首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
A field experiment was conducted to study the effects of boron (B), molybdenum (Mo), zinc (Zn) and their interactions on seed yield and yield formation of rapeseed (Brassica napus L. var. Huashuang 4). Application of B fertilizer to a sandy soil increased the seed yield by 46.1% compared to the control and also created a considerably higher seed yield than the two treatments solely applying Mo and Zn fertilizers, which suggested that B was a main constraint for the seed yield of Huashuang 4 in this experiment. The effect of B fertilizer on the seed yield was attributed to an increase in the number of seeds per silique and siliques per plant. The combined application of B with Mo or Zn resulted in higher seed yield than the application of B, Mo or Zn alone, and the seed yield of the B+Mo+Zn treatment was the highest in all treatments, 68.1% above the control. Dry matter accumulation of seed followed a typical S-shaped curve and it was higher in plants supplied with B than in plants without B. A small but significant increase in the seed oil content and an improvement in the oil quality were also observed in all treatments compared with the control. These results suggested that optimal micronutrient application could provide both yield and quality advantages for rapeseed in poor soil.  相似文献   

2.
Abstract

Maize (Zea mays L.) plays an important role in the global food security, but its production is threatened by climate change, especially drought stress. Potassium (K) and zinc (Zn) are considered useful to mitigate the negative consequences of drought stress in plants. Therefore, the objective of this two-year study was to identify the best combination of K and Zn application to improve the water relations, photosynthetic pigments, yield, irrigation water use efficiency (IWUE) and grain quality of maize sown under mild and severe drought stress conditions. The consisted of three drought stress levels viz. 1) well-watered as control (WW), 2) mild drought (MD) with 25?mm of potential soil moisture deficit (PSMD), 3) severe drought (SD) with 50?mm of PSMD and six K-Zn treatments: i.e. 125, 100 and 150?kg ha?1 K with 0 and 12?kg ha?1 Zn. The results indicated that K-Zn application improved the water relations and chlorophyll contents, biological yield and grain quality, irrespective of water stress treatment. The combined application of K-Zn under mild drought stress produced statistically same biological yield and grain quality as under well-irrigated without K-Zn fertilization and also produced compratively higher IWUE, biological yield and grain quality under sverer drought stress. Hence, the application of K at 150?kg ha?1 in combination with Zn at 12?kg ha?1 might be useful to improve the maize production and grain quality under drought stress. As IWUE was low in WW conditions, therefore, irrigation scheduling must be re-evaluated for optimum water use efficiency.  相似文献   

3.
Abstract

In order to evaluate the effects of water deficit stress and foliar application of zinc (Zn) and iron (Fe) nanoparticles on physiological characters and seed yield of pinto bean, an experiment was designed as a split factorial design based on randomized complete blocks with three replications in two growing seasons (2016–2017 and 2017–2018). Treatments were included water deficit stress (normal irrigation and water deficit stress in 50% flowering), foliar application of nano-fertilizers (control, nano-Zn (1.5?g L?1), nano-Fe (2?g L?1) and combination of nano-Zn and nano-Fe) and four cultivars of pinto bean (Sadri, Coosha, Cos16, and Ghaffar). The results showed that the soluble sugars and proline content was increased under water deficit. Water deficit stress through decreasing chlorophyll and relative water content of leaves as well as the iron and zinc content of seeds, decreased seed yield and quality. The application of nano-fertilizers of zinc and iron enhanced antioxidant enzymes activity, proline and soluble sugars content as well as leaf area. Also applied nano-fertilizers improved seed quality in terms of protein content. According to obtained results the effect of foliar spray of nano-fertilizers on iron and zinc content of seeds regards to bean cultivars was different. It was concluded that the foliar application of iron combined zinc nano-fertilizers can be useful in pinto bean cultivars under water deficit stress. In both normal and water deficit Cos16 cultivar showed the better amount of studied characteristics compared to other cultivars. The results of cluster analysis of these cultivars confirmed the superiority of Cos16 cultivar.  相似文献   

4.
Field experiments were conducted for two years to find out the appropriate sowing configuration and rate of nitrogen (N) for sustained yield and improved water use efficiency of hybrid Bt cotton irrigated through surface drip irrigation. Drip irrigation under normal sowing, in which equal quantities of water and N were applied as check-basin irrigation, resulted in an increase of 389 and 155 kg ha?1 in seed cotton yield compared with check-basin irrigation during the first and second year, respectively. Normal paired row sowing under a drip irrigation system, in which only 50% of irrigation water was applied compared with normal sowing, produced a yield similar to normal sowing under drip irrigation during both years, resulting in 22% higher water use efficiency. Dense paired row sowing under drip irrigation, in which only 75% irrigation water was applied compared with normal sowing, increased the mean seed cotton yield by 5% and water use efficiency by 19%. Decrease in the rate of nitrogen application (from 150 to 75 kg N ha?1) caused a decline in seed cotton yield and water use efficiency under all the methods of sowing, but the reverse was true for agronomic efficiency of N.  相似文献   

5.
研发和推广应用高效节水技术是提升扬黄灌区制种玉米产量、支撑制种玉米产业增效和持续发展的重要途径。为了给建立制种玉米水肥一体化技术模式下的科学高效灌溉制度提供科学依据。在甘肃扬黄灌区滴灌水肥一体化条件下,研究了不同灌溉定额和灌水次数下制种玉米的产量表现和水分利用效果。结果表明,灌溉定额从2 250 m3/hm2增加到3 000 m3/hm2时,制种玉米增产幅度达33.84%,但灌溉定额高于3 000 m3/hm2并继续增大时增产效果不明显,生育期耗水量增加,水分利用效率降低明显。灌水次数从10次增加至20次时,制种玉米产量及水分利用效率均呈降低趋势,灌水次数多于15次并继续增加时,制种玉米减产显著。灌水次数和灌溉定额之间不存在互作效应。在灌溉定额偏低条件下,增加灌水次数会造成制种玉米严重减产。当生育期灌溉定额为3 000 m3/hm2、灌水次数为10次时,折合产量较高,为7 386.9 kg/hm2,较其余处理增产-2.77%~93.58%;水分利用效率最高,为17.83 kg/(mm·hm2),较其余处理提高5.32%~78.30%;种植纯收益较高,为29 683.6元/hm2,较其余处理增加-511.8~20 675.4元/hm2;产投比最高,为3.03,较其余处理增加0.07~1.38。可见,灌水10次、灌溉定额为3 000 m3/hm2时灌溉水利用效果相对优化。  相似文献   

6.
Abstract

Mustard (Brassica campestris L.) cv. T9 was grown in refined sand at three levels of boron (B), deficient (0.0033 ppm), normal (0.33 ppm), and excess (3.3 ppm), each at three levels of zinc (Zn), low (0.00065 ppm) adequate (0.065 ppm), and high (6.5 ppm). The B deficiency effects were accentuated by low zinc viz., the decreased biomass, B and Zn concentrations in leaves and seeds and the activity of carbonic anhydrase and accumulation of reducing sugars and stimulated activities of peroxidase, ribonuclease, and acid phosphatase in B deficient leaves were aggravated further. Synergism was also observed between the two nutrients when both B and Zn were in excess together as excess B accelerated the effects of high Zn by lowering further the reduced biomass, economic yield, and carbonic anhydrase activity and raised further the increased concentration of B and Zn in leaves and seeds, reducing sugars and activity of peroxidase obtained in excess Zn. In mustard, additive effects of high Zn and low B was reflected when high Zn increased the reduced biomass, seed yield, leaf B, and decreased the stimulated activities of peroxidase, ribonuclease, acid phosphatase, and high concentration of non‐reducing sugars to some extent in low B.  相似文献   

7.
To evaluate the effects of irrigation period and iron (Fe), zinc (Zn) foliar application on agronomic characters in Borago officinalis, Calendula officinalis, Thymus vulgaris and Alyssum desertorum, investigations were performed in a complete randomized block design with three replications in 2014 and 2015. The factors applied were (a) Fe foliar application (0, 200, 400, 600 ppm), (b) Zn foliar application (0, 200, 400, 600 ppm) and (c) irrigation periods (3, 6, 9 days). Results showed that Fe and Zn had a significant effect on many factors including shoot dry matter, height, flower production (marigold, borage and thyme) and seed (alyssum). Interaction of 400 ppm of Zn and Fe with irrigation period every 3 days was the best and produced the best amounts in most of the measured characters. The lowest of the measured characters was 600 ppm of Fe and Zn by irrigation period of 9 days. Results showed that Zn micronutrient was more effective than Fe.  相似文献   

8.
硼钼锌配合对甘蓝型油菜产量和品质的影响   总被引:9,自引:3,他引:9  
通过水泥池小区试验,研究了B、Mo、Zn配合对甘蓝型油菜双低品种华双4号产量和品质的影响。结果表明,B、Mo、Zn配合产量最高,比对照增产20.7%;两种微量元素配合时,以BMo配合最佳,其产量与BMoZn配合差异不显著,BZn或MoZn配合仅比对照略有增产。BMoZn配合的每角粒数居各处理首位,每株角果数居第二,BMo配合的每株角果数和千粒重处于各处理首位。试验还表明,凡有配施硼的处理,即:BMo、BZn和BMoZn,有利于提高华双4号菜籽的含油量;凡配施锌的处理,即:MoZn、BZn和BMoZn,有利于提高华双4号菜籽的蛋白质含量。微量元素的各种配合均可降低华双4号菜籽的硫甙、芥酸含量;BZn配合具有最高的油酸含量,较低的棕榈酸、硬脂酸、亚油酸和亚麻酸含量,对改善华双4号菜籽的脂肪酸组分配比最为有利。对于双高(高硫甙、高芥酸)油菜,只考虑提高其产量及含油量,以BMo配合较好;而对优质的双低(低硫甙、低芥酸)油菜,其饼粕所含的蛋白质可以直接作为动物饲料,因此在提高其产量、含油量,改善油分品质的同时,还要兼顾其蛋白质含量,则以BMoZn配合效果最好。  相似文献   

9.
低锌旱地土壤水分对小麦产量和锌利用的影响   总被引:2,自引:1,他引:1  
【目的】西北旱地土壤有机质含量低,pH和碳酸钙含量高,导致土壤有效锌含量低,加之水分缺乏,不仅制约冬小麦生长和产量,还严重影响小麦锌的吸收利用。本研究选取西北旱地典型缺锌区,在土施锌肥的基础上,设置了2年的补充灌水田间试验,进一步研究水分对土壤锌有效性、 小麦生长、 产量以及锌和相关元素吸收利用的影响。【方法】田间试验于2010~2012年在陕西永寿县进行,采用裂区设计,锌肥为主处理,在不施锌与施锌(ZnSO4·7H2O)50 kg/hm2的基础上,设置在冬小麦关键生长期补充和不补充灌水2个副处理。在成熟期采集植株样品,测定了小麦产量、 生物量,各器官部位的锌及氮、 磷、 钾、 铁的含量; 采集0—40 cm土层土壤,测定了土壤有效性锌含量。【结果】在返青期、 孕穗期补灌20~30 mm水分对小麦产量、 土壤有效锌含量无显著影响,却有提高小麦各部位锌含量、 锌肥利用率的趋势,不施锌和施锌条件下,灌水比不灌水处理小麦籽粒锌含量分别提高3.8%~16.3%、 3.8%~13.1%,灌水使锌肥利用率提高21.2%~177.8%。灌水量和灌水时期的不同也影响锌在小麦各器官部位的分配与累积,第一季施锌和不施锌条件下,灌水比不灌水处理锌收获指数分别降低5.1%和2.0%,而第二季锌收获指数分别提高2.1%和2.7%。两季灌水对小麦籽粒中铁及大量元素氮磷钾含量的影响亦各不相同。【结论】在旱地缺锌土壤上,小麦生长关键期灌水对小麦产量、 土壤有效锌含量无显著影响,却有提高小麦各部分锌含量、 锌肥利用率的趋势,说明水肥结合对旱地石灰性土壤锌和锌肥有效性的影响应引起进一步重视,这对提高旱地缺锌地区作物和人体锌营养水平具有潜在意义。  相似文献   

10.
  【目的】  研究阴山北麓旱作区不同栽培方式下钾肥施用量对食用向日葵钾肥效应、产量性状、钾素吸收利用、油分品质和土壤–植物系统钾素平衡的影响,为向日葵上钾肥的科学施用提供理论依据。  【方法】  2014—2016年在内蒙古阴山北麓旱作区以食用向日葵 (3638C) 为研究对象,采用田间定位试验方法,裂区设计,主因素为3种栽培方式:平作雨养种植 (R)、全覆膜垄膜沟植集雨 (RC) 和全覆膜垄膜沟植滴灌 (I)。副因素为4个施钾水平:0、48、84和120 kg/hm2,表示为K0、K48、K84和K120。研究水钾互作对食用向日葵籽粒产量、产量性状、钾素吸收、钾肥利用效率、油分品质及土壤钾素平衡等的影响。  【结果】  栽培方式是影响向日葵籽实产量、花盘直径、千粒重、出仁率、钾素吸收量和钾肥利用效率的主要因素,3个栽培处理表现为全覆膜垄膜沟植滴灌 (I) > 全覆膜垄膜沟植集雨 (RC) > 平作雨养种植 (R)。全覆膜垄膜沟植滴灌 (I) 条件下,随着施钾量的增加,产量、花盘直径、千粒重、出仁率和钾素吸收量也增加,推荐施钾量 (K2O) 为120 kg/hm2时,产量、花盘直径、千粒重、出仁率和钾素吸收量最高;全覆膜垄膜沟植集雨 (RC) 条件下,推荐施钾量 (K2O) 为84 kg/hm2时,产量最高;平作雨养 (R) 条件下各施钾处理之间的产量、花盘直径、千粒重差异不显著。钾肥利用率和农学效率随着施钾量的增加而降低。栽培方式对籽实含油率影响较小,水分条件的改善有利于亚油酸含量的增加。随着钾肥用量的增加向日葵籽实的含油率也相应增加,主要是增加了亚油酸的含量。全覆膜垄膜沟植滴灌 (I) 条件下,推荐施钾 (K2O) 量为120 kg/hm2时,土壤–植物系统的钾素基本平衡;全覆膜垄膜沟植集雨 (RC) 条件下,推荐施钾 (K2O) 量为84 kg/hm2时,土壤–植物系统的钾素基本平衡;平作雨养 (R) 条件下,推荐施钾 (K2O) 量为48 kg/hm2时,土壤–植物系统的钾素基本平衡。  【结论】  在内蒙古阴山北麓旱作区,全覆膜垄膜沟植滴灌 (I)、全覆膜垄膜沟植集雨 (RC) 和平作雨养种植 (R) 的推荐施钾 (K2O) 量分别以120、84、48 kg/hm2为宜,此时,土壤–植物系统的钾素基本平衡。增施钾肥可增加向日葵籽实的含油率,主要是增加了籽实的亚油酸含量。  相似文献   

11.
Thermally modified organic materials commonly known as biochar have gained popularity of being used as a soil amendment.Little information, however, is available on the role of biochar in alleviating the negative impacts of saline water on soil productivity and plant growth. This study, therefore, was conducted to investigate the effects of Conocarpus biochar(BC) and organic farm residues(FR) at different application rates of 0.0%(control), 4.0% and 8.0%(weight/weight) on yield and quality of tomatoes grown on a sandy soil under drip irrigation with saline or non-saline water. The availability of P, K, Fe, Mn, Zn and Cu to plants was also investigated. The results demonstrated clearly that addition of BC or FR increased the vegetative growth, yield and quality parameters in all irrigation treatments. It was found that salt stress adversely affected soil productivity, as indicated by the lower vegetative growth and yield components of tomato plants. However, this suppressing effect on the vegetative growth and yield tended to decline with application of FR or BC, especially at the high application rate and in the presence of biochar. Under saline irrigation system, for instance, the total tomato yield increased over the control by 14.0%–43.3% with BC and by 3.9%–35.6% with FR. These could be attributed to enhancement effects of FR or BC on soil properties, as indicated by increases in soil organic matter content and nutrient availability. Therefore, biochar may be effectively used as a soil amendment for enhancing the productivity of salt-affected sandy soils under arid conditions.  相似文献   

12.
Abstract

To investigate the effect of foliar application of nano-chelates of iron, zinc, and manganese subjected to different irrigation conditions on physiological traits, and yield of soybean (cultivar M9), a split plot experiment was conducted in a completely randomized block design with three replications in two crop years (2016–2017). The main plot included four levels of irrigation (I): full irrigation (I 1), irrigation withhold at flowering stage (I 2), irrigation withhold at podding stage (I 3), and irrigation withhold during the grain filling period (I 4). Also, the subplot included eight levels of foliar application with Fe, Zn, Mn, Fe?+?Zn, Fe?+?Mn, Zn?+?Mn, Fe?+?Zn?+?Mn nano-chelates, and distilled water (control). The results of combined analysis of variance suggested that the effect of irrigation and foliar application of nano-chelate was significant on all traits. Water deficit stress significantly reduced the grain yield. The minimum numbers of pods per plant, number of grains per plant, 100-seed weight per plant, leaf area index, leaf chlorophyll concentration, total dry weight of plant, and the grain yield were obtained by irrigation withhold at podding stage. Foliar application of combined nano-chelates increased the soybean resistance against water shortage more considerably than the separate consumption of these elements. Under drought stress in podding stage, the application of Fe?+?Zn led to the highest yield with a mean of 2613.84?kg ha?1 where this increase was 61.1% higher than control.  相似文献   

13.
A field experiment was carried out over two years to investigate the effects of an irrigation regime and its interaction with plant density on yield, yield components and water use efficiency (WUE) of safflower Giza 1 cv. The experiment was laid out in randomized complete block design with split plot arrangement with three replications. There were three available soil moisture depletion levels (ASMD) under this study (I1:50% of ASMD, I2:65% of ASMD and I3:80% of ASMD), which were kept in main plots and three plant population densities (D1: 10, D2: 20 and D3: 40 plants m?2), which were randomized in sub-plots. Significant interaction effects between irrigation regime and plant population density were detected for seed and oil yields, 1000-seed weight and seed weight plant?1 as well as WUE. The highest seed and oil yields were found for D2I1. Meanwhile, the highest WUE was found for D2I1 or D2I2. Based on these results, the combination of an irrigation rate of 50% of ASMD at a density of 20 plants m?2 when irrigation water supplies are sufficient or a rate of 65% of ASMD at the same plant density when irrigation water are limited, are recommended for planting safflower under similar soil and climatic conditions.  相似文献   

14.
通过盆栽土培和田间试验,研究两种具有缓释特性的硼肥Etibor-48(Na2B4O7·5H2O,EB)和Colemanite (Ca2B6O11·5H2O,CB)对油菜产量和品质的影响及其在油稻轮作中的后效.盆栽试验结果表明,EB和CB各处理第一季油菜产量显著高于不施硼处理(-B),与硼砂处理(B)比较也有较大提高;安...  相似文献   

15.
水氮对新疆南部麦后复种饲料油菜产量和品质的影响   总被引:2,自引:1,他引:1  
采用完全随机区组田间试验研究了水氮对麦后复种饲料油菜产量及品质的影响,运用模糊相似优先比法分析了不同水氮处理下油菜产量及其4个典型饲料品质指标的变化特征。试验设置灌溉定额和施氮量2个因素:灌溉定额设置3 000 m3·hm-2(低水)、4 500 m3·hm-2(中水)和6 000 m3·hm-2(高水)3个水平;施氮量设置140.6 kg(N)·hm-2(低氮)、187.5 kg(N)·hm-2(中氮)和234.4 kg(N)·hm-2(高氮)3个水平。研究结果表明:适宜的水氮供应对饲料油菜单株鲜重、干重、产量、品质有显著的互作优势,水氮供应量过量或者不足,互作优势减弱。相同灌溉定额下饲料油菜单株鲜重、干重和产量随着施氮量的增加而提高;相同施氮条件下,随着灌水量的增加单株鲜重、干重和产量逐渐提高;提高灌溉定额的增产效应优于增氮,高水+中氮处理较低水+低氮处理产量提高86.90%。施氮量和水氮互作显著影响饲料油菜品质,中水中氮处理粗蛋白含量较高水高氮处理提高36.91%。中水低氮处理中性洗涤纤维含量最低,为32.66%,显著低于高水高氮处理;而高水低氮处理酸性洗涤纤维含量最低,为24.74%,较高水高氮处理低16.49%。高水高氮处理的粗脂肪含量最高(1.45%)。综合考虑产量与品质,新疆南部地区饲料油菜适宜的水氮措施为中水高氮[6 000 m3·hm-2,187.5 kg(N)·hm-2]。  相似文献   

16.
为确定甘蓝型冬油菜在返青期水分胁迫条件下的适宜施氮量及其对水分胁迫的补偿效应,本文采用桶栽试验方法,在返青期设置每桶施纯氮0 g(N0)、0.2 g(N1)、0.4 g(N2)、0.6 g(N3)和0.8 g(N4)5个施氮水平(折合为0 kg·hm~(-2)、30 kg·hm~(-2)、60 kg·hm~(-2)、90 kg·hm~(-2)、120 kg·hm~(-2))及水分亏缺(D,土壤含水率为50%~55%田间持水率)和充分供水(W,土壤含水率为70%~80%田间持水率),研究施氮量对返青期水分胁迫后复水冬油菜生长指标、叶绿素含量、光合速率、籽粒产量和水分利用效率的补偿效应,并对不同处理下各指标利用主成分分析进行评价。结果表明,在相同水分条件下,地上部干物质量、叶绿素含量、光合速率、籽粒产量和水分利用效率均随施氮量的增加呈先增加后降低的趋势,并在N3达到最大。返青期干旱胁迫后复水,各施氮处理冬油菜的地上部干物质量、叶绿素含量、光合速率、产量及产量构成均表现出一定程度的补偿效应,补偿效果随施氮量的增加先增加后降低,在N3施氮量下补偿效果最好。在N3施氮水平下,D处理冬油菜的各生长指标、叶绿素含量和籽粒产量均与W处理无显著差异,表现为等效补偿效果;而D处理冬油菜初花期的光合速率显著大于W处理,表现为超补偿效果。N3D处理的产量比N3W处理降低2.2%,水分利用效率提高3.8%。氮肥偏生产力和油菜籽粒的含油率均随施氮量的增加而降低;油菜籽粒的蛋白质含量随施氮量的增加而增加。与N0相比,2种水分处理下N3的平均氮肥偏生产力降低6.2%,籽粒含油率降低13.0%,但产量提高87.6%,水分利用效率提高32.9%,籽粒的蛋白质含量提高24.6%。对各指标进行主成分分析发现,N3D处理的主成分分析综合得分最高。由此可见,N3D处理对促进冬油菜生长,提高产量和水分利用效率,保证品质的综合效果最好。  相似文献   

17.
为探明干旱地区盐碱地膜下滴灌不同灌水下限施用生物炭对玉米产量和水肥利用效率的响应差异及相互影响关系,提出较优的灌溉制度和生物炭用量。连续2年在河套灌区盐渍化农田玉米生长阶段进行小区控制试验,设计3个灌水下限[土壤基质势为-15(W15),-25(W25),-35(W35)kPa,灌水定额为22.5 mm]和3个生物炭用量水平[0(B0),15(B15),30(B30)t/hm2],2因素完全随机试验设计,共9个处理。测定并分析玉米全生育期0—15 cm土壤理化性状、作物生长特征和水氮利用效率。结果表明:不同灌水下限施用生物炭整体提高玉米全生育期土壤含水率、有机质和碱解氮含量,同一灌溉水平下生物炭用量越高,各指标提升的幅度越大。施用生物炭提高玉米地上部干物质积累量和产量,灌溉水利用效率和氮肥偏生产力显著提高,且生物炭施用当年的效果普遍优于翌年。相较于不施用生物炭的对照,W15、W25、W35条件下,B15使玉米产量平均增加12.8%,10.3%,14.2%,灌溉水利用效率提高14.2%,10.4%,12.9%,氮肥偏生产力提升12.8%,10.4%,14.0%,其节...  相似文献   

18.
Two field experiments were executed to investigate the effects of foliar-applied moringa (Moringa oleifera) leaf extract (MLE; 1:30 w/v) and salicylic acid (SA; 0.5 mmol), singly or in combination, on growth, physio-biochemical, yield attributes and water use efficiency (WUE) of maize (Zea mays L., Three Ways Cross 329) under full and deficit irrigation conditions. Deficit irrigation was carried out by withholding water for 36 d from 12 to 48 days after sowing (DAS). At vegetative stage, deficit irrigation signi?cantly decreased all growth criteria, chlorophyll a concentration, and relative water content (RWC). In contrast, deficit irrigation considerably increased the concentrations of carotenoids, proline, membrane permeability (MP) and malondialdehyde (MDA). Similarly, grain yield, most yield components and WUE were significantly depressed in drought-stressed plants. However, foliar-applied treatments particularly MLE+SA signi?cantly increased growth traits, photosynthetic pigments, RWC and proline accumulation associated with a simultaneous decrease in MP and MDA concentration under full and deficit irrigation conditions. The application of MLE+SA markedly increased grain yield, yield components and WUE over control (spray tap water). Overall, the combined application of MLE and SA could be used for alleviating the adverse effects of growth, physiology, yield criteria and WUE in drought-stressed maize plants.  相似文献   

19.
Greenhouse experiment was conducted to investigate the effect of different levels of irrigation water salinity (0.5, 2.5, 5 and 7.5 dS m?1) and wheat straw biochar (0%, 1.25%, 2.5%, and 3.75% w/w) on growth and yield of faba been using complete randomized design with three replications. Stomatal conductance (green canopy temperature) of faba bean increased (decreased) by application of biochar at each salinity level. The results showed increasing salinity to 2.5 dS m?1 at zero biochar application increased the seed yield through osmotic adjustment, while by declining the osmotic potential, the nutritional values of biochar caused the seed yield to increase by increasing salinity to 5 dS m?1. The root length density and root dry weight density in 0–8 cm soil layer declined under application of 3.75% w/w biochar in all salinity levels in comparison with that obtained in 2.5% w/w biochar, due to higher saline condition of the soil as result of higher biochar application. The results showed that addition of 2.5% w/w biochar can significantly mitigate salinity stress due to its high salt sorption capacity and by increasing potassium/sodium ratio in the soil. In general, since 2.5 % w/w biochar and salinity of 5 dS m?1 increased dry seed yield and irrigation water productivity compared with that obtained in control (B0S0.5), these levels are recommended to improve faba bean growth and yield; however, these levels have to be evaluated under field conditions.  相似文献   

20.
氮肥对非充分灌溉下棉花产量及品质的补偿作用   总被引:3,自引:1,他引:2  
【目的】 水分不能按照棉花正常需水量进行灌溉,对棉花生长发育、产量及品质会造成一定影响,本文旨在通过研究氮肥施用量来缩小因灌溉水不足对棉花所造成的影响,以期为干旱地区棉花水肥高效利用提供理论依据。 【方法】 试验以棉花‘新陆中54号’为材料,采用裂区试验设计,主区为总灌溉量,分别为2800 m3/hm2 (非充分灌溉)、3800 m3/hm2 (常规灌溉),副区为4个施氮 (N) 水平,即0 kg/hm2 (N0)、150 kg/hm2 (N150)、300 kg/hm2 (N300)、450 kg/hm2 (N450)。测定了棉花的生长、棉绒品质和棉花的肥水利用率。 【结果】 同一氮肥处理下,非充分灌溉处理干物质与氮素最大积累速率出现时间及拐点时间均较常规灌溉处理提前,干物质与氮素最大积累量及积累速率、干物质与氮素向生殖器官分配比例、氮素向生殖器官的转移率、籽棉产量及品质均低于常规灌溉处理,但籽棉增产率、氮肥农学利用率及水、氮利用率均高于常规灌溉处理。同一灌溉量下,随着施氮量的增加,干物质与氮素最大积累速率出现时间、拐点时间表现为N450 > N300 > N150 > N0,干物质与氮素积累量及积累速率、最大生长特征值、干物质与氮素向生殖器官分配比例及转移率、籽棉产量及品质、水分利用率均表现为N300 > N450 > N150 > N0,籽棉增产率、氮肥农学利用效率及氮肥利用率表现为N300 > N450 > N150。非充分灌溉下增施氮肥的补偿效果随着氮肥用量的增加呈先增加后下降的趋势,N300处理补偿效果最为显著,与常规灌溉处理相比,补偿效应主要表现在干物质与氮素最大积累速率提高了1.9%、3.1%,干物质向生殖积累器官分配比例及氮素转移率提高了24.0%、5.1%,水、氮利用率提高了6.1%~8.8%、17.3%~17.9%,籽棉增产率提高了6.1%~8.8%,纤维长度、整齐度及比强度提高了4.3%~20.1%、5.7%~7.3%及2.2%~12.5%。氮肥对棉花生长发育的影响大于水分。 【结论】 非充分灌溉下,施N 300 kg/hm2棉花可正常生长,干物质与氮素积累量适宜,向生殖器官分配比例及转移率较高,水、氮利用率最高,且节水26.3%。棉花虽然在产量与品质上有所下降,籽棉产量较常规灌溉几乎没有下降。从干旱地区农业缺水的现实考虑,在南疆采用非充分灌溉下,施氮300 kg/hm2可补偿缺水对棉花产量和品质的影响。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号