoot and seed) ratio and K (shoot and seed), P (shoot), Ca (root and seed), Zn (root, shoot, and seed) and Fe (root and shoot) concentration in soybean plants under salinity stress. Zinc application decreased Na concentration in shoot tissue.  相似文献   

12.
Crop growth models that account for nutrient accumulation offer insight into soil fertility and plant nutrition interactions. This understanding provides opportunities to develop improved management practices. During the 1980s, several process‐level growth models were developed for soybean [Glycine max (L.) Merr.]. Model validation and application to different locations and weather require detailed, independent data sets. An extensive data set describing the nutrient status of a determinate soybean ('Bragg') was collected in 1979 on a Goldsboro (Aquic Paleudult) loamy sand near Florence, SC, USA. Because of its importance to subsequent model development, we concluded that providing this entire data set in a readily accessible form was a logical step in the course of this experiment. We report here, in tabular form, mean and standard deviation data for aerial accumulation of dry matter and eight nutrients (N, P, K, Ca, Mg, Mn, Fe, and Zn) for 10 dates, for four plant components (stems, leaves, petioles, pods, and total), and for each node (and whole plant). We will provide, upon arrangement, these same data on diskette for use in simulation models or other applications.  相似文献   

13.
Roots absorb water and nutrients from the soil, give mechanical support to plants, and supply hormones that affect many physiological and biochemical processes. Roots also exert control over whole-plant growth and development by synthesizing plant hormones and controlling the uptake of mineral nutrients. Coronatine (COR) is an analogue of jasmonic acid and is a chlorosis-inducing non-hostspecific phytotoxin with an alleviative effect on plant growth under stress conditions. A 2-year field study was conducted to determine the effect of COR on the physiological and biochemical attributes of the root and the seed yield of soybean (Glycine max L. Cv. Zhonghuang 13). COR was foliar-applied at 10 nM during the 7-trifoliolate leafs stage. Root dry weight was significantly increased on average by 37% with COR over the 2 years. The root nitrogen concentration increased by 19.2%, phosphorus concentration by 23.3%, and potassium concentration by 31.2% following COR application. The content of cytokinins was increased by 31.5% and 46.0%, while that of abscisic acid was decreased by 45.0% and 25.5% with COR over the 2 years. Seed yield was increased 7.0% in 2008 and 9.6% in 2009, respectively, due to COR application.  相似文献   

14.
Plant growth promoting effects of Alcaligenes 637Ca, Staphylococcus MFDCa-1, MFDCa-2, Agrobacterium A18, Pantoea FF1 and Bacillus M3 were tested on strawberry cv. ‘Aromas’ based on yield, number, and weight of fruit, leaf area, vitamin C, total soluble solids (TSS), acidity and ionic composition of leaves under calcareous soil conditions. The results demonstrated that all of bacterial treatments significantly affected all parameters tested. The best result was obtained from 637Ca treatment, which significantly increased fruit yield, number and weight about 47.5, 34.7, and 9.4%, respectively, compared to control. Except for magnesium (Mg) and zinc (Zn) in the leaf, the concentrations of all plant tissue nutrients [nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), iron (Fe), copper (Cu), manganese (Mn), boron (B)] were significantly increased by bacterial treatments tested. The data in the present study showed that all bacterial treatments including Alcaligenes 637Ca, Staphylococcus MFDCa-1, MFDCa-2, Agrobacterium A18, Pantoea FF1, and Bacillus M3 to strawberry plants can ameliorative the deleterious effect of high lime on fruit yield, growth and nutrition. These results suggested that plant growth-promoting Rhizobacteria (PGPR) treatments could be offer an economic and simple means to increased plant resistance for high calcareous soil conditions.  相似文献   

15.
Nutrient deficiency, especially zinc (Zn) and phosphorus (P), is a common nutritional problem for the production of some crops in Turkey. This problem results in the application of increasing amounts of several fertilizers. Mycorrhizal inoculation or the indigenous potential of mycorrhizae in the soil is a critical factor in crop production under low supply of Zn and P. The effects of selected mycorrhizal inoculation on growth and Zn and P uptake of maize and green pepper were investigated in Zn- and P-deficient calcareous soils from Central Anatolia. Soils were sterilized by autoclaving and plants were grown for 7 weeks in pots under greenhouse conditions with inoculation of two selected arbuscular mycorrhizal (AM) species (Glommus moseea and G. etunicatum) at three rates of P (0, 25, 125 mg P kg?1 soil) and two rates of Zn (0 and 5 mg Zn kg?1soil). Without mycorrhizal inoculation, shoot and root dry matter production were severely affected by P and Zn deficiencies, and supply of adequate amounts of P and Zn significantly enhanced plant growth. When the soil was inoculated with mycorrhizal inoculation, the increasing effects of P and Zn fertilization on plant growth remained less pronounced. In accordance with growth data, mycorrhizae inoculation enhanced P and Zn concentration of plants, especially under low supply of P and Zn. The results obtained indicate that maize and green pepper are highly mycorrizal–dependent (MD) plant species under both low P and Zn supply and mycorrhizae play an essential role in P and Zn nutrition of plants in P and Zn-deficient soils. Although addition of P and Zn increased plant growth and plants are mycorrhizal dependent on P and Zn nutrition however dependence is much more dependent on P nutrition.  相似文献   

16.
Field experiments were conducted to determine the effect of planting date and cultivar on B, Zn, Mn, Fe, Mg, and Ca content of soybean leaflets, petioles, and stems at beginning bloom (R1), beginning seed (R5) and physiological maturity (R7) growth stages. The concentrations of all the nutrients analyzed were influenced by planting date and cultivar in at least one year. The concentration ranges were: B, 16–167 ppm; Zn, 14–98 ppm; Fe, trace‐575 ppm; Mn, 12–122 ppm; Mg, 0.18–0.89%, and Ca, 0.47–3.02%. As the plants developed, [Fe] generally decreased, [Mn] increased, and [Zn] showed no consistent response. Changes in B, Mg, and Ca concentrations with plant development varied with the plant part. Leaflet [Ca] and [B], and petiole [Ca] and [Mg] increased during seedfill. Petiole and stem [B], and stem [Mg] and [Ca] decreased during seedfill.  相似文献   

17.
Plant growth-promoting rhizobacteria (PGPR) are soil bacteria that are able to colonize rhizosphere and to enhance plant growth by means of a wide variety of mechanisms. In the present study, Myristica yunnanensis and Stenotrophomonas chelatiphaga strains were recognized as new records in Iran flora. According to the results, these strains significantly affected plants’ zinc and phosphorous contents which could be due to the production of phytosiderophore. Siderophore-producing bacteria increased canola zinc (Zn) content as strategy-I plant, while in maize, it can be said that probably the effect of phytosiderophore produced by plant on increasing root and shoot Zn content was more than siderophore produced by bacteria. These isolates could be used as bio-input for improving the plant productivity as a substitute to chemical fertilizers and also to correct the nutrient deficiencies in canola and maize for sustainable agriculture.  相似文献   

18.
Abstract

Silicon (Si) is considered a beneficial element for plants due to the far-reaching benefits it confers, including enhanced growth, yield, and crop quality, as well as stress resistance. In this study, we evaluated the effect of Si during germination and initial growth (0.0, 0.5, 1.0, or 1.5?mM Si) and during vegetative growth (0, 1, 2, or 3?mM Si) in rice (Oryza sativa) cv. Morelos A-98. Si did not affect germination but stimulated seedling height, root length, number of roots, as well as fresh and dry biomass weight of shoots and roots during initial growth. During vegetative growth, the application of 3?mM Si significantly increased the chlorophyll a/chlorophyll b ratio, but no major changes were observed either in growth or in concentrations of most nutrients, with the exception of Ca (which increased with 3?mM Si), and B and Zn (which decreased in the presence of Si). In conclusion, applying Si had positive effects during the initial stage of growth, increasing seedling height, root length, root number, and fresh and dry biomass weight. Under our experimental conditions, Si did not affect germination and vegetative growth, but increased Ca concentrations and decreased B and Zn concentrations.  相似文献   

19.
Thlaspi caerulescens, a metallophyte that is able to accumulate up to 4% zinc (Zn) in leaf dry matter, has attracted much attention for its possible use in phytoremediation of metal contaminated soils. In the present study, the influence of Zn supply on mineral nutrition in T. caerulescens was investigated, in order to establish the extent to which growth stimulation by high Zn supply is related to changes in the levels of other essential nutrients. The plants were exposed to nutrient solutions containing 1.5, 100, 500, 750, 1000, or 1500 μM Zn. Zinc supply significantly influenced root and shoot concentrations of essential nutrients, but excepting Zn, the concentrations stayed within the range considered adequate for optimum growth in Brassicaceae crops. Best performance was achieved with the supply of 500 μM Zn. Growth stimulation by this treatment was accompanied by increased translocation of iron (Fe) from root to shoot and a significant correlation between shoot dry weight and Fe concentrations in shoots was found.  相似文献   

20.
Nutrient seed priming is a strategy to increase the seed reserves of mineral nutrients as primary source for mineral nutrition during seedling development and early growth. The present study investigates the effects of zinc (Zn) and manganese (Mn) seed priming on growth and nutritional status of soybean under conditions of Zn and Mn limitation. Nutrient seed priming increased the natural seed reserves for Zn by, approximately, sixfold and by fivefold for Mn; however, 40–60% of the primed nutrients were adsorbed to the seed coat. Zinc seed priming was able to maintain plant growth for 5 weeks in the same way as Zn supply via the nutrient solution. It is concluded that nutrient seed priming offers perspectives to improve seed quality of soybean for early seedling development under limited nutrient supply or availability and needs further investigation on performance under various stress conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号