首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Isolation and characterization of cellulase‐producing aeorobic bacterial flora in the intestine of omnivorous tilapia (Oreochromis mossambica) and phytophagous Chinese grass carp (Ctenopharyngodon idella) have been carried out using selective carboxymethylcellulose‐agar (CMC‐agar) medium. The cellulolytic activity was measured both qualitatively and quantitatively. It was found that the ability of different strains in degrading cellulose varies within a wide range. Among the strains isolated from the gut of each test fish, TM1 and CI3 isolated from O. mossambica and C. idella, respectively exhibited maximum cellulolytic activity (67.02 and 35.8 U mL?1 respectively). Pure cultures of these strains were selected for morphological, physiological and biochemical characterization. On the basis of these tests, the isolated strains were identified as Bacillus circulans (TM1) and Bacillus megaterium (CI3). Both the strains are rod‐shaped, motile and show better temperature (15–42°C) and pH (5–11) tolerance. The selected strains were further quantitatively assayed for amylase and protease activities. Maximum amylase and protease activities were exhibited by TM1 and CI3 respectively. Information generated from the present study might contribute towards better‐feed formulation incorporating plant ingredients.  相似文献   

2.
Y. WANG 《Aquaculture Nutrition》2011,17(2):e372-e378
The present research evaluated the effects of three probiotics on the growth performance and intestinal digestive enzyme activity in fingerlings of grass carp, Ctenopharyngodon idella. Three treatments (T‐1, T‐2 and T‐3) were fed with diets containing different viable bacteria with a final concentration 106 CFU g?1 feed (Bacillus coagulans, Rhodopseudomonas palustris and Lactobacillus acidophilus, respectively) and the control was fed with basal diet without probiotics. All the diets supplemented with probiotics resulted in better (P < 0.05) final weight, daily weight gain and relative gain rate than control but no significant differences were observed among the treatment groups. The highest protease activity was observed in T‐1. However, T‐2 and T‐3 showed no difference (P > 0.05) in protease and cellulase activities compared with the control. The protease activity was higher in the foreintestine than in the hindintestine (P < 0.05), and the reverse was observed in cellulase activity. As for amylase activity, there was no difference between foreintestine and hindintestine. In conclusion, the three selected probiotics increased the growth performance of grass carp fingerlings. Furthermore, different digestive enzyme activity was observed in different intestine segment.  相似文献   

3.
The study was to investigate effects of dietary chlorogenic acid (CGA) on growth performance, flesh quality and serum biochemical indices of grass carp (95.1 ± 0.3 g) (Ctenopharyngodon idella) fed seven different diets, including control diet, Eucommia ulmoides (EU)‐supplemented diet (20 g kg–1) and CGA‐supplemented diets containing 100, 200, 400, 600 and 800 mg/kg CGA. Contents of collagen and alkaline‐insoluble collagen in muscle and skin were significantly increased by dietary CGA and EU (< .05). Total essential amino acids (TEAA) and total amino acids (TAA) in muscle of grass carp fed EU diet or 400, 600 and 800 mg/kg CGA diet were significantly higher than those of fish fed control diet and 100 and 200 mg/kg CGA diet (< .05). Fish fed 200–800 mg/kg CGA showed significantly lower muscle crude lipid content than EU, control and 100 mg/kg CGA groups (< .05). Fish fed CGA‐supplemented diets (100–800 mg/kg) had significantly higher muscle fibre density and lower muscle fibre diameter than control group (p < .05). In conclusion, supplementation of CGA improved flesh quality of grass carp, and supplemental level of CGA for improving flesh quality and growth was estimated to be 400 mg/kg diet.  相似文献   

4.
A growth trial was conducted to estimate the optimum concentration of dietary available phosphorus (P) for grass carp (Ctenopharyngodon idella). Triplicate groups of grass carp (5.59 ± 0.02 g) were fed diets containing graded levels (2.36, 4.27, 6.31, 8.36, 10.4 and 14.8 g kg?1) of available P for 8 weeks. Grass carp fed with the P‐supplemented diets had significantly higher specific growth rate, weight gain, protein efficiency ratio and feed efficiency than fish fed with the basal diet. In whole‐body composition, protein content increased, while lipid content decreased with the increase in P level in diet (P < 0.05). Fish fed with the P‐supplemented diets had significantly higher whole body, vertebrae and scales mineralization (P < 0.05), but Ca/P ratios were not influenced. The blood chemistry analysis showed that dietary available P had distinct effects on P, Ca and Mg contents, as well as on the contents of triacylglycerol and total cholesterol. Broken‐line analysis indicated that 8.49 g kg?1 dietary available P was required for maximal tissue storage and mineralization as well as optimal growth.  相似文献   

5.
The present research evaluated the effects of graded levels of dietary fibre on growth, digestive and absorptive capacities, and the potential underlying mechanisms in on‐growing grass carp (Ctenopharyngodon idella). Grass carp (123.00 ± 0.70 g) were fed diets with graded levels of neutral detergent fibre (NDF: 97.8, 119.0, 140.2, 159.4, 181.2 and 201.6 g/kg diet) for 60 days. Besides, a 2‐week digestion experiment was conducted to explore the effect of dietary fibre on the apparent digestibility coefficients (ADC) of feed. The results showed that optimum dietary fibre level (140.2 or 159.4 g/kg diet) increased feed intake, per cent weight gain, specific growth rate and the ADC of dietary protein (p < .05); increased the activities of digestive and brush border enzyme; and up‐regulated intestinal amino acid transporter mRNA levels (SLC1A5 and SLC6A19b, p < .05) partially associated with activation of TOR signalling pathway. However, high dietary fibre levels (NDF levels ≥181.2 g/kg diet) were not conducive to the digestion and absorption of nutrients, resulting in the decline of growth performance. Thus, based on the quadratic regression analysis for per cent weight gain and feed efficiency, the optimum (143.9 and 134.5 g/kg diet) and maximum tolerance (189.8 and 171.2 g/kg diet) levels of dietary NDF were estimated for on‐growing grass carp.  相似文献   

6.
Two, 8‐week feeding trials were conducted to compare protein‐sparing capability of dietary lipid in herbivorous grass carp (Ctenopharyngodon idella) and omnivorous tilapia (Oreochomis niloticus × O. aureus). Utilizing a 2 × 3 factorial design, experimental diets containing two levels of crude protein (380 and 250 g kg−1) and three levels of lipid (0, 40 and 100 g kg−1) were formulated for use in both feeding trials. Growth performances showed better response of both fish fed 380 g kg−1 protein diet than those fed 250 g kg−1 protein diet. Despite the dietary protein level, weight gain (WG), specific growth ratio (SGR), feed conversion ratio (FCR) and protein efficiency ratio were much higher (P < 0.05) for grass carp fed 40 g kg−1 lipid diet than those fed 100 g kg−1 lipid diet; however, there were no significant differences in tilapia fed the two diets. The feed intake of grass carp fed lipid‐free diet was the lowest, but it tended to decrease with increase in dietary lipids in tilapia. Lipid retention (LR) was negatively correlated with dietary lipid concentration of both fish. Viscerosomatic index (VSI), hepatosomatic index (HSI), intraperitoneal fat ratio (IPF) and whole‐body and liver lipid content positively correlated with dietary lipid concentration of both fish. Plasma parameters and liver enzymes activities were also positively correlated with dietary lipid concentration of both fish. Liver lipid contents were higher and enzymes activities were lower in grass carp when compared with tilapia. These data suggested that there was no evidence of a protein‐sparing effect of dietary lipids in grass carp. Tilapia has relatively higher capacity to endure high dietary lipid level compared to grass carp.  相似文献   

7.
In the current study, we assessed bacterial diversity in the gut content of pond-reared grass carp (Ctenopharyngodon idellus), in the associated habitat environments (pond water and sediment) and in the ingested food (commercial feed and the reed Phragmites australis) by analysing 16S rDNA sequences from clone libraries. The highest bacterial diversity was observed in the gut content and was determined by the total number of operational taxonomic units, Shannon diversity index (H), Shannon equitability index (EH), Coverage (Cgood) and rarefaction curves calculated from the 16S rDNA gene libraries. Our data indicated that allochthonous gut microbes of grass carp were distinctively different from the corresponding environmental microbes. The pairwise similarity coefficient (Cs) for microbe communities between gut content and ingested food was higher than for those between the gut content and habitats, indicating that the allochthonous microbiota identified in the intestines of grass carp were phylogenetically closer to those in the ingested food than to those in the habitat. Based on our study and previous research, we suggest that the digesta of grass carp harbours a microbiota phylogenetic core of Proteobacteria and Firmicutes and this observation deserves further investigations with respect to a potential pool of probiotics to grass carp.  相似文献   

8.
Herbivorous grass carp (Ctenopharyngodon idella) has a powerful capability to digest aquatic weed. Cellulase activity or cellulase‐producing bacteria were found in the gut of grass carp. However, it remains uncertain whether the cellulase‐producing bacteria were a part of indigenous intestinal microbiota that the fish harboured or were introduced with food. In the present study, the bacterial diversities and population abundance in the gut of starved grass carps have been investigated by sequencing 16S rRNA gene libraries. The 16S rRNA gene libraries revealed that 28 parasitic bacteria from gut were affiliated to seven genera of Vibrio, Acinetobacter, Providencia, Yersinia, Pseudominas, Morganella or Aeromonas, respectively, and Aeromonas was identified as the most dominant genus in the gut of C. idella. All of cellulase‐producing bacteria isolated from the gut of C. idella in this research belonged to Aeromonas. On the whole, the results in this research showed that cellulase activity within C. idella should be at least partially resulting from bacteria of Aeromonas with cellulase‐producing capabilities, which were indigenous and dominant intestinal species.  相似文献   

9.
Duplicate groups of Atlantic salmon (Salmo salar L.), kept in seawater, were fed fish meal‐based cold‐pelleted diets. Diets with non‐starch polysaccharides (NSP), either cellulose, purified soybean NSP or extruded purified soybean NSP at a dietary level of 100 g kg?1, were compared with a diet without supplemental NSP and a diet with soybean meal in a 28‐day feeding trial. Isolation and characterizations were limited to culturable bacteria and population levels of aerobic and facultative aerobic heterotrophic autochthonous (adherent) and allochthonous (transient) bacteria present in the mid and distal intestines of Atlantic salmon fed the five different diets estimated using traditional bacteriological techniques. The presence of an autochthonous microbiota was demonstrated using transmission electron microscopy. No significant effects of diet composition were observed on total population levels of culturable bacteria present in the digestive tract, but the study showed that the composition of the gut microbiota (autochthonous or allochthonous) was sensitive to dietary changes. A total of 752 culturable isolates from the intestines were characterized by biochemical and physiological properties. Of these, 188 isolates were further characterized by partial sequencing the 16S rRNA genes. Among these, 146 isolates belonged to 31 phylotypes that were >94% identical to previously described species. However, 42 isolates showed similarity <94% to species available at the National Center of Biotechnology Information. Several of the phylotypes identified in the present study have not been reported previously in the gastrointestinal (GI) tract of fish, including the Gram‐negative bacteria Gelidibacter salicanalis, Pseudoalteromonas elyakovii, Psychrobacter aquimaris, Psychrobacter cibarius, Psychrobacter fozii, Psychrobacter maritimus, Psychrobacter okhotskensis and Psychrobacter psychrophilus. Among the Gram‐positive bacteria identified were Arthrobacter bergeri, Arthrobacter psychrolactophilus, Arthrobacter rhombi, Bacillus pumilus, Bacillus subtilis, Exiguobacterium spp., Microbacterium oxydans, Planococcus maritimus, Sporosarcina ginsengisoli and several bacteria that have been described as unculturable previously. In addition, we identified Carnobacterium inhibens, a lactic acid bacterium that is not frequently isolated from the GI tract of fish. Psychrobacter cibarius was the dominant bacterial species and was isolated from the digestive tract of all fish investigated.  相似文献   

10.
This study was conducted to compare the growth‐promoting and flesh quality ‐improving effects of three active compounds in Eucommia ulmoides (EU) on grass carp (Ctenopharyngodon idella). Four iso‐nitrogenous diets supplemented with 400 mg/kg inclusion of geniposidic acid (GA), chlorogenic acid (CGA), geniposide (GP) and their combination (GA:CGA:GP = 1:1:1, the mixture) were prepared and fed to grass carp (47.1 ± 0.6 g) for 75 days. The results indicated that weight gain was increased by 5.22%, and feed conversion ratio decreased by 0.07 by dietary CGA (< 0.05). In flesh quality, the four supplementations significantly increased muscle fibre density, total collagen and alkaline‐insoluble collagen in skin, and reduced steaming loss of flesh. In addition, dietary CGA, GP and the active compounds mixture further increased total collagen, alkaline‐insoluble collagen and amino acid in flesh. In collagen genes expression, the expression of COL1A1 in muscle and skin was significantly promoted by the supplementation of GA, CGA, GP and their combination (p < 0.05). In conclusion, the supplementation of GA, CGA, GP and their combination improved the flesh quality of grass carp, and the growth was increased by CGA. CGA played more important roles in growth‐promoting and flesh quality‐improving effects than GP and GA.  相似文献   

11.
A growth trial was conducted to estimate the optimum requirement of dietary zinc (Zn) for grass carp (Ctenopharyngodon idella). Triplicate groups of grass carp (3.97 ± 0.05 g) were fed diets containing graded levels (13, 25, 34, 53, 89 and 135 mg kg?1) of Zn for 8 weeks. Grass carp fed with dietary Zn levels higher than 34 mg kg?1 significantly increased final body weight, weight gain and specific growth rate (P < 0.05). For body composition, fish fed with dietary Zn levels higher than 53 mg kg?1 significantly decreased the moisture contents but increased the lipid contents of whole body and liver. Whole body, scales, vertebrae and liver mineralization were all affected significantly (P < 0.05) by dietary Zn levels. Zn contents in whole body, scales, vertebrae and plasma were linearly increased up to the 53 mg kg?1 dietary Zn and then remained stable beyond this level. Grass carp fed with dietary Zn levels higher than 53 mg kg?1 significantly increased triacyglyceride and total cholesterol contents and plasma alkaline phosphatase activity in plasma (P < 0.05). Broken‐line analysis indicated that 55.1 mg kg?1 dietary Zn was required for maximal tissue storage and mineralization as well as optimal growth of grass carp.  相似文献   

12.
Diet is known to influence intestinal microbiota in fish, but the specifics of these impacts are still poorly understood. Different protein/fibre ratio diets may result in differing structures and activities of gut microbiota. We examined the hindgut microbiome of grass carp (Ctenopharyngodon idellus) fed three different diets: fish meal (FM, high protein – low fibre), Sudan grass (SG, high fibre – low protein) and compound feed (CF, intermediate). Microbial profiles of fish fed on FM were significantly different from profiles of fish fed CF and SG (= 18.85, < .01). Cetobacterium, known to be positively associated with protein digestion, was the dominant microbial group in FM samples (approximately 75.7%), while Lachnospiraceae and Erysipelotrichaceae, thought to be involved in fermentation of plant polysaccharides, were dominant in CF and SG samples (46.8% and 42.9% respectively). Network analyses indicated that the abundance of Lachnospiraceae and Erysipelotrichaceae was in a significantly positive correlation (= .895, = .001). Short‐chain fatty acid (SCFA) levels may indicate that the digestibility of diet by microbiota in the grass carp gut decreased from FM to SG (FM>CF>SG). Overall low SCFA levels indicate that hindgut fermentation probably provides a low proportion of energy requirements in grass carp.  相似文献   

13.
A 76‐day feeding trial was carried out to evaluate the effects of Lysine and Methionine supplementation on growth and digestive capacity of grass carp (Ctenopharyngodon idella) fed plant protein diets using high‐level canola meal (CM). Fish with initial average weight 103.9 ± 0.6 g were fed three extruded diets. Fish meal (FM) diet was formulated as the normal control with 40 g kg?1 FM and 300 g kg?1 CM; CM diet was prepared by replacing all FM with CM (total 340 g kg?1) without Lys or Met supplementation; CM supplement (CMS) diet was similar to CM diet but was supplemented with essential amino acids (EAA) to ensure the levels of Lys and Met similar to those in the FM diet. Feed intake, feed efficiency and specific growth rate of the grass carp fed CMS and FM diets were similar (> 0.05), but higher than those of the grass carp fed CM diet (< 0.05). The hepatosomatic index, relative gut length, intestosomatic index and intestinal folds height were significantly improved in fish fed FM and CMS diets as compared to CM diet (< 0.05). Lower activities of trypsin, lipase and amylase in hepatopancreas were observed in fish fed CM diet (< 0.05). Three hundred and forty gram per kilogram CM without Lys or Met supplementation significantly decreased trypsin, lipase and amylase mRNA levels in hepatopancreas (< 0.05). These results indicated that the high supply of CM (340 g kg?1) in plant protein (200 g kg?1 soybean meal and 100 g kg?1 cottonseed meal) diets decreased digestive ability through decreasing digestive enzyme activities and enzyme gene's expressions of grass carp, and these side effects can be reversed by supplementing Lys and Met. Therefore, CM could be high level used in a plant protein blend‐based extruded diet for grass carp as long as EAA were supplemented.  相似文献   

14.
Two 8‐week feeding trials were conducted to evaluate dietary carbohydrate utilization by omnivorous gibel carp (Carassius auratus gibelio) (2.4 ± 0.1 g) and herbivorous grass carp (Ctenopharyngodon idellus) (6.5 ± 0.1 g). Five isonitrogenous (370 g kg?1) and isolipid (70 g kg?1) diets were formulated with increasing corn starch levels (60, 140, 220, 300 and 380 g kg?1). Results showed that specific growth rate (SGR), feed efficiency (FE) and protein retention efficiency (PRE) of gibel carp significantly increased from dietary starch of 60 to 300 g kg?1 and then decreased from 300 to 380 g kg?1, but those of grass carp showed no significant differences between treatments. Independent of dietary starch levels, grass carp gained significantly higher FE and PRE than gibel carp. Feeding rate (FR) of gibel carp was significantly higher than that of grass carp. In two fish species, high dietary starch (300 and 380 g kg?1) tended to obtain higher hepatosomatic index (HSI), serum triglyceride, hepatic lipid and body lipid contents. Serum glucose concentration of grass carp was not affected, while that of gibel carp fed the starch of 300 g kg?1 diet was significantly lower than those of the fish fed other four diets (60, 140, 220 and 380 g kg?1). Grass carp showed high tolerance to dietary starch while dietary corn starch should be no more than 300 g kg?1 for gibel carp. High starch contents may cause lipid accumulation in the liver and body.  相似文献   

15.
Animal digestive tract is habitat for a large number of autochthonous microbiota, which play central roles in multiple biological and physiological processes of the host. In this study, two different micro‐biomass preparation methods were employed to evaluate the diversity of intestinal mucosa‐associated microbiota in grass carp (Ctenopharyngodon idellus). Genomic DNAs were isolated either directly from intestinal mucosal samples (group A), or from micro‐biomass after microbial dissociation (group B). Community richness, diversity and evenness indices were all higher in group B, but differences were not statistically significant (= 0.97, = 0.33, = 0.34 respectively). Furthermore, group B samples exhibited an increased ratio of bacterial DNA in comparison with group A samples, but the difference was also not statistically significant (= 0.74). In addition, there were no statistically significant differences between the two groups (> 0.05) at the taxonomic level. Our results support previous findings that there exists a great abundance of the intestinal mucosa‐adherent microbiota in the grass carp; among these, Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, Spirochaetes and Fusobacteria were the most common phyla. Within these microbiota, Paenibacillus, Bacteroides, Bacillus and Cetobacterium genera comprise the majority of the community, implicating their functional importance (e.g. as probiotics) to their host. Our results contribute towards a better understanding of the intestinal microbial profile of grass carp. Both micro‐biomass preparation techniques proved to be feasible for studying mucosa‐adherent microbiota of grass carp; however, the second method (group B) provides a protocol that is somewhat more effective than the first method (group A).  相似文献   

16.
To evaluate the effects of dietary nano‐selenium (Nano‐Se) on antioxidant capacity and hypoxia tolerance of grass carp fed with high‐fat diet, experimental fishes were fed Nano‐Se supplemented diets at doses of 0 (Control), 0.3, 0.6, 0.9 and 1.2 mg/kg for 10 weeks. After feeding trial, a part of the fishes were exposed to hypoxia stress. Results showed that the survival ratio of grass carp significantly increased in 0.6 and 0.9 mg/kg Nano‐Se group, and the content of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) significantly decreased in 0.6–1.2 mg/kg Nano‐Se groups compared with the control group. In addition, dietary Nano‐Se significantly enhanced glutathione peroxidase (GPX) activity and reduced the malondialdehyde (MDA) content in fishes fed diets with 0.3 and 0.6 mg/kg Nano‐Se. Dietary Nano‐Se significantly elevated mRNA expression of GPX1 and catalase (CAT) by promoting the mRNA expression of NF‐E2‐related nuclear factor 2 (Nrf2) in the hepatopancreas. After hypoxia stress, the GPX and superoxide dismutase (SOD) activities were significantly enhanced, and the MDA content and mortality rate consequently decreased in fishes fed diets with 0.3 and 0.6 mg/kg Nano‐Se. In summary, these results suggested that optimal Nano‐Se in diet enhanced the antioxidant capacity and hypoxia tolerance of grass carp.  相似文献   

17.
A new strain of Paenibacillus polymyxa S3 with antagonistic effects on 11 major fish pathogens (especially Aeromonas hydrophila), but had no toxicity to grass carp, was screened from the sediment of fishponds. In vivo colonization studies showed that strain S3 could be colonized and distributed in the gill and abdomen of the grass carp. Bioassay results showed that the weight growth rate of grass carp in the strain S3 oral group (16.01%) and strain S3 immersion group (16.44%) was significantly higher than those of the control group (8.61%). At the same time, the activities of ACP, AKP, CAT and GSH-Px in the serum of grass carp in oral and immersion groups were significantly higher than those of the control group. In addition, the treatment with strain S3 could significantly upregulate the expression of the antioxidant-related genes and immune-related genes Keap1, Nrf2, C3, LZM, IgM, TLR-4 and MyD-88 in grass carp tissues. The challenge test showed that strain S3 treatment significantly increased the survival rate of grass carp infected with Aeromonas hydrophila. Whole genome sequencing analysis showed that strain S3 had 16 active metabolite gene clusters, indicating that it had abundant gene resources, which provided important support for its development for fish microecological preparations. In summary, a new strain of Paenibacillus polymyxa S3 with antibacterial activity against a variety of fish pathogens was screened in this study and its probiotic function was evaluated, proving its potential value in fisheries.  相似文献   

18.
Grass carp, Ctenopharyngodon idellus, harbours complex intestinal bacterial communities, which are important in several physiological processes of their host. Intestinal microbiota of grass carp have been previously described in numerous studies. However, an overview on the bacterial community diversity, including their establishment, their functions in host's nutritional processes and immune‐related responses, and use as probiotics, is absent. This study aimed to summarize the current understanding of the grass carp intestinal microbiota. In this review, we provide general information on the establishment and composition of intestinal microbial communities and factors influencing the diversity of gut microbiota. Also, this review covers the dietary effects of probiotics, prebiotics and/or synbiotics on the grass carp intestinal microbial communities and physiological characteristics. Although our knowledge of the grass carp intestinal microbiota is expanding rapidly, further studies on the factors affecting the diversity of intestinal microbes, interactions between intestinal microbiota and their hosts and application of probiotics/prebiotics/synbiotics in aquaculture industry, are needed.  相似文献   

19.
Farmed grass carp (Ctenopharyngodon idella) at commercial size were transported to a natural lake for long‐term depuration while being food deprived. The effect of depuration time on the quality of fish fillets was investigated based on proximate compositions, textural parameters and flavour characteristics. The results showed that protein and lipids, but not carbohydrates, were the major source of energy for grass carp during depuration and starvation. Textural parameters that included hardness, springiness, gumminess and cohesiveness increased significantly after depuration, as well as water‐holding capacity of fish muscle. Taste and odour characteristics of grass carp muscle were obviously changed by depuration based on tests by an electronic tongue and nose. Off‐flavour volatile compounds, such as nonanal and hexanal, were reduced after depuration. In conclusion, the quality of grass carp fillets was improved effectively by long‐term depuration and food deprivation. More than 20 days of depuration was appropriate for the enhancement of grass carp quality before marketing.  相似文献   

20.
To investigate the effects of dietary quercetin on growth, antioxidation, and flesh quality of grass carp, Ctenopharyngodon idella, six diets were prepared with quercetin inclusion rates of 0 (control diet), 0.1, 0.2, 0.4, 0.6, and 0.8 g/kg. Grass carp with a body weight of 13.3 ± 0.1 g were fed with one of the six diets for 60 days. The weight gain (WG) showed a quadratic relationship with dietary quercetin levels; the supplementation of 0.4 g/kg quercetin significantly improved WG (+4.73%) and decreased feed conversion ratio (?0.06) (p < .05) when compared to those of the control group. The intestinal fat ratio was reduced by the addition of 0.2 or 0.4 g/kg of quercetin (p < .05), and serum activities of alkaline phosphatase and superoxide dismutase were increased by the addition of 0.4 and 0.6 g/kg of quercetin (p < .05). The inclusion of 0.2–0.6 g/kg of quercetin increased the contents of delicious amino acids and decreased the cooking loss of flesh (p < .05). Flesh collagen content was increased by the addition of 0.4–0.8 g/kg of quercetin (p < .05). In conclusion, dietary quercetin could improve the growth and enhance the antioxidation and flesh quality of grass carp, with the recommended supplemental level of quercetin was 0.37 g/kg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号